CN108919265A - 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法 - Google Patents

一种基于互信息量最大的星载TomoSAR空间基线序列设计方法 Download PDF

Info

Publication number
CN108919265A
CN108919265A CN201810777435.5A CN201810777435A CN108919265A CN 108919265 A CN108919265 A CN 108919265A CN 201810777435 A CN201810777435 A CN 201810777435A CN 108919265 A CN108919265 A CN 108919265A
Authority
CN
China
Prior art keywords
baseline
tomosar
elevation
maximum
optimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810777435.5A
Other languages
English (en)
Other versions
CN108919265B (zh
Inventor
徐华平
杨波
罗尧
宋泽宁
李春升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810777435.5A priority Critical patent/CN108919265B/zh
Publication of CN108919265A publication Critical patent/CN108919265A/zh
Application granted granted Critical
Publication of CN108919265B publication Critical patent/CN108919265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes

Abstract

本发明公开了一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,涉及信号处理领域。针对场景的高程分布范围及高程分辨率指标,提出一种基于互信息量最大的星载TomoSAR空间基线序列设计方法。该方法主要包括两个步骤,步骤一、基于星载TomoSAR系统的非模糊高程范围及Rayleigh高程分辨率指标,确定基线间隔最大值及Rayleigh分辨率所对应基线跨度,并给出高程重建所需的最少基线数目;步骤二、构建TomoSAR通信系统模型,基于信息传输最优时互信息量最大的原理,精确搜索最优的基线跨度;步骤三、以最优基线跨度为中点,取分布于最优基线两侧的范围作为系统可实现的最优基线范围,结合最少基线数目的要求,获得均匀基线分布下的最优基线序列分布。

Description

一种基于互信息量最大的星载TomoSAR空间基线序列设计 方法
技术领域
本发明属于信号处理领域,涉及一种基于互信息量最大的星载TomoSAR空间基线序列设计方法。
背景技术
合成孔径雷达(SAR)是一种能够全天时、全天候工作的高分辨率微波成像雷达,并且对地表具有一定的穿透能力。在SAR基础上发展起来的层析合成孔径雷达(TomographicSAR,TomoSAR)是一种高精度重建复杂地形高程并能够实现高程分辨和叠掩目标分离的技术。自2000年机载TomoSAR被验证可行以来,星载Tomo-SAR获得了迅速发展,被广泛应用于城市测绘、灾害监测与环境测量等领域。
随着能够对复杂地形高精度、高分辨率高程估计的星载TomoSAR技术的广泛应用,针对星载TomoSAR系统的多基线设计是星载SAR的主要研究内容之一。由于多基线在均匀间隔的条件下,高程谱的旁瓣低,信噪比高,因此多基线系统设计的参数主要有两个,分别是基线数目和基线跨度。由Rayleigh分辨率知,空间基线跨度越大时,Rayleigh高程分辨率越好,但是引起的空间或时间去相关也会增大,从而增大相位噪声减小相位信噪比;空间基线跨度越小时,引起的空间或时间去相关越小,相位噪声越小,但是Rayleigh高程分辨率变得越差。由奈奎斯特采样理论知,空间间隔越大时,非模糊高程范围越小,从而导致超过非模糊高程范围外的目标无法重构;空间间隔越小时,非模糊高程范围越大。在基线数目确定的条件下,这与Rayleigh高程分辨率对基线跨度的要求相矛盾。在基线数目不定的条件下,则要求更多的基线数目,这增加了对TomoSAR系统的采样率要求。因此,在最低系统采样率的条件下实现高精度和高分辨率的TomoSAR技术,必须考虑高程分辨率及参考地形范围等约束条件下的基线矢量优化设计。所以,多基线序列优化设计是星载TomoSAR的关键技术之一。
当前,基于系统分辨率指标与场景非模糊范围约束的基线序列优化设计方法受到广泛关注。先根据场景的高程范围确定最大的基线间隔,然后基于Rayleigh高程分辨率确定最小的基线跨度分布,最后由均匀基线分布下基线数目的整数约束条件来确定系统所需的最少基线数目。结合系统分辨率指标与场景非模糊范围约束分别对基线跨度与基线间隔的要求,分别给出均匀条件下的基线序列分布,这就是基于系统分辨率指标与场景非模糊范围约束的基线序列优化设计方法基本思想。首先,虽然基线跨度的增大能增大系统的高程分辨率,但是也会引起严重的空间去相关问题,进而增大SAR堆栈数据的斑点噪声效应,而基于压缩感知等现代谱估计的超分辨率重构算法能够有效降低对系统高程分辨率的要求;其次,常规的基于系统分辨率指标与场景非模糊范围约束的基线序列优化设计方法主要针对于强点目标,不适用于扩展面目标。因此,结合现代超分辨率重构算法、且能针对一般散射体高程重构的基线序列优化设计方法具有重要意义。构建TomoSAR通信系统模型,将互信息量理论应用于星载TomoSAR基线序列优化设计中,结合压缩感知等具有超分辨率能力的估计器设计适用于扩展散射体高程估计的星载TomoSAR系统,该系统既能满足高程分辨率指标。
发明内容
本发明的主要目的是针对现有的星载TomoSAR系统未结合超分辨率处理方法且目前的基线设计方法只适用于强点目标成像的问题,提出了一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,利用本发明可以在满足高程分辨率指标的同时降低对基线跨度的要求且能够适用于一般散射体的TomoSAR系统设计。
本发明提供了一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,主要包括以下几个步骤:
步骤一:基于场景的高程分布范围及高程分辨率约束指标,利用视角关系计算其对应于方位-斜距平面法向上的高程范围及分辨率指标;
步骤二:基于TomoSAR系统的非模糊高程范围及Rayleigh高程分辨率指标,确定高程重建所需的最大基线间隔和分辨率要求的最小基线跨度,并给出最小基线数目;
步骤三:构建TomoSAR通信系统模型,基于信息传输最优时互信息量最大的准则,提出互信息量最大的优化函数,精确搜索最优的基线跨度,进而获得均匀基线分布下的最优的基线跨度范围,即最优的基线序列分布。
本发明基于互信息量最大的星载TomoSAR空间基线序列设计方法的优点在于:
(1)实用性。本发明提出的基于互信息量最大的星载TomoSAR空间基线序列设计方法结合当前超分辨率算法降低对基线跨度的要求,给出的基线跨度范围能够有效降低星载TomoSAR系统的实现难度。
(2)有效性。本发明提出的基于互信息量最大的星载TomoSAR空间基线序列设计方法设计的基线能够有效地应用于强点目标和扩展目标的高精度重构及叠掩目标超分辨率。
附图说明
图1是基于互信息量最大的星载TomoSAR空间基线序列设计方法的流程图。
图2是扩展目标的互信息随基线跨度的变化曲线。
图3是三种基线序列设计方法下两种估计器的重构结果,其中,图3(a)为基于分辨率指标设计的基线序列下仿真数据的重构结果,图3(b)为基于场景高程范围指标设计的基线序列下仿真数据的重构结果,图3(c)为基于互信息量最大设计的基线序列下仿真数据的重构结果。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明是一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,方法流程图如图1所示,具体包括以下步骤:
步骤一:在给定场景的高程范围H0及高程分辨率ρh约束指标的情况下,基于视角关系,计算其对应于方位-斜距平面法向上的高程范围S0及分辨率ρs指标,具体公式如下:
S0=H0/sin(θ) (1)
ρs=ρh/sin(θ) (2)
步骤二:利用TomoSAR系统的非模糊高程范围S0与基线间隔△B、Rayleigh高程分辨率ρs与基线跨度B的关系式:
S0=λr/2/△B (3)
ρs=λr/2/B (4)
确定最大的基线间隔△B与最小的基线跨度B,其中λ与r分别为波长和中心斜距。另外,由基线跨度与基线间隔的关系可以确定基线的个数,因此,所需的最少基线个数为其中为向上取整算子。
步骤三:由卫星观测次数M与场景的斜距垂向高程范围S0,构建扩展目标的TomoSAR通信系统模型,扩展目标互信息量上界的表达式为:
其中,K为叠掩目标的个数,为目标强度,Et[·]表示关于t函数的期望,s为的均匀分布,|x|为相互独立的瑞利分布,即在高程位置s的导向矢量,其中b⊥m表示第m幅SAR图像的有效基线,Rd为斑点噪声的相关矩阵,形如其中b⊥c为系统的有效极限基线,为噪声强度。接着,利用信息传输最优时互信息量最大原则,精确搜索最优的基线跨度,从而以最优基线跨度为中点、(M-1)△B为右端点给出基线跨度的最优分布范围,结合最少基线数目要求得到均匀基线分布下的最优基线序列分布范围。
实施实例
为说明本发明的有效性,进行如下条件下的扩展目标验证实验,实例的仿真参数如表1所示,图2给出了步骤三中互信息量与基线跨度的关系图,用CS+MD与CS+NLS估计器估计不同方法设计的基线序列下生成数据堆栈的重构结果如图2~图4所示,表2给出了不同方法下的基线跨度设计结果及两种估计器绝对误差小于1m的比率。
表1实施实例的部分仿真参数
利用表1的参数,应用步骤二可以计算出最少的图像幅数为23。计算(5)式所给的互信息随基线跨度的变化曲线,如图2所示。可以看出,存在最优基线跨度使得系统的互信息量最大,该最大值对应的基线跨度即为系统的最优基线跨度值,以最优基线跨度为中点、(M-1)△B为右端点给出基线跨度的最优分布范围为[404.1688m,448.7292m]。
按表2中每种基线参数的要求,随机生成1387组数据,每组数据均按表1中的分布式目标参数要求生成。接着,用CS+MD与CS+NLS估计器估计每组数据高程,并统计绝对精度在1m内所占的堆栈数目比率,通过比较可知,基于互信息量最大的星载TomoSAR空间基线序列设计方法高精度重构比率最高。图3依次给出三种基线设计方法设计的参数下CS+MD与CS+NLS估计器的重构实例图,从图中可以看出基于互信息量最大的TomoSAR空间基线序列设计方法能够获得高精度的重构结果,尤其是对于CS+NLS估计器。上述仿真结果有效地证明了本发明的基于互信息量最大的星载TomoSAR空间基线序列设计方法的有效性及实用性,能够有效地提高算法的估计精度并实现高程向上的超分辨率。
表2三种基线序列设计方法下两种估计器高精度重构分析表

Claims (4)

1.一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,其特征在于:包括以下步骤:
步骤一:基于场景的高程分布范围及高程分辨率约束指标,利用视角关系计算其对应于方位-斜距平面法向上的高程范围及分辨率指标;
步骤二:基于TomoSAR系统的非模糊高程范围及Rayleigh高程分辨率指标,确定高程重建所需的最大基线间隔和分辨率要求的最小基线跨度,并给出最小基线数目;
步骤三:构建TomoSAR通信系统模型,基于信息传输最优时互信息量最大的准则,提出互信息量最大的优化函数,精确搜索最优的基线跨度,进而获得均匀基线分布下的最优的基线跨度范围,即最优的基线序列分布。
2.根据权利要求1所述的一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,其特征在于:步骤一具体为:在给定场景的高程范围H0及高程分辨率ρh约束指标的情况下,基于视角关系,计算其对应于方位-斜距平面法向上的高程范围S0及分辨率ρs指标,具体公式如下:
S0=H0/sin(θ) (1)
ρs=ρh/sin(θ) (2)
3.根据权利要求1所述的一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,其特征在于:步骤二具体为:利用TomoSAR系统的非模糊高程范围S0与基线间隔△B、Rayleigh高程分辨率ρs与基线跨度B的关系式:
S0=λr/2/△B (3)
ρs=λr/2/B (4)
确定最大的基线间隔△B与最小的基线跨度B,其中λ与r分别为波长和中心斜距,由基线跨度与基线间隔的关系可以确定基线的个数,所需的最少基线个数为其中为向上取整算子。
4.根据权利要求1所述的一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,其特征在于:步骤三具体为:由卫星观测次数M与场景的斜距垂向高程范围S0,构建扩展目标的TomoSAR通信系统模型,扩展目标互信息量上界的表达式为:
其中,K为叠掩目标的个数,为目标强度,Et[·]表示关于t函数的期望,s为的均匀分布,|x|为相互独立的瑞利分布,即在高程位置s的导向矢量,其中b⊥m表示第m幅SAR图像的有效基线,Rd为斑点噪声的相关矩阵,形如其中b⊥c为系统的有效极限基线,为噪声强度;接着,利用信息传输最优时互信息量最大原则,精确搜索最优的基线跨度,从而以最优基线跨度为中点、(M-1)△B为右端点给出基线跨度的最优分布范围,结合最少基线数目要求得到均匀基线分布下的最优基线序列分布范围。
CN201810777435.5A 2018-07-16 2018-07-16 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法 Active CN108919265B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810777435.5A CN108919265B (zh) 2018-07-16 2018-07-16 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810777435.5A CN108919265B (zh) 2018-07-16 2018-07-16 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法

Publications (2)

Publication Number Publication Date
CN108919265A true CN108919265A (zh) 2018-11-30
CN108919265B CN108919265B (zh) 2022-05-06

Family

ID=64411947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810777435.5A Active CN108919265B (zh) 2018-07-16 2018-07-16 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法

Country Status (1)

Country Link
CN (1) CN108919265B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750003A (zh) * 2004-08-03 2006-03-22 索尼株式会社 信息处理装置,信息处理方法,和程序
CN101123683A (zh) * 2007-08-27 2008-02-13 北京航空航天大学 结合可见光图像信息的sar图像斑点噪声抑制方法
US7433732B1 (en) * 2004-02-25 2008-10-07 University Of Florida Research Foundation, Inc. Real-time brain monitoring system
CN101581780A (zh) * 2008-05-14 2009-11-18 中国科学院电子学研究所 一种用于侧视层析合成孔径雷达的三维聚焦成像方法
CN101893710A (zh) * 2009-05-20 2010-11-24 中国科学院电子学研究所 一种非均匀分布的多基线合成孔径雷达三维成像方法
CN102495407A (zh) * 2011-11-14 2012-06-13 电子科技大学 一种极化合成孔径雷达图像相似度的表征方法
EP2650695A1 (en) * 2012-08-02 2013-10-16 Institute of Electronics, Chinese Academy of Sciences Imaging method for synthetic aperture radar in high squint mode
CN104062658A (zh) * 2014-06-09 2014-09-24 桂林电子科技大学 一种基于频率补偿的多基线sar干涉相位估计方法
US8872693B1 (en) * 2009-04-29 2014-10-28 The United States of America as respresented by the Secretary of the Air Force Radar signature database validation for automatic target recognition
CN104166132A (zh) * 2014-08-14 2014-11-26 东南大学 一种非正交多载波相位编码雷达系统
CN104361590A (zh) * 2014-11-12 2015-02-18 河海大学 一种控制点自适应分布的高分辨率遥感影像配准方法
US20160098838A1 (en) * 2013-04-24 2016-04-07 Commissariat à l'Energie Atomique et aux Energies Alternatives Registration of sar images by mutual information
CN105828061A (zh) * 2016-05-11 2016-08-03 宁波大学 一种基于视觉掩蔽效应的虚拟视点质量评价方法
CN107411736A (zh) * 2017-03-10 2017-12-01 孙彪 胎儿心电信号检测系统
CN107462875A (zh) * 2017-07-25 2017-12-12 西安电子科技大学 基于iga‑np算法的认知雷达最大mi波形优化方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433732B1 (en) * 2004-02-25 2008-10-07 University Of Florida Research Foundation, Inc. Real-time brain monitoring system
CN1750003A (zh) * 2004-08-03 2006-03-22 索尼株式会社 信息处理装置,信息处理方法,和程序
CN101123683A (zh) * 2007-08-27 2008-02-13 北京航空航天大学 结合可见光图像信息的sar图像斑点噪声抑制方法
CN101581780A (zh) * 2008-05-14 2009-11-18 中国科学院电子学研究所 一种用于侧视层析合成孔径雷达的三维聚焦成像方法
US8872693B1 (en) * 2009-04-29 2014-10-28 The United States of America as respresented by the Secretary of the Air Force Radar signature database validation for automatic target recognition
CN101893710A (zh) * 2009-05-20 2010-11-24 中国科学院电子学研究所 一种非均匀分布的多基线合成孔径雷达三维成像方法
CN102495407A (zh) * 2011-11-14 2012-06-13 电子科技大学 一种极化合成孔径雷达图像相似度的表征方法
EP2650695A1 (en) * 2012-08-02 2013-10-16 Institute of Electronics, Chinese Academy of Sciences Imaging method for synthetic aperture radar in high squint mode
US20160098838A1 (en) * 2013-04-24 2016-04-07 Commissariat à l'Energie Atomique et aux Energies Alternatives Registration of sar images by mutual information
CN104062658A (zh) * 2014-06-09 2014-09-24 桂林电子科技大学 一种基于频率补偿的多基线sar干涉相位估计方法
CN104166132A (zh) * 2014-08-14 2014-11-26 东南大学 一种非正交多载波相位编码雷达系统
CN104361590A (zh) * 2014-11-12 2015-02-18 河海大学 一种控制点自适应分布的高分辨率遥感影像配准方法
CN105828061A (zh) * 2016-05-11 2016-08-03 宁波大学 一种基于视觉掩蔽效应的虚拟视点质量评价方法
CN107411736A (zh) * 2017-03-10 2017-12-01 孙彪 胎儿心电信号检测系统
CN107462875A (zh) * 2017-07-25 2017-12-12 西安电子科技大学 基于iga‑np算法的认知雷达最大mi波形优化方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FABIO BASELICE: "Multibaseline SAR Interferometry from Complex Data", 《IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING》 *
I. SANCHEZ ESQUEDA: "Compact Modeling of Total Ionizing Dose and Aging Effects in MOS Technologies", 《IEEE TRANSACTIONS ON NUCLEAR SCIENCE》 *
LI WEI: "A novel system parameters design and performance analysis method for Distributed Satellite-borne SAR system", 《ELSEVIER》 *
袁玉等: "SAR图像变化检测提取建筑物震害信息的研究综述", 《地壳构造与地壳应力文集》 *
鄢志杰: "一种基于区分性准则的模型结构优化方法", 《中文信息学报》 *
陈钦: "多基线层析SAR成像方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Also Published As

Publication number Publication date
CN108919265B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN105785327B (zh) 频率分集阵列合成孔径雷达高分辨宽测绘带成像方法
EP0097490B1 (en) Range/azimuth/elevation angle ship imaging for ordnance control
CN104749555B (zh) 一种组合相位差测向和空间谱测向的测向定位系统
CN101893710A (zh) 一种非均匀分布的多基线合成孔径雷达三维成像方法
Zhou et al. Three-dimensional scattering center extraction based on wide aperture data at a single elevation
CN105182339A (zh) 一种基于角反射器的边坡形变监测环境影响校正方法
CN109270528B (zh) 基于全解析距离模型的一站固定式双站sar成像方法
CN109490820A (zh) 一种基于平行嵌套阵的二维doa估计方法
CN112612020B (zh) 一种新型毫米波雷达信号处理方法
CN105301589B (zh) 高分辨宽测绘带sar地面运动目标成像方法
CN109085556B (zh) 一种基于一二阶峰比值的高频地波雷达浪场形成方法
CN101126809A (zh) 基于相关加权的干涉合成孔径雷达干涉相位估计方法
CN106199600A (zh) 基于多普勒估计的方位多通道合成孔径雷达成像方法
CN109782278A (zh) 干涉合成孔径雷达高度计波束中心指向设计方法及系统
CN107219496A (zh) 一种改进的相关干涉仪鉴相方法
CN110161503A (zh) 基于三维等距圆模型的近距宽域sar高分辨成像方法
CN105652271A (zh) 一种增广拉格朗日实波束雷达角超分辨处理方法
Crosetto et al. Deformation monitoring using remotely sensed radar interferometric data
CN103630898A (zh) 对多基线干涉sar相位偏置进行估计的方法
Liao et al. Estimation method for InSAR interferometric phase based on generalized correlation steering vector
CN108415017A (zh) 复杂目标雷达散射特性稀疏表征的一维增广状态空间方法
CN108919265A (zh) 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法
Wang et al. UAV-Based P-Band SAR Tomography with Long Baseline: A Multi-Master Approach
CN103217677A (zh) 一种基于联合检测量的单通道sar动目标检测方法
Li et al. KT and azimuth sub‐region deramp‐based high‐squint SAR imaging algorithm mounted on manoeuvring platforms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant