CN108919265B - 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法 - Google Patents

一种基于互信息量最大的星载TomoSAR空间基线序列设计方法 Download PDF

Info

Publication number
CN108919265B
CN108919265B CN201810777435.5A CN201810777435A CN108919265B CN 108919265 B CN108919265 B CN 108919265B CN 201810777435 A CN201810777435 A CN 201810777435A CN 108919265 B CN108919265 B CN 108919265B
Authority
CN
China
Prior art keywords
baseline
elevation
tomosar
optimal
span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810777435.5A
Other languages
English (en)
Other versions
CN108919265A (zh
Inventor
徐华平
杨波
罗尧
宋泽宁
李春升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810777435.5A priority Critical patent/CN108919265B/zh
Publication of CN108919265A publication Critical patent/CN108919265A/zh
Application granted granted Critical
Publication of CN108919265B publication Critical patent/CN108919265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,涉及信号处理领域。针对场景的高程分布范围及高程分辨率指标,提出一种基于互信息量最大的星载TomoSAR空间基线序列设计方法。该方法主要包括两个步骤,步骤一、基于星载TomoSAR系统的非模糊高程范围及Rayleigh高程分辨率指标,确定基线间隔最大值及Rayleigh分辨率所对应基线跨度,并给出高程重建所需的最少基线数目;步骤二、构建TomoSAR通信系统模型,基于信息传输最优时互信息量最大的原理,精确搜索最优的基线跨度;步骤三、以最优基线跨度为中点,取分布于最优基线两侧的范围作为系统可实现的最优基线范围,结合最少基线数目的要求,获得均匀基线分布下的最优基线序列分布。

Description

一种基于互信息量最大的星载TomoSAR空间基线序列设计 方法
技术领域
本发明属于信号处理领域,涉及一种基于互信息量最大的星载TomoSAR空间基线序列设计方法。
背景技术
合成孔径雷达(SAR)是一种能够全天时、全天候工作的高分辨率微波成像雷达,并且对地表具有一定的穿透能力。在SAR基础上发展起来的层析合成孔径雷达(TomographicSAR,TomoSAR)是一种高精度重建复杂地形高程并能够实现高程分辨和叠掩目标分离的技术。自2000年机载TomoSAR被验证可行以来,星载Tomo-SAR获得了迅速发展,被广泛应用于城市测绘、灾害监测与环境测量等领域。
随着能够对复杂地形高精度、高分辨率高程估计的星载TomoSAR技术的广泛应用,针对星载TomoSAR系统的多基线设计是星载SAR的主要研究内容之一。由于多基线在均匀间隔的条件下,高程谱的旁瓣低,信噪比高,因此多基线系统设计的参数主要有两个,分别是基线数目和基线跨度。由Rayleigh分辨率知,空间基线跨度越大时,Rayleigh高程分辨率越好,但是引起的空间或时间去相关也会增大,从而增大相位噪声减小相位信噪比;空间基线跨度越小时,引起的空间或时间去相关越小,相位噪声越小,但是Rayleigh高程分辨率变得越差。由奈奎斯特采样理论知,空间间隔越大时,非模糊高程范围越小,从而导致超过非模糊高程范围外的目标无法重构;空间间隔越小时,非模糊高程范围越大。在基线数目确定的条件下,这与Rayleigh高程分辨率对基线跨度的要求相矛盾。在基线数目不定的条件下,则要求更多的基线数目,这增加了对TomoSAR系统的采样率要求。因此,在最低系统采样率的条件下实现高精度和高分辨率的TomoSAR技术,必须考虑高程分辨率及参考地形范围等约束条件下的基线矢量优化设计。所以,多基线序列优化设计是星载TomoSAR的关键技术之一。
当前,基于系统分辨率指标与场景非模糊范围约束的基线序列优化设计方法受到广泛关注。先根据场景的高程范围确定最大的基线间隔,然后基于Rayleigh高程分辨率确定最小的基线跨度分布,最后由均匀基线分布下基线数目的整数约束条件来确定系统所需的最少基线数目。结合系统分辨率指标与场景非模糊范围约束分别对基线跨度与基线间隔的要求,分别给出均匀条件下的基线序列分布,这就是基于系统分辨率指标与场景非模糊范围约束的基线序列优化设计方法基本思想。首先,虽然基线跨度的增大能增大系统的高程分辨率,但是也会引起严重的空间去相关问题,进而增大SAR堆栈数据的斑点噪声效应,而基于压缩感知等现代谱估计的超分辨率重构算法能够有效降低对系统高程分辨率的要求;其次,常规的基于系统分辨率指标与场景非模糊范围约束的基线序列优化设计方法主要针对于强点目标,不适用于扩展面目标。因此,结合现代超分辨率重构算法、且能针对一般散射体高程重构的基线序列优化设计方法具有重要意义。构建TomoSAR通信系统模型,将互信息量理论应用于星载TomoSAR基线序列优化设计中,结合压缩感知等具有超分辨率能力的估计器设计适用于扩展散射体高程估计的星载TomoSAR系统,该系统既能满足高程分辨率指标。
发明内容
本发明的主要目的是针对现有的星载TomoSAR系统未结合超分辨率处理方法且目前的基线设计方法只适用于强点目标成像的问题,提出了一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,利用本发明可以在满足高程分辨率指标的同时降低对基线跨度的要求且能够适用于一般散射体的TomoSAR系统设计。
本发明提供了一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,主要包括以下几个步骤:
步骤一:基于场景的高程分布范围及高程分辨率约束指标,利用视角关系计算其对应于方位-斜距平面法向上的高程范围及分辨率指标;
步骤二:基于TomoSAR系统的非模糊高程范围及Rayleigh高程分辨率指标,确定高程重建所需的最大基线间隔和分辨率要求的最小基线跨度,并给出最小基线数目;
步骤三:构建TomoSAR通信系统模型,基于信息传输最优时互信息量最大的准则,提出互信息量最大的优化函数,精确搜索最优的基线跨度,进而获得均匀基线分布下的最优的基线跨度范围,即最优的基线序列分布。
本发明基于互信息量最大的星载TomoSAR空间基线序列设计方法的优点在于:
(1)实用性。本发明提出的基于互信息量最大的星载TomoSAR空间基线序列设计方法结合当前超分辨率算法降低对基线跨度的要求,给出的基线跨度范围能够有效降低星载TomoSAR系统的实现难度。
(2)有效性。本发明提出的基于互信息量最大的星载TomoSAR空间基线序列设计方法设计的基线能够有效地应用于强点目标和扩展目标的高精度重构及叠掩目标超分辨率。
附图说明
图1是基于互信息量最大的星载TomoSAR空间基线序列设计方法的流程图。
图2是扩展目标的互信息随基线跨度的变化曲线。
图3是三种基线序列设计方法下两种估计器的重构结果,其中,图3(a)为基于分辨率指标设计的基线序列下仿真数据的重构结果,图3(b)为基于场景高程范围指标设计的基线序列下仿真数据的重构结果,图3(c)为基于互信息量最大设计的基线序列下仿真数据的重构结果。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明是一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,方法流程图如图1所示,具体包括以下步骤:
步骤一:在给定场景的高程范围H0及高程分辨率ρh约束指标的情况下,基于视角关系,计算其对应于方位-斜距平面法向上的高程范围S0及分辨率ρs指标,具体公式如下:
S0=H0/sin(θ) (1)
ρs=ρh/sin(θ) (2)
步骤二:利用TomoSAR系统的非模糊高程范围S0与基线间隔ΔB、Rayleigh高程分辨率ρs与基线跨度B的关系式:
S0=λr/2/ΔB (3)
ρs=λr/2/B (4)
确定最大的基线间隔ΔB与最小的基线跨度B,其中λ与r分别为波长和中心斜距。另外,由基线跨度与基线间隔的关系可以确定基线的个数,因此,所需的最少基线个数为
Figure GDA0003590720300000031
其中
Figure GDA0003590720300000032
为向上取整算子。
步骤三:由卫星观测次数M与场景的斜距垂向高程范围S0,构建扩展目标的TomoSAR通信系统模型,扩展目标互信息量上界的表达式为:
Figure GDA0003590720300000033
其中,K为叠掩目标的个数,
Figure GDA0003590720300000034
为目标强度,Et[·]表示关于t函数的期望,s为
Figure GDA0003590720300000035
的均匀分布,|x|为相互独立的瑞利分布,
Figure GDA0003590720300000036
即在高程位置s的导向矢量,其中b⊥m表示第m幅SAR图像的有效基线,Rd为斑点噪声的相关矩阵,形如
Figure GDA0003590720300000041
其中b⊥c为系统的有效极限基线,
Figure GDA0003590720300000042
为噪声强度。接着,利用信息传输最优时互信息量最大原则,精确搜索最优的基线跨度,从而以最优基线跨度为中点、(M-1)ΔB为右端点给出基线跨度的最优分布范围,结合最少基线数目要求得到均匀基线分布下的最优基线序列分布范围。
实施实例
为说明本发明的有效性,进行如下条件下的扩展目标验证实验,实例的仿真参数如表1所示,图2给出了步骤三中互信息量与基线跨度的关系图,用CS+MD与CS+NLS估计器估计不同方法设计的基线序列下生成数据堆栈的重构结果如图3所示,表2给出了不同方法下的基线跨度设计结果及两种估计器绝对误差小于1m的比率。
表1实施实例的部分仿真参数
Figure GDA0003590720300000043
利用表1的参数,应用步骤二可以计算出最少的图像幅数为23。计算(5)式所给的互信息随基线跨度的变化曲线,如图2所示。可以看出,存在最优基线跨度使得系统的互信息量最大,该最大值对应的基线跨度即为系统的最优基线跨度值,以最优基线跨度为中点、(M-1)ΔB为右端点给出基线跨度的最优分布范围为[404.1688m,448.7292m]。
按表2中每种基线参数的要求,随机生成1387组数据,每组数据均按表1中的分布式目标参数要求生成。接着,用CS+MD与CS+NLS估计器估计每组数据高程,并统计绝对精度在1m内所占的堆栈数目比率,通过比较可知,基于互信息量最大的星载TomoSAR空间基线序列设计方法高精度重构比率最高。图3依次给出三种基线设计方法设计的参数下CS+MD与CS+NLS估计器的重构实例图,从图中可以看出基于互信息量最大的TomoSAR空间基线序列设计方法能够获得高精度的重构结果,尤其是对于CS+NLS估计器。上述仿真结果有效地证明了本发明的基于互信息量最大的星载TomoSAR空间基线序列设计方法的有效性及实用性,能够有效地提高算法的估计精度并实现高程向上的超分辨率。
表2三种基线序列设计方法下两种估计器高精度重构分析表
Figure GDA0003590720300000051

Claims (3)

1.一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,其特征在于:包括以下步骤:
步骤一:基于场景的高程分布范围及高程分辨率约束指标,利用视角关系计算其对应于方位-斜距平面法向上的高程范围及分辨率指标;
步骤二:基于TomoSAR系统的非模糊高程范围及Rayleigh高程分辨率指标,确定高程重建所需的最大基线间隔和分辨率要求的最小基线跨度,并给出最小基线数目;
步骤三:构建TomoSAR通信系统模型,基于信息传输最优时互信息量最大的准则,提出互信息量最大的优化函数,精确搜索最优的基线跨度,进而获得均匀基线分布下的最优的基线跨度范围,即最优的基线序列分布;具体为:由卫星观测次数M与场景的斜距垂向高程范围S0,构建扩展目标的TomoSAR通信系统模型,扩展目标互信息量上界的表达式为:
Figure FDA0003537690290000011
其中,K为叠掩目标的个数,
Figure FDA0003537690290000012
为目标强度,Et[·]表示关于t函数的期望,s为
Figure FDA0003537690290000013
的均匀分布,|x|为相互独立的瑞利分布,
Figure FDA0003537690290000014
即在高程位置s的导向矢量,其中b⊥m表示第m幅SAR图像的有效基线,Rd为斑点噪声的相关矩阵,形如
Figure FDA0003537690290000015
其中b⊥c为系统的有效极限基线,
Figure FDA0003537690290000016
为噪声强度;接着,利用信息传输最优时互信息量最大原则,精确搜索最优的基线跨度,从而以最优基线跨度为中点、(M-1)△B为右端点给出基线跨度的最优分布范围,结合最少基线数目要求得到均匀基线分布下的最优基线序列分布范围。
2.根据权利要求1所述的一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,其特征在于:步骤一具体为:在给定场景的高程范围H0及高程分辨率ρh约束指标的情况下,基于视角关系,计算其对应于方位-斜距平面法向上的高程范围S0及分辨率ρs指标,具体公式如下:
S0=H0/sin(θ) (1)
ρs=ρh/sin(θ) (2)。
3.根据权利要求1所述的一种基于互信息量最大的星载TomoSAR空间基线序列设计方法,其特征在于:步骤二具体为:利用TomoSAR系统的非模糊高程范围S0与基线间隔△B、Rayleigh高程分辨率ρs与基线跨度B的关系式:
S0=λr/2/△B (3)
ρs=λr/2/B (4)
确定最大的基线间隔△B与最小的基线跨度B,其中λ与r分别为波长和中心斜距,由基线跨度与基线间隔的关系可以确定基线的个数,所需的最少基线个数为
Figure FDA0003537690290000021
其中
Figure FDA0003537690290000022
为向上取整算子。
CN201810777435.5A 2018-07-16 2018-07-16 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法 Active CN108919265B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810777435.5A CN108919265B (zh) 2018-07-16 2018-07-16 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810777435.5A CN108919265B (zh) 2018-07-16 2018-07-16 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法

Publications (2)

Publication Number Publication Date
CN108919265A CN108919265A (zh) 2018-11-30
CN108919265B true CN108919265B (zh) 2022-05-06

Family

ID=64411947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810777435.5A Active CN108919265B (zh) 2018-07-16 2018-07-16 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法

Country Status (1)

Country Link
CN (1) CN108919265B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750003A (zh) * 2004-08-03 2006-03-22 索尼株式会社 信息处理装置,信息处理方法,和程序
CN101123683A (zh) * 2007-08-27 2008-02-13 北京航空航天大学 结合可见光图像信息的sar图像斑点噪声抑制方法
US7433732B1 (en) * 2004-02-25 2008-10-07 University Of Florida Research Foundation, Inc. Real-time brain monitoring system
CN101581780A (zh) * 2008-05-14 2009-11-18 中国科学院电子学研究所 一种用于侧视层析合成孔径雷达的三维聚焦成像方法
CN101893710A (zh) * 2009-05-20 2010-11-24 中国科学院电子学研究所 一种非均匀分布的多基线合成孔径雷达三维成像方法
CN102495407A (zh) * 2011-11-14 2012-06-13 电子科技大学 一种极化合成孔径雷达图像相似度的表征方法
EP2650695A1 (en) * 2012-08-02 2013-10-16 Institute of Electronics, Chinese Academy of Sciences Imaging method for synthetic aperture radar in high squint mode
CN104062658A (zh) * 2014-06-09 2014-09-24 桂林电子科技大学 一种基于频率补偿的多基线sar干涉相位估计方法
US8872693B1 (en) * 2009-04-29 2014-10-28 The United States of America as respresented by the Secretary of the Air Force Radar signature database validation for automatic target recognition
CN104166132A (zh) * 2014-08-14 2014-11-26 东南大学 一种非正交多载波相位编码雷达系统
CN104361590A (zh) * 2014-11-12 2015-02-18 河海大学 一种控制点自适应分布的高分辨率遥感影像配准方法
CN105828061A (zh) * 2016-05-11 2016-08-03 宁波大学 一种基于视觉掩蔽效应的虚拟视点质量评价方法
CN107462875A (zh) * 2017-07-25 2017-12-12 西安电子科技大学 基于iga‑np算法的认知雷达最大mi波形优化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005187B1 (fr) * 2013-04-24 2015-05-29 Commissariat Energie Atomique Recalage d'images sar par information mutuelle.
CN107411736A (zh) * 2017-03-10 2017-12-01 孙彪 胎儿心电信号检测系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433732B1 (en) * 2004-02-25 2008-10-07 University Of Florida Research Foundation, Inc. Real-time brain monitoring system
CN1750003A (zh) * 2004-08-03 2006-03-22 索尼株式会社 信息处理装置,信息处理方法,和程序
CN101123683A (zh) * 2007-08-27 2008-02-13 北京航空航天大学 结合可见光图像信息的sar图像斑点噪声抑制方法
CN101581780A (zh) * 2008-05-14 2009-11-18 中国科学院电子学研究所 一种用于侧视层析合成孔径雷达的三维聚焦成像方法
US8872693B1 (en) * 2009-04-29 2014-10-28 The United States of America as respresented by the Secretary of the Air Force Radar signature database validation for automatic target recognition
CN101893710A (zh) * 2009-05-20 2010-11-24 中国科学院电子学研究所 一种非均匀分布的多基线合成孔径雷达三维成像方法
CN102495407A (zh) * 2011-11-14 2012-06-13 电子科技大学 一种极化合成孔径雷达图像相似度的表征方法
EP2650695A1 (en) * 2012-08-02 2013-10-16 Institute of Electronics, Chinese Academy of Sciences Imaging method for synthetic aperture radar in high squint mode
CN104062658A (zh) * 2014-06-09 2014-09-24 桂林电子科技大学 一种基于频率补偿的多基线sar干涉相位估计方法
CN104166132A (zh) * 2014-08-14 2014-11-26 东南大学 一种非正交多载波相位编码雷达系统
CN104361590A (zh) * 2014-11-12 2015-02-18 河海大学 一种控制点自适应分布的高分辨率遥感影像配准方法
CN105828061A (zh) * 2016-05-11 2016-08-03 宁波大学 一种基于视觉掩蔽效应的虚拟视点质量评价方法
CN107462875A (zh) * 2017-07-25 2017-12-12 西安电子科技大学 基于iga‑np算法的认知雷达最大mi波形优化方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A novel system parameters design and performance analysis method for Distributed Satellite-borne SAR system;Li Wei;《Elsevier》;20121231;272-281 *
Compact Modeling of Total Ionizing Dose and Aging Effects in MOS Technologies;I. Sanchez Esqueda;《IEEE TRANSACTIONS ON NUCLEAR SCIENCE》;20150831;第62卷(第4期);1501-1515 *
Multibaseline SAR Interferometry from Complex Data;Fabio Baselice;《IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING》;20140731;第7卷(第7期);2911-2918 *
一种基于区分性准则的模型结构优化方法;鄢志杰;《中文信息学报》;20080331;第22卷(第2期);99-105 *
多基线层析SAR成像方法研究;陈钦;《中国优秀硕士学位论文全文数据库 信息科技辑》;20110715;全文 *

Also Published As

Publication number Publication date
CN108919265A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
Lombardini et al. Reflectivity estimation for multibaseline interferometric radar imaging of layover extended sources
Yague-Martinez et al. Coregistration of interferometric stacks of Sentinel-1 TOPS data
CN107229048B (zh) 一种高分宽幅sar动目标速度估计与成像方法
CN105842694B (zh) 一种基于ffbp sar成像的自聚焦方法
CN109597072B (zh) 一种双基合成孔径雷达sar系统的成像处理方法及装置
US7145496B2 (en) Autofocus method based on successive parameter adjustments for contrast optimization
Yang et al. Efficient space-variant motion compensation approach for ultra-high-resolution SAR based on subswath processing
Chen et al. A fast Cartesian back-projection algorithm based on ground surface grid for GEO SAR focusing
Kim et al. Doppler shifting technique for generating multi-frames of video SAR via sub-aperture signal processing
CN103630898A (zh) 对多基线干涉sar相位偏置进行估计的方法
Crosetto et al. Deformation monitoring using remotely sensed radar interferometric data
Guo et al. An improved airborne multichannel SAR imaging method with motion compensation and range-variant channel mismatch correction
CN108919265B (zh) 一种基于互信息量最大的星载TomoSAR空间基线序列设计方法
Chirico et al. Multichannel interferometric SAR phase unwrapping using extended Kalman smoother
Sosnovsky et al. An Efficiency Estimation for Multilooking and Phase Noise Suppression Methods for Spaceborne Interferometric Synthetic Aperture Radars Data Processing
Martone et al. Decorrelation effects in bistatic TanDEM-X data
CN112883330A (zh) 基于秩最小化Toeplitz重构的互质阵波达方向估计方法
Zhao et al. Improved maximum likelihood estimation for optimal phase history retrieval of distributed scatterers in InSAR stacks
Bamler et al. Split band interferometry versus absolute ranging with wideband SAR systems
Hu et al. Widely-distributed radar imaging based on consensus ADMM
CN114035191A (zh) 一种用于星载sar超高分辨率模式下的cs成像方法
Chaubey et al. Improvement in InSAR phase unwrapping using external DEM
Bezvesilniy et al. SAR processing algorithm with built-in geometric correction
De Zan et al. Tandem-L: mission performance and optimization for repeat-pass interferometry
Perissin et al. Spaceborne SAR anatomy of a city

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant