CN108910924A - 一种拟薄水铝石的降水节能制备方法 - Google Patents

一种拟薄水铝石的降水节能制备方法 Download PDF

Info

Publication number
CN108910924A
CN108910924A CN201811055456.2A CN201811055456A CN108910924A CN 108910924 A CN108910924 A CN 108910924A CN 201811055456 A CN201811055456 A CN 201811055456A CN 108910924 A CN108910924 A CN 108910924A
Authority
CN
China
Prior art keywords
washing
filter cake
filter
boehmite
slurries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811055456.2A
Other languages
English (en)
Other versions
CN108910924B (zh
Inventor
张凤韧
宫钰
王红彬
田静
孙鑫
于国
郭敬宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QIMAO CATALYSTS Co Ltd
Original Assignee
QIMAO CATALYSTS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QIMAO CATALYSTS Co Ltd filed Critical QIMAO CATALYSTS Co Ltd
Priority to CN201811055456.2A priority Critical patent/CN108910924B/zh
Publication of CN108910924A publication Critical patent/CN108910924A/zh
Application granted granted Critical
Publication of CN108910924B publication Critical patent/CN108910924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/141Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开了一种拟薄水铝石的降水节能制备方法,整个工艺由中和、老化、洗涤和干燥步骤组成。其特点是:在老化结束时加入0.5%‑5%干燥的后拟薄水铝石,洗涤过程为连续带式过滤机和间歇压滤机两段组合工艺,洗涤水用量为拟薄水铝石产品的10~30倍,拟薄水铝石滤饼中固含量在25.5%~35.5%范围内,降低洗涤水用量50%以上,单位产品需要蒸发的水量降低40%以上,降低干燥能耗40%以上。该工艺节约洗涤水用量,降低干燥能耗、产品质量更加稳定。

Description

一种拟薄水铝石的降水节能制备方法
技术领域
本发明涉及一种拟薄水铝石的降水节能制备方法,具体涉及一种硫酸铝-偏铝酸钠法制备拟薄水铝石的方法,该方法中洗涤过程为连续带式过滤机和间歇压滤机两段组合洗涤方法,减少了洗涤水用量,同时提高了滤饼中固含量,降低干燥能耗,使产品质量更加稳定。
背景技术
γ-Al2O3氧化铝作为载体在炼油催化剂领域应用非常广泛,制备γ-Al2O3的方法是先制备其前身物拟薄水铝石,然后在一定温度下焙烧转化为γ-Al2O3。制备拟薄水铝石方法很多,主要包括醇铝水解法和沉淀法等,在各种制备工艺路线中有机溶剂存在下的烷氧基铝水解法是制备孔体积较大、比表面积高、孔分布集中的高纯氧化铝载体的较好方法。但醇铝水解法制备拟薄水铝石的工艺路线所用原材料成本高,而且使用有机物作为溶剂,高纯度金属铝作为反应物,氧化铝载体的生产成本高。NaAlO2-Al2(SO4)3法工艺路线的产品孔容和比表面积大,杂质含量能满足加氢催化剂对载体的杂质要求,成本低于醇铝水解法工艺路线,是加氢催化剂载体材料的主要生产工艺路线。NaAlO2-Al2(SO4)3法工艺路线制备拟薄水铝石的过程包括NaAlO2溶液和Al(SO4)3溶液制备、中和反应、老化、洗涤和干燥等步骤,洗涤是脱除Na+、硫酸根等杂质的重要步骤。该工艺路线中使用NaAlO2溶液和Al2(SO4)3溶液为反应物,经过中和反应生成氢氧化铝的浆液;老化过程中无定型氢氧化铝在合适的温度和pH条件下转化成拟薄水铝石并继续长大,即粒子较小的易于溶解的氢氧化铝发生溶解,沉积到较大的粒子上,结果是粒子长大、结晶度提高;洗涤过程主要目的是除去杂质提高产品纯度的过程,但同时也会发生晶粒长大,起到部分老化的作用;干燥过程是将洗涤后的拟薄水铝石滤饼加热蒸发掉水分的过程。
NaAlO2-Al2(SO4)3法工艺路线产品中不可避免含地含有Na+和SO4 2-两种杂质离子,必须通过洗涤方式将其含量降低至一定量,才能满足加氢催化剂的使用要求。中和反应生成的无定形氢氧化铝粒度小,近似胶体,比表面积很大,会吸附大量的杂离子,虽然经过老化过程部分转化成拟薄水铝石,吸附杂质离子的能力有所降低,但仍然会使得洗涤脱除杂质离子很困难。工业生产一般采用转鼓过滤机、叶滤机、离心机、罐搅拌浆化-板框过滤机和带式过滤机等进行洗涤。并采用提高洗涤水用量、提高洗涤水温度等措施以提高洗涤效果。带式过滤机可以实现连续化稳定洗涤,洗涤效果好,现在广泛应用于NaAlO2-Al2(SO4)3法工艺路线的洗涤过程。但是消耗洗涤水量仍然较高,每吨拟薄水铝石的水消耗仍在50~100吨之间,才能满足加氢催化剂对载体材料杂质的要求,而且洗涤后的拟薄水铝石滤饼固含量较低,固含量在15%~20%范围内,在干燥过程中需要蒸发大量水分,干燥能耗较高。
USP 4019978,Laporte Industries Limited(London,EN)公司公开了一种氧化铝生产的工艺。通过一定浓度铝酸钠溶液和硫酸铝水溶液生产主要含拟薄水铝石的低密度氧化铝的工艺。过程中控制铝酸钠加入到硫酸铝溶液的速度、搅拌混合物使得绝大部分水合氧化铝在酸性条件下生成沉淀,控制混合物温度、控制碱性老化时间。然后过滤、洗涤、干燥水合氧化铝。低密度氧化铝可用于催化剂基质,特别适用于加氢脱硫催化剂。该专利公开于1974年,是硫酸铝+偏铝酸钠法早期专利,其权力要求中给出了该工艺的具体操作:硫酸铝浓度至少2%的Al2O3,偏铝酸钠溶液加入到硫酸铝溶液中,混合物中Al2O3含量为2%~7%,终点pH 7.3~10.0,反应温度为12~35℃或者45~70℃。该专利给出了硫酸铝法制备拟薄水铝石的基本方法。但是该专利中未涉及到生产中洗涤过程的优化和节能。
CN104671263A公开了一种拟薄水铝石的制备方法。该方法包括制备氢氧化铝沉淀,老化,洗涤,干燥,其中老化是在下述容器中进行的:容器内沿轴向设有滤布,使老化容器分成一个夹层区和一个中心区,中心区设有搅拌器,将产生电场的阴阳两极相对置于夹层区中,并控制老化条件。该方法能够改善拟薄水铝石的性能,而且减少后续洗涤过程中的用水量。但该方法提供的老化容器结构复杂不仅有滤布还有电场,老化过程需要在老化容器中加热,滤布长时间浸泡在浆液中会加快老化,该发明实例均为实验室小型试验,实现长周期稳定生产难度较大。
CN1081609C公开了一种氢氧化铝制备方法,一种工艺更合理的硫酸铝-偏铝酸钠法制备氢氧化铝的方法,其特点是:并流中和成胶,不需多次循环打浆,不加任何试剂直接在洗涤装置上用净水冲洗。连续以化学净水均匀冲洗并穿过物料层。化学净水用量为干基氧化铝量的40~100倍,最好为50~90倍。该制备方法用化学净水直接冲洗滤饼,可以起到较好的洗涤效果,现在工业上普遍使用的带式过滤机与该方法基本相同。
发明人在拟薄水铝石工业生产过程中发现,使用带式过滤机进行过滤洗涤虽然采用连续以化学净水冲洗并穿过物料层的洗涤方式,洗涤效果较好。但实际生产过程中存在老化后的浆液在使用带式过滤机进行洗涤时存在滤饼致密透水性能差,滤饼厚度分布不均,滤饼产生裂纹,存在局部洗涤效果不好的情况,从而影响总体洗涤效果,特别是当要求产品杂质含量较低时,颗粒内部的杂质洗涤比较困难,洗涤水用量会显著增加,而且带式过滤机产生的滤饼固含量较低,单位产品需要蒸发的水量高,干燥能耗较高。随着环保法规日益严格对含盐污水的排放量控制要求越来越严格,污水处理成本增高,急需改进技术提高洗涤效率,节约洗涤水量。
发明内容
本发明针对现有拟薄水铝石生产过程中使用的工业带式过滤机洗涤的缺点,而提供一种拟薄水铝石的节水制备方法,洗涤过程为连续带式过滤机和间歇压滤机两段组合洗涤方法;该方法,可以节约洗涤水用量,增加滤饼固含量,减少单位产品需要蒸发的水量,大幅度降低干燥能耗。
为了实现上述目的,本发明采用如下技术方案:
一种拟薄水铝石的降水节能制备方法,NaAlO2溶液和Al2(SO4)3溶液依次经过中和反应、老化、洗涤、压滤、干燥后得到拟薄水铝石产品,其特征在于:老化得到的浆液经泵送入带式过滤机中过滤去除母液,母液作为污水外排,滤饼按照多段逆流洗涤的方式进行洗涤:滤饼先用洗涤水进行第三段洗涤,洗涤完成且经过滤后得到三段滤液和滤饼;经过第三段洗涤后的滤饼再进行第二段洗涤,此时,洗涤液为三段滤液,洗涤完成且经过滤后得到二段滤液和滤饼;经过第二段洗涤后的滤饼再进行第一段洗涤,此时,洗涤液为二段滤液,洗涤完成且经过滤后得到一段滤液和滤饼,该滤饼中氧化铝固含量在15.0%~20.0%,一段滤液作为污水外排;滤饼按照多段逆流洗涤的方式进行洗涤时,洗涤水的温度为60~95℃,总洗涤时间为10~35分钟;将经过多段逆流洗涤后的滤饼加入化学净水中进行浆化,得到浆液;浆液用泵送入间歇压滤机中过滤,得到滤饼和滤液,收集滤液且滤液全部返回至带式过滤机中作为第三段洗涤时的洗涤水使用;采用间歇压滤机的液压机提供的压力对滤饼进行高压挤压和空气吹扫,得到的滤饼中氧化铝固含量在25.5.0%~35.5%;最后将氧化铝固含量为25.5%~35.5%滤饼进行干燥,得到氧化铝固含量65%~75%的产品拟薄水铝石。
上述技术方案中,浆液用泵送入间歇压滤机中过滤,得到滤饼和滤液;进一步通过泵送入化学净水中对滤饼进行洗涤(也可以不进行洗涤),洗涤水温度为60~95℃,洗涤时间为0~30分钟,优选为5~30分钟;收集洗涤后全部的洗液,洗液与滤液一起全部返回带式过滤机中作为第三段洗涤的洗涤水使用。
上述技术方案中,滤饼按照多段逆流洗涤的方式进行洗涤时,是连续洗涤过程;第三段洗涤时,初始用的洗涤水为化学净水;当间歇压滤机形成滤液和洗液后,洗涤水为返回的滤液和洗液。
上述技术方案中,拟薄水铝石的制备方法中所使用到的化学净水,电导率均为1~10μs/cm;从外界引用的化学净水的用量为拟薄水铝石产品的10~30倍。
上述技术方案中,所述的中和反应,操作步骤为:在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应;NaAlO2溶液,以氧化铝计,浓度为100~260g/L;硫酸铝溶液,以氧化铝计,浓度为30~120g/L;中和反应温度为50~80℃、中和停留时间为10~30分钟;中和反应后得到中和浆液,中和浆液的PH值为5.5~9.0。
上述技术方案中,所述的老化,操作步骤为:中和反应完成后,收集中和浆液于老化罐中,用蒸汽加热升温至60~95℃,维持老化温度不变,搅拌进行老化,老化时间为30~480分钟,得到老化浆液。
上述技术方案中,所述的老化浆液,优选向其中添加干燥后的拟薄水铝石且搅拌10~30分钟后再泵送入带式过滤机中过滤;干燥后的拟薄水铝石的添加量为老化浆液中氧化铝重量的0.5%-5%,优选为1.0~4.0%。
上述技术方案中,将经过多段逆流洗涤后的滤饼加入化学净水中进行浆化,浆化时间为30~60分钟,得到浆液;浆液中,氧化铝质量浓度50g/L~150g/L。
上述技术方案中,对滤饼进行高压挤压,挤压次数为1次,挤压压力1.0MPa~1.4MPa;采用0.2~0.4MPa的压缩空气吹扫滤饼5~20分钟;间歇压滤机卸出的滤饼中氧化铝固含量在25.5%~35.5%,将其放入干燥塔中采用闪蒸干燥方进行干燥式,干燥塔出口温度为90~120℃,得到氧化铝固含量65%~75%的拟薄水铝石产品。
上述技术方案中,所述的带式过滤机、间歇压滤机均为本领域常规的市售产品。
本发明方法的原理是:在老化过程结束后,加入已经干燥的拟薄水铝石产品提高浆液过滤时形成的滤饼的透水性能,并使用连续带式过滤机过滤除去母液,并通过分段回用的水冲洗滤饼高效脱除颗粒间和颗粒外部的高浓度易脱除的Na+和硫酸根杂质;带式过滤机的滤饼中加入化学净水浆化,通过搅拌方式促进颗粒内部难以脱除的Na+和硫酸根杂质进入液相,再用压滤机进行过滤,通过高压力挤压和空气吹扫脱除剩余的水分,降低滤饼的含水量,提高滤饼固含量,达到提高洗涤效率,节约洗涤水的目的,并通过提高滤饼固含量,减少单位产品需要蒸发的水量,实现降低干燥能耗的目的。
本发明的优点为:在老化过程结束后,加入已经干燥的拟薄水铝石产品提高浆液过滤时形成的滤饼的透水性能,而且洗涤过程为连续带式过滤机和间歇压滤机两段组合工艺,洗涤水用量为拟薄水铝石产品的10~30倍,拟薄水铝石滤饼中固含量在25.5%~35.5%范围内,降低洗涤水用量50%以上,降低单位产品需要蒸发的水量40%以上,即降低干燥能耗40%以上,同时改善了产品的生产质量稳定性;与现有技术相比,本发明方法具有节约洗涤水量和降低干燥能耗的优点。
附图说明
本发明拟薄水铝石的制备方法的流程图。
具体实施方式
以下对本发明技术方案的具体实施方式详细描述,但本发明并不限于以下描述内容:
本发明实施例以及对比例中,所使用的化学品化学净水,均为市售产品;所使用的带式过滤机、间歇压滤机均为本领域常规的市售产品。
实施例1:
一种拟薄水铝石的制备方法,包括以下步骤:
在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应,NaAlO2溶液以氧化铝计浓度为200g/L,硫酸铝溶液以氧化铝计浓度为50g/L,中和反应的温度为70℃,中和浆液的PH值为8.0,中和停留时间为15分钟。中和浆液集于老化罐中,继续搅拌,用蒸汽加热升温至80℃,维持老化温度不变,老化时间为180分钟。老化过程结束后加入0.6%的干燥后的拟薄水铝石,搅拌25分钟。将老化后的浆液用泵送入带式过滤机中,过滤去除母液,并采用洗涤水分三段回用循环方式进行洗涤,洗涤水温度85℃,总洗涤时间为15分钟:第三段使用化学净水(电导率小于10μs/cm)(或者间歇压滤机过滤后的滤液)作为洗涤液,第二段使用第三段的滤液作为洗涤液,第一段使用第二段的滤液作为洗涤液,第一段洗涤后滤液作为污水外排。带式过滤机洗涤后的滤饼加入化学净水(电导率小于10μs/cm)浆化,浆液中Al2O3浓度50g/L,浆化时间30分钟,用间歇压滤机进行过滤,过滤后使用液压对滤饼进行高压挤压1次,挤压压力1.0MPa,用压缩空气(0.4MPa)吹扫5分钟,收集过滤后的滤液,用于带式过滤机第三段洗涤用水。压滤机滤饼采用闪蒸干燥方式,干燥塔出口温度为100℃。化学净水消耗量、产品中杂质含量、干燥吨产品需要蒸发的水量等数据见表1。从表1可知相对于比较例1可以节约洗涤水量52%,吨产品需要蒸发的水量降低56%。
对比例1:
一种拟薄水铝石的制备方法,包括以下步骤:
在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应,NaAlO2溶液以氧化铝计浓度为200g/L,硫酸铝溶液以氧化铝计浓度为50g/L,中和反应的温度为70℃,中和浆液的PH值为8.0,中和停留时间为15分钟。中和浆液集于老化罐中,继续搅拌,用蒸汽加热升温至80℃,维持老化温度不变,老化时间为180分钟。将老化后的浆液用泵送入真空带式过滤机中,过滤去除母液,并采用洗涤水分三段回用循环方式进行洗涤,洗涤水温度85℃,总洗涤时间为15min:末段加入化学净水,第一段使用第二段的滤液作为洗涤液,第二段使用第三段的滤液作为洗涤液,第三段仅仅使用化学净水(没有间歇压滤机故只能加入更多的化学净水才能满足洗涤效果),第一段洗涤后滤液作为污水外排。滤饼采用闪蒸干燥方式,干燥塔出口温度为100℃。化学净水消耗量、产品中杂质含量、干燥吨产品需要蒸发的水量等数据见表1。
实施例2:
在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应,NaAlO2溶液以氧化铝计浓度为200g/L,硫酸铝溶液以氧化铝计浓度为60g/L,中和反应的温度为75℃,中和浆液的PH值为7.5,中和停留时间为20分钟。中和浆液集于老化罐中,继续搅拌,用蒸汽加热升温至85℃,维持老化温度不变,老化时间为240分钟。老化过程结束后加入1.5%的干燥后的拟薄水铝石,搅拌20分钟。将老化后的浆液用泵送入带式过滤机中,过滤除去母液,并采用三段回用循环方式进行洗涤,洗涤水温度85℃,总洗涤时间为20分钟:第三段使用化学净水(电导率小于10μs/cm)(或者间歇压滤机过滤后的滤液、洗涤后的洗液)作为洗涤液,第二段使用第三段的滤液作为洗涤液,第一段使用第二段的滤液作为洗涤液,第一段洗涤后滤液作为污水外排。带式过滤机洗涤后的滤饼加入化学净水(电导率小于10μs/cm)浆化,浆液中Al2O3浓度80g/L,浆化时间30分钟。用间歇压滤机进行过滤,收集滤液;滤饼用化学净水(电导率小于10μs/cm)洗涤,洗涤时间10min,洗涤水温度85℃,过滤洗涤后使用液压对滤饼进行高压挤压1次,挤压压力1.2MPa,用压缩空气(0.4MPa)吹扫5分钟,收集过滤后的滤液和洗涤后的洗液,用于带式过滤机第三段洗涤的用水。压滤机滤饼采用闪蒸干燥方式,干燥塔出口温度为110℃。化学净水消耗量、产品中杂质含量、滤饼中固含量、干燥吨产品需要蒸发的水量等数据见表1。从表1可知相对于比较例1可以节约洗涤水量60%,吨产品需要蒸发的水量降低48%。
对比例2:
在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应,NaAlO2溶液以氧化铝计浓度为200g/L,硫酸铝溶液以氧化铝计浓度为60g/L,中和反应的温度为75℃,中和浆液的PH值为7.5,中和停留时间为20分钟。中和浆液集于老化罐中,继续搅拌,用蒸汽加热升温至85℃,维持老化温度不变,老化时间为240分钟。将老化后的浆液用泵送入带式过滤机中,过滤除去母液,并采用三段回用循环方式进行洗涤,洗涤水温度85℃,总洗涤时间为20min:最后一段加入化学净水作为洗涤水,第一段使用第二段的滤液作为洗涤液,第二段使用第三段的滤液作为洗涤液,第三段仅仅使用化学净水(没有间歇压滤机故只能加入更多的化学净水才能满足洗涤效果),第一段洗涤后滤液作为污水外排。带式过滤机滤饼采用闪蒸干燥方式,干燥塔出口温度为110℃。化学净水消耗量、产品中杂质含量、滤饼中固含量、干燥吨产品需要蒸发的水量等数据见表1。
实施例3:
在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应,NaAlO2溶液以氧化铝计浓度为210g/L,硫酸铝溶液以氧化铝计浓度为80g/L,中和反应的温度为60℃,中和浆液的PH值为7.0,中和停留时间为25分钟。中和浆液集于老化罐中,继续搅拌,用蒸汽加热升温至90℃,维持老化温度不变,老化时间为120分钟。老化过程结束后加入2.5%的干燥后的拟薄水铝石,搅拌20分钟。将老化后的浆液用泵送入带式过滤机中,过滤除去母液,并采用三段回用循环方式进行洗涤,洗涤水温度90℃,总洗涤时间为26分钟:第三段使用化学净水(电导率小于10μs/cm)(或者间歇压滤机过滤后的滤液、洗涤后的洗液)作为洗涤液,第二段使用第三段的滤液作为洗涤液,第一段使用第二段的滤液作为洗涤液,第一段洗涤后滤液作为污水外排。带式过滤机洗涤后的滤饼加入化学净水(电导率小于10μs/cm)浆化,浆液中Al2O3浓度100g/L,浆化时间30分钟。用间歇压滤机进行过滤,收集滤液;滤饼用化学净水(电导率小于10μs/cm)洗涤,洗涤时间5min,洗涤水温度85℃,过滤洗涤后使用液压对滤饼进行高压挤压1次,挤压压力1.3MPa,用压缩空气(0.4MPa)吹扫10分钟,收集过滤后的滤液和洗涤后的洗液,用于带式过滤机第三段洗涤的用水。压滤机滤饼采用闪蒸干燥方式,干燥塔出口温度为115℃。化学净水消耗量、产品中杂质含量、滤饼中固含量、干燥吨产品需要蒸发的水量等数据见表1。从表1可知相对于比较例1可以节约洗涤水量64%,吨产品需要蒸发的水量降低50%。
对比例3:
在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应,NaAlO2溶液以氧化铝计浓度为210g/L,硫酸铝溶液以氧化铝计浓度为80g/L,中和反应的温度为60℃,中和浆液的PH值为7.0,中和停留时间为25分钟。中和浆液集于老化罐中,继续搅拌,用蒸汽加热升温至90℃,维持老化温度不变,老化时间为120分钟。将老化后的浆液用泵送入带式过滤机中,过滤除去母液,并采用三段回用循环方式进行洗涤,洗涤水温度90℃,总洗涤时间为26min:最后一段加入化学净水作为洗涤水,第一段使用第二段的滤液作为洗涤液,第二段使用第三段的滤液作为洗涤液,第三段仅仅使用化学净水(没有间歇压滤机故只能加入更多的化学净水才能满足洗涤效果),第一段洗涤后滤液作为污水外排。带式过滤机滤饼采用闪蒸干燥方式,干燥塔出口温度为115℃。化学净水消耗量、产品中杂质含量、滤饼中固含量、干燥吨产品需要蒸发的水量等数据见表1。
实施例4:
在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应,NaAlO2溶液以氧化铝计浓度为240g/L,硫酸铝溶液以氧化铝计浓度为100g/L,中和反应的温度为85℃,中和浆液的PH值为6.5,中和停留时间为20分钟。中和浆液集于老化罐中,继续搅拌,用蒸汽加热升温至95℃,维持老化温度不变,老化时间为360分钟。老化过程结束后加入4.5%的干燥后的拟薄水铝石,搅拌28分钟。将老化后的浆液用泵送入带式过滤机中,过滤除去母液,并采用三段回用循环方式进行洗涤,洗涤水温度95℃,总洗涤时间为32分钟:第三段使用化学净水(电导率小于10μs/cm)(或者间歇压滤机过滤后的滤液、洗涤后的洗液作为洗涤液),第二段使用第三段的滤液作为洗涤液,第一段使用第二段的滤液作为洗涤液,第一段洗涤后滤液作为污水外排。带式过滤机洗涤后的滤饼加入化学净水(电导率小于10μs/cm)浆化,浆液中Al2O3浓度50g/L,浆化时间30分钟。用间歇压滤机进行过滤,收集滤液;滤饼用化学净水(电导率小于10μs/cm)洗涤,洗涤时间25min,洗涤水温度90℃,过滤后使用液压对滤饼进行高压挤压1次,挤压压力1.4MPa,用压缩空气(0.4MPa)吹扫15分钟,收集过滤后的滤液和洗涤后的洗液,用于带式过滤机第三段洗涤的用水。压滤机滤饼采用闪蒸干燥方式,干燥塔出口温度为120℃。化学净水消耗量、产品中杂质含量、干燥吨产品需要蒸发的水量等数据见表1。从表1可知相对于比较例1可以节约洗涤水量77%,吨产品需要蒸发的水量降低57%。
对比例4:
在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应,NaAlO2溶液以氧化铝计浓度为240g/L,硫酸铝溶液以氧化铝计浓度为100g/L,中和反应的温度为85℃,中和浆液的PH值为6.5,中和停留时间为20分钟。中和浆液集于老化罐中,继续搅拌,用蒸汽加热升温至95℃,维持老化温度不变,老化时间为360分钟。将老化后的浆液用泵送入带式过滤机中,过滤除去母液,并采用三段回用循环方式进行洗涤,洗涤水温度95℃,总洗涤时间为32min:最后一段加入化学净水作为洗涤水,第一段使用第二段的滤液作为洗涤液,第二段使用第三段的滤液作为洗涤液,第三段仅仅使用化学净水(没有间歇压滤机故只能加入更多的化学净水才能满足洗涤效果),第一段洗涤后滤液作为污水外排。带式过滤机滤饼采用闪蒸干燥方式,干燥塔出口温度为120℃。化学净水消耗量、产品中杂质含量、滤饼中固含量、产品干基含量、干燥吨产品需要蒸发的水量等数据见表1。
表1
上述实例只是为说明本发明的技术构思以及技术特点,并不能以此限制本发明的保护范围。凡根据本发明的实质所做的等效变换或修饰,都应该涵盖在本发明的保护范围之内。

Claims (10)

1.一种拟薄水铝石的降水节能制备方法,NaAlO2溶液和Al2(SO4)3溶液依次经过中和反应、老化、洗涤、压滤、干燥后得到拟薄水铝石产品,其特征在于:老化得到的浆液经泵送入带式过滤机中过滤去除母液,母液作为污水外排,滤饼按照多段逆流洗涤的方式进行洗涤:滤饼先用洗涤水进行第三段洗涤,洗涤完成且经过滤后得到三段滤液和滤饼;经过第三段洗涤后的滤饼再进行第二段洗涤,此时,洗涤液为三段滤液,洗涤完成且经过滤后得到二段滤液和滤饼;经过第二段洗涤后的滤饼再进行第一段洗涤,此时,洗涤液为二段滤液,洗涤完成且经过滤后得到一段滤液和滤饼,该滤饼中氧化铝固含量在15.0%~20.0%,一段滤液作为污水外排;滤饼按照多段逆流洗涤的方式进行洗涤时,洗涤水的温度为60~95℃,总洗涤时间为10~30分钟;将经过多段逆流洗涤后的滤饼加入化学净水中进行浆化,得到浆液;浆液用泵送入间歇压滤机中过滤,得到滤饼和滤液,收集滤液且滤液全部返回至带式过滤机中作为第三段洗涤时的洗涤水使用;采用间歇压滤机的液压机提供的压力对滤饼进行高压挤压和空气吹扫,得到的滤饼中氧化铝固含量在25.5%~35.5%;最后将氧化铝固含量为25.5%~35.5%滤饼进行干燥,得到氧化铝固含量65%~75%的产品拟薄水铝石。
2.根据权利要求1所述的降水节能制备方法,其特征在于:带式过滤机洗涤后的滤饼加入化学净水中浆化,得到的浆液用泵送入间歇压滤机中过滤,得到滤饼和滤液;进一步通过泵送入化学净水中对滤饼进行洗涤(也可以不进行洗涤),洗涤水温度为60~95℃,洗涤时间为0~30分钟;收集洗涤后全部的洗液,洗液与滤液一起全部返回带式过滤机中作为第三段洗涤的洗涤水使用。
3.根据权利要求1所述的降水节能制备方法,其特征在于:滤饼按照多段逆流洗涤的方式进行洗涤时,是连续洗涤过程;第三段洗涤时,初始用的洗涤水为化学净水;当间歇压滤机形成滤液和洗液后,洗涤水为返回的滤液和洗液。
4.根据权利要求1所述的降水节能制备方法,其特征在于:拟薄水铝石的制备方法中所使用到的化学净水,电导率均为1~10μs/cm。
5.根据权利要求1所述的降水节能制备方法,其特征在于:拟薄水铝石的制备方法中,从外界引用的化学净水的用量为拟薄水铝石产品的10~30倍。
6.根据权利要求1所述的降水节能制备方法,其特征在于:所述的中和反应,操作步骤为:在中和反应釜中连续并流加入NaAlO2溶液和Al2(SO4)3溶液进行中和反应;NaAlO2溶液,以氧化铝计,浓度为100~260g/L;硫酸铝溶液,以氧化铝计,浓度为30~120g/L;中和反应温度为50~80℃、中和停留时间为10~30分钟;中和反应后得到中和浆液,中和浆液的PH值为5.5~9.0。
7.根据权利要求1所述的降水节能制备方法,其特征在于:所述的老化,操作步骤为:中和反应完成后,收集中和浆液于老化罐中,用蒸汽加热升温至60~95℃,维持老化温度不变,搅拌进行老化,老化时间为30~480分钟,得到老化浆液。
8.根据权利要求1所述的降水节能制备方法,其特征在于:所述的老化浆液,优选向其中添加干燥后的拟薄水铝石且搅拌10~30分钟后再泵送入带式过滤机中过滤;干燥后的拟薄水铝石的添加量为老化浆液中氧化铝重量的0.5%-5%。
9.根据权利要求1所述的降水节能制备方法,其特征在于:将经过多段逆流洗涤后的滤饼加入化学净水中进行浆化,浆化时间为30~60分钟,得到浆液;浆液中,氧化铝质量浓度50g/L~150g/L。
10.根据权利要求1所述的降水节能制备方法,其特征在于:对滤饼进行高压挤压,挤压次数为1次,挤压压力1.0MPa~1.4MPa;采用0.2~0.4MPa的压缩空气吹扫滤饼5~20分钟;间歇压滤机卸出的滤饼中氧化铝固含量在25.5.0%~35.5%,将其放入干燥塔中采用闪蒸干燥方进行干燥式,干燥塔出口温度为90~120℃,得到氧化铝固含量65%~75%的拟薄水铝石产品。
CN201811055456.2A 2018-09-11 2018-09-11 一种拟薄水铝石的降水节能制备方法 Active CN108910924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811055456.2A CN108910924B (zh) 2018-09-11 2018-09-11 一种拟薄水铝石的降水节能制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811055456.2A CN108910924B (zh) 2018-09-11 2018-09-11 一种拟薄水铝石的降水节能制备方法

Publications (2)

Publication Number Publication Date
CN108910924A true CN108910924A (zh) 2018-11-30
CN108910924B CN108910924B (zh) 2020-07-31

Family

ID=64408447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811055456.2A Active CN108910924B (zh) 2018-09-11 2018-09-11 一种拟薄水铝石的降水节能制备方法

Country Status (1)

Country Link
CN (1) CN108910924B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626403A (zh) * 2019-01-17 2019-04-16 滨州市金毅设备有限公司 一种拟薄水铝石生产加工方法
CN109626404A (zh) * 2019-01-28 2019-04-16 云南文山铝业有限公司 拟薄水铝石的洗涤方法
CN111468047A (zh) * 2020-04-23 2020-07-31 河南兴浩新材料科技股份有限公司 铝溶胶的连续化制备方法
CN111592022A (zh) * 2020-04-20 2020-08-28 中铝山东新材料有限公司 一种拟薄水铝石的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583568A (zh) * 2004-06-03 2005-02-23 山东铝业股份有限公司 拟薄水铝石的制备方法
CN1715189A (zh) * 2004-06-29 2006-01-04 中国石油化工股份有限公司 一种利用明矾石制备拟薄水铝石的方法
RU2591162C1 (ru) * 2015-04-14 2016-07-10 Общество с ограниченной ответственностью "МИКРОИНТЕК" Способ получения термоактивированного неметаллургического глинозема и установка для его осуществления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583568A (zh) * 2004-06-03 2005-02-23 山东铝业股份有限公司 拟薄水铝石的制备方法
CN1715189A (zh) * 2004-06-29 2006-01-04 中国石油化工股份有限公司 一种利用明矾石制备拟薄水铝石的方法
RU2591162C1 (ru) * 2015-04-14 2016-07-10 Общество с ограниченной ответственностью "МИКРОИНТЕК" Способ получения термоактивированного неметаллургического глинозема и установка для его осуществления

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
侯春楼等: "拟薄水铝石逆流洗涤研究", 《中南工业大学学报》 *
厉衡隆等: "《铝冶炼生产技术手册 上册》", 31 July 2011, 冶金工业出版社 *
王秋萍等: "双铝法合成拟薄水铝石的优化研究", 《化工技术与开发》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626403A (zh) * 2019-01-17 2019-04-16 滨州市金毅设备有限公司 一种拟薄水铝石生产加工方法
CN109626404A (zh) * 2019-01-28 2019-04-16 云南文山铝业有限公司 拟薄水铝石的洗涤方法
CN111592022A (zh) * 2020-04-20 2020-08-28 中铝山东新材料有限公司 一种拟薄水铝石的生产方法
CN111468047A (zh) * 2020-04-23 2020-07-31 河南兴浩新材料科技股份有限公司 铝溶胶的连续化制备方法

Also Published As

Publication number Publication date
CN108910924B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN108910925A (zh) 一种拟薄水铝石的制备方法
CN108910924A (zh) 一种拟薄水铝石的降水节能制备方法
CN102108317A (zh) 硅片切割废砂浆分离提纯方法
CN1876687A (zh) 肝素钠生产工艺方法
CN106995398A (zh) L‑脯氨酸提取新工艺
CN107159177B (zh) 一种碱性复合氧化物催化剂的制备及其应用方法
CN104358176B (zh) 一种造纸白水回收系统
CN102092754A (zh) 一种硫酸铝溶液中杂质铁的离子交换去除方法
CN101492399A (zh) 一种甲基丙烯磺酸钠的制备方法
CN102153224A (zh) 羧甲基纤维素钠工业污水处理工艺
CN115305574B (zh) 一种利用磷石膏与盐水快速制备晶须的方法
CN217103592U (zh) 高纯石英砂的制造系统
CN100469701C (zh) 一种铝酸钠溶液中浮游物回收处理方法
JP6077854B2 (ja) 糖化スラリーからの糖回収方法及び残渣を洗浄する洗浄装置
CN101274760A (zh) 硅泥再生利用的生产方法
CN1155388A (zh) 发酵液或发酵废液中提取菌体蛋白的方法
CN103752083B (zh) 一种纳米分子筛浆液的过滤分离方法
CN111977673A (zh) 一种小苏打生产工艺
CN217809013U (zh) 磷酸铁洗水梯次利用装置
CN115254202B (zh) 一种胍基乙酸生产过程中的阴阳离子交换膜处理系统
CN102092753A (zh) 一种硫酸铝溶液中杂质铁的醇化去除方法
CN205398130U (zh) 一种电石渣制备工业氢氧化钠反应装置
CN215403125U (zh) 一种拟薄水铝石生产系统
CN221027728U (zh) 一种利用粗硝钙液制备熔盐级硝酸钠的系统
CN219156525U (zh) 一种黄血盐钠生产中硫酸钠纯化系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method of pseudo boehmite

Effective date of registration: 20210112

Granted publication date: 20200731

Pledgee: Shandong Linzi Rural Commercial Bank Co.,Ltd.

Pledgor: ZIBO QIMAO CATALYST Co.,Ltd.

Registration number: Y2021980000267

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20220215

Granted publication date: 20200731

Pledgee: Shandong Linzi Rural Commercial Bank Co.,Ltd.

Pledgor: Zibo Qimao Catalyst Co.,Ltd.

Registration number: Y2021980000267

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method of preparing pseudo-boehmite by precipitation and energy saving

Effective date of registration: 20230202

Granted publication date: 20200731

Pledgee: Shandong Linzi Rural Commercial Bank Co.,Ltd.

Pledgor: Zibo Qimao Catalyst Co.,Ltd.

Registration number: Y2023980031967