CN108910863B - 一种石墨烯导热膜及其制备方法 - Google Patents

一种石墨烯导热膜及其制备方法 Download PDF

Info

Publication number
CN108910863B
CN108910863B CN201810674368.4A CN201810674368A CN108910863B CN 108910863 B CN108910863 B CN 108910863B CN 201810674368 A CN201810674368 A CN 201810674368A CN 108910863 B CN108910863 B CN 108910863B
Authority
CN
China
Prior art keywords
graphene
layer
film
base layer
spin coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810674368.4A
Other languages
English (en)
Other versions
CN108910863A (zh
Inventor
张岩
李朋
刘波
董伟
孙涛
张斌
苗燕
张丛天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guohong Huaye Investment Co ltd
Cisri Energy Saving Technology Co ltd
Original Assignee
Guohong Huaye Investment Co ltd
Cisri Energy Saving Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guohong Huaye Investment Co ltd, Cisri Energy Saving Technology Co ltd filed Critical Guohong Huaye Investment Co ltd
Priority to CN201810674368.4A priority Critical patent/CN108910863B/zh
Publication of CN108910863A publication Critical patent/CN108910863A/zh
Application granted granted Critical
Publication of CN108910863B publication Critical patent/CN108910863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明提供了一种智能石墨烯导热膜及其制备方法,包括基础层和附加层;基础层是二维石墨烯纳米片和一维石墨烯纳米带混合的膜层;附加层是通过多层浸渍附加的二维石墨烯纳米片层。该智能石墨烯导热膜及其制备方法使得整体导热性满足需要,而且,基础层是二维石墨烯纳米片和一维石墨烯纳米带混合的膜层,提高了柔韧性。

Description

一种石墨烯导热膜及其制备方法
技术领域
本发明涉及石墨烯相关技术领域,具体为一种智能石墨烯导热膜及其制备方法。
背景技术
随着科学技术的不断发展,各种电子元器件日趋轻型化,微型化,高性能化,在运行的过程中不可避免的会产生和累积大量的热量,如果热量不能被及时导出,过高的温度会降低芯片的工作稳定性,增加出错率,尤其是电子模块与外界环境之间的过大的温度差会形成热应力,直接影响到电子芯片的电性能、工作频率、机械强度以及可靠性。所以,必须依靠性能优异的散热材料将器件所生成的热量快速的散发出去。传统的散热材料主要依靠于金属,例如银、铜、铝等,但是金属材料的一些固有性质,例如密度大、耐腐蚀性差等已经严重的制约了其在散热材料方面的应用。
石墨烯是由单层碳原子以sp2杂化形成的六元环平面结构,是一种理想化的二维平面材料。由于其特殊的二维晶体结构,有着很好的机械强度、电子迁移率、高比表面积等特点。同时也有着很高的理论热导率,超过6600W/mK,是已知热导率最高的材料。而且,Balandin等利用单层石墨烯的G峰的温度依赖性和拉曼散射的激光激发频率的关系计算出悬浮状态下单层石墨烯的热导率高达5300W/mK,远远高于石墨、碳纳米管等其他碳材料的热导率。由于石墨烯在片层平面内是各项同性的,在平面内的热传导不会存在方向性。因此将石墨烯用于导热领域,开发新型的导热薄膜是非常有必要,也是最有可能实现的。
但是目前来讲制备石墨烯导热膜的方法比较单一,充满实验性质,如以抽滤方式制备、在气液界面分散自组装成膜、湿法纺丝成膜、静电喷涂沉积成膜,这些方法都被用来试制石墨烯导热膜,但是实际生成中,没有找到机械性能又好,导热性能又比较突出的导热膜。现有技术没有在此基础上给出明确的指示和研究方向。
发明内容
本发明的目的在于提供一种智能石墨烯导热膜及其制备方法,以解决背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种智能石墨烯导热膜,其特征在于:包括基础层和附加层。所述基础层是二维石墨烯纳米片和一维石墨烯纳米带混合的膜层;所述基础层的重量配比为,聚乙烯比咯烷酮5-10 份、二氧化硅纳米粉末3-8份、二氧化钛纳米粉末3-8份、石墨烯材料20-30 份、异丙醇25-50份、羧甲基纤维素钠2-8份和引发剂1份;所述附加层是附着在前述基础层两侧,通过多层浸渍附加的二维石墨烯纳米片层。
所述石墨烯材料中,二维石墨烯纳米片和一维石墨烯纳米带的重量比例范围为3:7-7:3;所述引发剂采用盐酸、硝酸或醋酸或其他无机酸中的一种。
本发明还提供一种智能石墨烯导热膜制备方法,制备如前所述的智能石墨烯导热膜,包括:(1)基础层制备:将原料均匀分散在双蒸水和无水乙醇和混合液中,得到悬浊液,进行超声处理,超声参数频率≥25KHz,功率密度=发射功率(W)/发射面积(cm2)≥0.4W/cm2,时长不低于10min;在抽滤漏斗上准备均匀致密的滤膜,用过量超声处理过的悬浊液抽滤在滤膜表面形成石墨烯薄膜,使用0.1-0.3M的盐酸或者NaOH水溶液作为脱除液反复浸洗滤膜和石墨烯薄膜的结合体5-20次,每次3-12min,将结合体置于乙醇或异丙醇或丙酮的低温减压蒸汽中至少1-5h以脱除滤膜,常温下真空干燥24-72h,即得到均匀稳定的石墨烯薄膜,即基础层;(2)第一附加层制备:用旋涂的方式形成膜层,每次准备足量3-15mg/ml的石墨烯悬浊液,滴加到步骤(1)中基础层的一面,经过25-50个循环的旋涂-干燥过程,在基础层的一面形成第一石墨烯旋涂附加层;(3)第二附加层制备:将步骤(2)所得的基础层翻面,用旋涂的方式形成膜层,每次准备足量3-15mg/ml的石墨烯悬浊液,滴加到步骤(2)中基础层的另一面,经过25-50个循环的旋涂-干燥过程,在基础层的另一面形成第二石墨烯旋涂附加层。
所述步骤(1)中的超声处理,超声参数频率30KHz,发射功率(W)/发射面积(cm2)=0.5W/cm2,时长为15-20min;使用0.2M的盐酸水溶液作为脱除液反复浸洗滤膜和石墨烯薄膜的结合体15-20次,每次9-12min,将结合体置于乙醇或异丙醇或丙酮的低温减压蒸汽中至少4-5h以脱除滤膜,常温下真空干燥60-72h;所述步骤(2)和步骤(3)中,每次准备足量8-12mg/ml的石墨烯悬浊液,经过30-35个循环的旋涂-干燥过程。
与现有技术相比,本发明的有益效果是:该智能石墨烯导热膜及其制备方法使得整体导热性满足需要,而且,基础层是二维石墨烯纳米片和一维石墨烯纳米带混合的膜层,提高了柔韧性,比纯二维石墨烯纳米片组成的膜层机械性能出色很多。但是由于抽滤的膜层形成机制问题,抽滤法所得的膜层的热导率一般最多达到1000W/mK左右,由于抽滤法制备的膜层没有自组装过程,这一热导率数值很难提升。本申请选择在抽滤形成的基础层之上旋涂设置附加层,有几个优点:旋涂得到的石墨烯片层组装的取向度极大地倾向于横向,而这种极强的横向取向度极大的影响石墨烯薄膜的热导性质,使附加层的热导率极大地提升,采用旋涂的方式,不仅保证了附加层还是石墨烯层,还使得附加层与基础层的结合较好,不易分离,破坏,而且这样形成的薄膜还是石墨烯薄膜。
附图说明
图1为本发明垂直截面结构示意图。
图中:1、基础层,2、第一附加层,3、第二附加层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种智能石墨烯导热膜,其特征在于:包括基础层和附加层。所述基础层是二维石墨烯纳米片和一维石墨烯纳米带混合的膜层;所述基础层的重量配比为,聚乙烯比咯烷酮6份、二氧化硅纳米粉末4份、二氧化钛纳米粉末4 份、石墨烯材料22份、异丙醇25份、羧甲基纤维素钠3份和引发剂1份;所述附加层是附着在前述基础层两侧,通过多层浸渍附加的二维石墨烯纳米片层。
所述石墨烯材料中,二维石墨烯纳米片和一维石墨烯纳米带的重量比例范围为4:6;所述引发剂采用盐酸。
本发明还提供一种智能石墨烯导热膜制备方法,制备如前所述的智能石墨烯导热膜,包括:(1)基础层制备:将原料均匀分散在双蒸水和无水乙醇和混合液中,得到悬浊液,进行超声处理,超声参数频率28KHz,功率密度=发射功率(W)/发射面积(cm2)=0.45W/cm2,时长15min;在抽滤漏斗上准备均匀致密的滤膜,用过量超声处理过的悬浊液抽滤在滤膜表面形成石墨烯薄膜,使用0.15M的盐酸水溶液作为脱除液反复浸洗滤膜和石墨烯薄膜的结合体15 次,每次6min,将结合体置于乙醇或异丙醇或丙酮的低温减压蒸汽中至少4h以脱除滤膜,常温下真空干燥48h,即得到均匀稳定的石墨烯薄膜,即基础层; (2)第一附加层制备:用旋涂的方式形成膜层,每次准备足量9-12mg/ml的石墨烯悬浊液,滴加到步骤(1)中基础层的一面,经过35个循环的旋涂-干燥过程,在基础层的一面形成第一石墨烯旋涂附加层;(3)第二附加层制备:将步骤(2)所得的基础层翻面,用旋涂的方式形成膜层,每次准备足量 9-12mg/ml的石墨烯悬浊液,滴加到步骤(2)中基础层的另一面,经过35个循环的旋涂-干燥过程,在基础层的另一面形成第二石墨烯旋涂附加层。
实施例2
一种智能石墨烯导热膜,其特征在于:包括基础层和附加层。所述基础层是二维石墨烯纳米片和一维石墨烯纳米带混合的膜层;所述基础层的重量配比为,聚乙烯比咯烷酮9份、二氧化硅纳米粉末7份、二氧化钛纳米粉末7 份、石墨烯材料28份、异丙醇45份、羧甲基纤维素钠7份和引发剂1份;所述附加层是附着在前述基础层两侧,通过多层浸渍附加的二维石墨烯纳米片层。
所述石墨烯材料中,二维石墨烯纳米片和一维石墨烯纳米带的重量比例范围为5:5;所述引发剂采用盐酸、硝酸或醋酸或其他无机酸中的一种。
本发明还提供一种智能石墨烯导热膜制备方法,制备如前所述的智能石墨烯导热膜,包括:(1)基础层制备:将原料均匀分散在双蒸水和无水乙醇和混合液中,得到悬浊液,进行超声处理,超声参数频率=30KHz,功率密度=发射功率(W)/发射面积(cm2)=0.5W/cm2,时长20min;在抽滤漏斗上准备均匀致密的滤膜,用过量超声处理过的悬浊液抽滤在滤膜表面形成石墨烯薄膜,使用0.25M的NaOH水溶液作为脱除液反复浸洗滤膜和石墨烯薄膜的结合体18 次,每次10min,将结合体置于乙醇或异丙醇或丙酮的低温减压蒸汽中至少 5h以脱除滤膜,常温下真空干燥66h,即得到均匀稳定的石墨烯薄膜,即基础层;(2)第一附加层制备:用旋涂的方式形成膜层,每次准备足量12-15mg/ml 的石墨烯悬浊液,滴加到步骤(1)中基础层的一面,经过45个循环的旋涂- 干燥过程,在基础层的一面形成第一石墨烯旋涂附加层;(3)第二附加层制备:将步骤(2)所得的基础层翻面,用旋涂的方式形成膜层,每次准备足量 12-15mg/ml的石墨烯悬浊液,滴加到步骤(2)中基础层的另一面,经过45 个循环的旋涂-干燥过程,在基础层的另一面形成第二石墨烯旋涂附加层。
实施例3
所述步骤(1)中的超声处理,超声参数频率30KHz,发射功率(W)/发射面积(cm2)=0.5W/cm2,时长为15-20min;使用0.2M的盐酸水溶液作为脱除液反复浸洗滤膜和石墨烯薄膜的结合体15-20次,每次9-12min,将结合体置于乙醇或异丙醇或丙酮的低温减压蒸汽中至少4-5h以脱除滤膜,常温下真空干燥60-72h;所述步骤(2)和步骤(3)中,每次准备足量8-12mg/ml的石墨烯悬浊液,经过30-35个循环的旋涂-干燥过程。
实施例4
对于本申请进行实测热导率,数值在1400W/mK以上,显著强于普通抽滤膜,现有技术中有复杂的将大片石墨烯层通过反复离心分离后专门用于制作抽滤膜的方式,热导率极限约在1300-1350W/mK左右,本申请的复合膜层已经超过了这种方式的效果。对整体膜层出于300-400℃之下的状况,进行红外热成像检测,可以发现附加层相较中间的基础层更亮。本申请利用成本较低的方式制得了热导率显著提高的石墨烯导热膜,目前现有技术中能平均达到这个导热率的制备方式只有CVD法制备的,但是这种方法对于设备要求高,产量低,成本居高不下,与本申请相比难以被市场所接受。CVD设备不仅贵,还对使用的前体液和应用的试剂有苛刻的要求。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。

Claims (2)

1.一种石墨烯导热膜制备方法,该制备方法包括以下步骤:
(1)基础层制备:将原料均匀分散在双蒸水和无水乙醇的 混合液中,得到悬浊液,进行超声处理,超声参数频率≥25KHz,功率密度=发射功率(W)/发射面积(cm2)≥0.4W/cm2,时长不低于10min;在抽滤漏斗上准备均匀致密的滤膜,用过量超声处理过的悬浊液抽滤在滤膜表面形成石墨烯薄膜,使用0.1-0.3M的盐酸或者NaOH水溶液作为脱除液反复浸洗滤膜和石墨烯薄膜的结合体5-20次,每次3-12min,将结合体置于乙醇或异丙醇或丙酮的低温减压蒸汽中至少1-5h以脱除滤膜,常温下真空干燥24-72h,即得到均匀稳定的石墨烯薄膜,即基础层;
(2)第一附加层制备:用旋涂的方式形成膜层,每次准备足量3-15mg/ml的石墨烯悬浊液,滴加到步骤(1)中基础层的一面,经过25-50个循环的旋涂-干燥过程,在基础层的一面形成第一石墨烯旋涂附加层;
(3)第二附加层制备:将步骤(2)所得的基础层翻面,用旋涂的方式形成膜层,每次准备足量3-15mg/ml的石墨烯悬浊液,滴加到步骤(2)中基础层的另一面,经过25-50个循环的旋涂-干燥过程,在基础层的另一面形成第二石墨烯旋涂附加层;
该制备方法制得的石墨烯导热膜具有以下结构:
包括基础层和附加层;所述基础层是二维石墨烯纳米片和一维石墨烯纳米带混合的膜层;所述基础层的重量配比为,聚乙烯吡咯烷酮5-10份、二氧化硅纳米粉末3-8份、二氧化钛纳米粉末3-8份、石墨烯材料20-30份、异丙醇25-50份、羧甲基纤维素钠2-8份和引发剂1份;
所述附加层是附着在前述基础层两侧,通过多层浸渍附加的二维石墨烯纳米片层;
所述石墨烯材料中,二维石墨烯纳米片和一维石墨烯纳米带的重量比例范围为3:7-7:3;所述引发剂采用盐酸、硝酸或醋酸或其他无机酸中的一种。
2.根据权利要求1所述的一种石墨烯导热膜制备方法,其特征在于:
所述步骤(1)中的超声处理,超声参数频率30KHz,发射功率(W)/发射面积(cm2)=0.5W/cm2,时长为15-20min;使用0.2M的盐酸水溶液作为脱除液反复浸洗滤膜和石墨烯薄膜的结合体15-20次,每次9-12min,将结合体置于乙醇或异丙醇或丙酮的低温减压蒸汽中至少4-5h以脱除滤膜,常温下真空干燥60-72h;
所述步骤(2)和步骤(3)中,每次准备足量8-12mg/ml的石墨烯悬浊液,经过30-35个循环的旋涂-干燥过程。
CN201810674368.4A 2018-06-26 2018-06-26 一种石墨烯导热膜及其制备方法 Active CN108910863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810674368.4A CN108910863B (zh) 2018-06-26 2018-06-26 一种石墨烯导热膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810674368.4A CN108910863B (zh) 2018-06-26 2018-06-26 一种石墨烯导热膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108910863A CN108910863A (zh) 2018-11-30
CN108910863B true CN108910863B (zh) 2020-05-15

Family

ID=64422760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810674368.4A Active CN108910863B (zh) 2018-06-26 2018-06-26 一种石墨烯导热膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108910863B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630921A (zh) * 2018-12-19 2019-04-16 浙江亿米光电科技有限公司 一种背部涂覆石墨烯的柔性灯丝基板及其制备工艺
CN113321208B (zh) * 2021-07-06 2023-08-04 山东热坤新材料有限公司 一种高致密性石墨烯膜的制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474897A (zh) * 2009-01-16 2009-07-08 南开大学 石墨烯-有机材料层状组装膜及其制备方法
TW201247422A (en) * 2011-05-30 2012-12-01 Univ Nat Cheng Kung Method of transferring a graphene film
CN104582428A (zh) * 2013-10-25 2015-04-29 加川清二 散热薄膜、和其制造方法以及装置
CN104743551A (zh) * 2015-03-27 2015-07-01 上海应用技术学院 一种还原氧化石墨烯导热薄膜的制备方法
WO2015137678A1 (ko) * 2014-03-12 2015-09-17 한양대학교 산학협력단 산화그래핀 코팅층을 포함하는 복합막, 이를 포함하는 다공성 고분자 지지체 및 이의 제조방법
CN104934108A (zh) * 2014-12-31 2015-09-23 重庆元石石墨烯技术开发有限责任公司 金属纳米线—石墨烯桥架结构复合材料及其制备方法
WO2015145155A1 (en) * 2014-03-28 2015-10-01 The University Of Manchester Reduced graphene oxide barrier materials
CN105522770A (zh) * 2016-01-20 2016-04-27 浙江农业商贸职业学院 一种石墨烯耐温导热膜
CN205661085U (zh) * 2016-05-31 2016-10-26 宁波墨西新材料有限公司 一种石墨烯绝缘导热膜
CN107053784A (zh) * 2017-04-21 2017-08-18 北京航空航天大学 一种无机‑无机纳米叠层复合膜的制备方法
CN107492664A (zh) * 2017-07-14 2017-12-19 中国第汽车股份有限公司 具有散热功能的锂离子电池极片涂层
CN107634039A (zh) * 2017-08-01 2018-01-26 全普光电科技(上海)有限公司 一种散热膜及其制备方法
CN107645892A (zh) * 2017-10-12 2018-01-30 南京旭羽睿材料科技有限公司 一种基于石墨烯的手机散热薄膜
CN207172907U (zh) * 2017-08-23 2018-04-03 江西中荣信合石墨烯科技股份有限公司 一种石墨烯导热散热膜
JP2018076205A (ja) * 2016-11-10 2018-05-17 株式会社カネカ 積層体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495716B (zh) * 2014-04-29 2015-08-11 石墨烯散熱結構

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474897A (zh) * 2009-01-16 2009-07-08 南开大学 石墨烯-有机材料层状组装膜及其制备方法
TW201247422A (en) * 2011-05-30 2012-12-01 Univ Nat Cheng Kung Method of transferring a graphene film
CN108189490A (zh) * 2013-10-25 2018-06-22 加川清二 散热薄膜的制造装置
CN104582428A (zh) * 2013-10-25 2015-04-29 加川清二 散热薄膜、和其制造方法以及装置
WO2015137678A1 (ko) * 2014-03-12 2015-09-17 한양대학교 산학협력단 산화그래핀 코팅층을 포함하는 복합막, 이를 포함하는 다공성 고분자 지지체 및 이의 제조방법
WO2015145155A1 (en) * 2014-03-28 2015-10-01 The University Of Manchester Reduced graphene oxide barrier materials
CN104934108A (zh) * 2014-12-31 2015-09-23 重庆元石石墨烯技术开发有限责任公司 金属纳米线—石墨烯桥架结构复合材料及其制备方法
CN104743551A (zh) * 2015-03-27 2015-07-01 上海应用技术学院 一种还原氧化石墨烯导热薄膜的制备方法
CN105522770A (zh) * 2016-01-20 2016-04-27 浙江农业商贸职业学院 一种石墨烯耐温导热膜
CN205661085U (zh) * 2016-05-31 2016-10-26 宁波墨西新材料有限公司 一种石墨烯绝缘导热膜
JP2018076205A (ja) * 2016-11-10 2018-05-17 株式会社カネカ 積層体の製造方法
CN107053784A (zh) * 2017-04-21 2017-08-18 北京航空航天大学 一种无机‑无机纳米叠层复合膜的制备方法
CN107492664A (zh) * 2017-07-14 2017-12-19 中国第汽车股份有限公司 具有散热功能的锂离子电池极片涂层
CN107634039A (zh) * 2017-08-01 2018-01-26 全普光电科技(上海)有限公司 一种散热膜及其制备方法
CN207172907U (zh) * 2017-08-23 2018-04-03 江西中荣信合石墨烯科技股份有限公司 一种石墨烯导热散热膜
CN107645892A (zh) * 2017-10-12 2018-01-30 南京旭羽睿材料科技有限公司 一种基于石墨烯的手机散热薄膜

Also Published As

Publication number Publication date
CN108910863A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
Han et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes
Deng et al. Superelastic, ultralight, and conductive Ti3C2T x MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding
Liang et al. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances
Ma et al. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures
Lei et al. Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism
Shi et al. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances
Sun et al. Highly conductive transition metal carbide/carbonitride (MXene)@ polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding
CN106082186B (zh) 一种石墨烯-纳米铜复合材料的导热薄膜及其制备方法
Xie et al. Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption
CN108329495B (zh) 具有仿生结构的石墨烯-纤维素纳米晶复合导热薄膜及其制备
CN105694433B (zh) 一种兼备高导热性和柔韧性的聚合物泡沫/石墨烯复合材料制备方法
CN203504880U (zh) 石墨烯导热电路基板
Wang et al. Current advances and future perspectives of MXene-based electromagnetic interference shielding materials
CN107434905B (zh) 导热聚合物复合材料及其制备方法与应用
Zhang et al. Synergistic enhanced thermal conductivity of polydimethylsiloxane composites via introducing SCF and hetero-structured GB@ rGO hybrid fillers
CN108910863B (zh) 一种石墨烯导热膜及其制备方法
CN112280312B (zh) 一种导热吸波一体化石墨烯热界面材料及其制备方法
CN108129685A (zh) 多层复合导热薄膜及其制备方法
CN107686109B (zh) 一种高性能石墨-石墨烯双层碳基导热薄膜的制备方法
CN108823615A (zh) 高导热纳米铜—石墨膜复合材料的制备方法
Bai et al. Free-standing, flexible carbon@ MXene films with cross-linked mesoporous structures toward supercapacitors and pressure sensors
CN104164208A (zh) 一种石墨烯/聚酰亚胺复合胶黏剂的制备方法
CN106083046A (zh) 一种石墨烯/聚酰亚胺共聚导热膜的制备方法
CN109648818A (zh) 一种用于电子产品散热的石墨烯散热塑料膜及制备方法
CN203590668U (zh) 复合散热薄膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right

Effective date of registration: 20230329

Granted publication date: 20200515

PP01 Preservation of patent right