CN108899494A - 多孔氮掺杂碳插层包覆氧化铁纳米板材料及其制备方法 - Google Patents

多孔氮掺杂碳插层包覆氧化铁纳米板材料及其制备方法 Download PDF

Info

Publication number
CN108899494A
CN108899494A CN201810650615.7A CN201810650615A CN108899494A CN 108899494 A CN108899494 A CN 108899494A CN 201810650615 A CN201810650615 A CN 201810650615A CN 108899494 A CN108899494 A CN 108899494A
Authority
CN
China
Prior art keywords
iron oxide
doped carbon
preparation
oxide nano
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810650615.7A
Other languages
English (en)
Other versions
CN108899494B (zh
Inventor
张建
刘国栋
武卫东
李祥宾
杜梦琪
刘国磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Copolymer Silicone Technology Research Institute Co ltd
Original Assignee
Jining University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jining University filed Critical Jining University
Priority to CN201810650615.7A priority Critical patent/CN108899494B/zh
Publication of CN108899494A publication Critical patent/CN108899494A/zh
Application granted granted Critical
Publication of CN108899494B publication Critical patent/CN108899494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于无机纳米材料制备技术领域,具体涉及一种多孔氮掺杂碳插层包覆氧化铁纳米板材料,即具有层状结构的氧化铁纳米板在其层间及纳米板表面均有包覆层,包覆层为氮掺杂碳,氮掺杂碳为多孔结构,增强了有机碳与氧化铁的紧密接触,最大限度的发挥二者的协同效应,有利于其光电性能的提高,应用前景广泛;本发明同时提供其制备方法,利用氯氧化铁和为有机胺类化合物为原料,原料价格低廉,储量丰富,环境友好,同时利用插层反应和煅烧的工艺,简单,操作方便,成分可控,成本低、适合规模化生产。

Description

多孔氮掺杂碳插层包覆氧化铁纳米板材料及其制备方法
技术领域
本发明属于无机纳米材料制备技术领域,具体涉及一种多孔氮掺杂碳插层包覆氧化铁纳米板材料及其制备方法。
背景技术
当今社会经济的快速发展带来了环境的污染和能源的耗竭,已经严重威胁人类的生存和健康。开发新颖的材料处理能源危机和环境污染,实现人类的可持续发展已经迫在眉睫。复合材料可以有效地避免单一材料地局限,最大限度的发挥材料的性能,因而备受关注。特别是氧化铁基材料,由于具有丰富的储量,价格低廉,对环境友好等诸多优点,在处理环境污染和解决能源危机方面具有很大的优势。氧化铁和有机碳材料构成的有机-无机复合纳米材料在锂电、催化、吸附、传感、电极等领域具有很大地应用前景。例如,发明专利(201711318852.5)公布了一种锂离子电池碳布基负极氧化铁的制备方法,具有优异的锂电性能;发明专利(201711168333.5)公布了一种氧化铁/碳纳米管复合电极材料,具有较高的比电容和较好的倍率性能;发明专利(201711086340.0)公布了一种碳包覆氧化铁纳米管;发明专利(201610182535.4)公布了一种掺N多孔碳/氧化铁复合粉体,作为活性电极材料单极比电容可达279.5F/g以上;发明专利(201410785069.X)公布了一种碳-氧化铁纳米复合材料,具有优异的光催化降解有机污染物性能;发明专利(201611188873.5)公布了一种负载氧化铁的生物质碳化微球,对废水中铅、镉吸附性能好;发明专利(201710633240.9)公布了一种氧化铁-介孔碳锂离子电池负极材料的制备方法,可显著提高电极材料的可逆电容量和循环稳定性;发明专利(201710427576.X)公布了一种氧化铁-介孔碳(Fe3O4@C)纳米复合材料,适体传感器具有高灵敏度和选择性。但是,目前氧化铁与碳材料的复合只是局限于碳材料在氧化铁的表面包覆,碳材料对氧化铁的包覆面积较小。目前,对于同时具备表面包覆和层间包覆的氧化铁-碳复合材料及其制备方法还未见报道。此外,现有技术中通常将铁盐分散于碳前驱体中进行煅烧制备,难以精确控制包覆结构,限制了其复合材料性能的发挥。
对于氧化铁-有机碳复合纳米材料,二者间的接触面积对性能的优劣起到关键作用。但是目前所制备的氧化铁-有机碳复合纳米材料,块体之间的接触限制了其接触面积,难以最大限度的发挥二者的协同效应。因此,采用新型的制备手段制备具有高接触面积的氧化铁-有机碳复合纳米材料是目前研究的难点。此外,如何利用简单的制备方法,简化工艺,降低成本,实现工业化的转化也是现阶段的研究重点。
发明内容
本发明目的在于提供一种多孔氮掺杂碳插层包覆氧化铁纳米板材料,提高了有机碳与氧化铁的接触面积,提升了其光电性能;本发明目的还在于提供所述多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,具有工艺流程简单、成本低、适合规模化生产等优点。
本发明所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料,即具有层状结构的氧化铁纳米板在其层间及纳米板表面均有包覆层,包覆层为氮掺杂碳,氮掺杂碳为多孔结构。
本发明所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,是以具有层状结构的氯氧化铁为主体,利用有机胺在氯氧化铁层间的插层形成插层复合物,然后将插层复合物经高温煅烧所得,具体包括以下步骤:
(1)将氯氧化铁和有机胺分散在有机溶剂中,然后在60-200℃温度下溶剂热反应1-36h,得产物A;
(2)将产物A洗涤、干燥得产物B;
(3)将产物B在气氛保护下煅烧:即以1-15℃/min的升温速率升温至500-900℃后保温1-6h,得成品。
其中:
有机胺为芳香胺类、萘胺、酰胺类中的一种或复配。
有机溶剂为乙腈、乙醇或丙酮中的一种。
步骤(1)中氯氧化铁、有机胺、有机溶剂的摩尔比为1:(5-30):(100-1000)。
步骤(2)中洗涤所用洗涤剂为水、丙酮或乙醇中的一种。
步骤(2)中干燥温度为50-100℃,干燥时间为1-24h。
煅烧所用气氛为氮气或氩气。
本发明氯氧化铁的制备方法为,以三氯化铁为原料,在200-270℃下煅烧制得。
本发明与现有技术相比,具有以下有益效果。
(1)本发明所制备的多孔氮掺杂碳插层包覆氧化铁纳米板材料具有新颖的包覆结构,增强了有机碳与氧化铁的紧密接触,最大限度的发挥二者的协同效应,有利于其光电性能的提高,应用前景广泛;
(2)本发明制备时,利用氯氧化铁和为有机胺类化合物为原料,原料价格低廉,储量丰富,环境友好,同时利用插层反应和煅烧的工艺,简单,操作方便,成分可控,是一种制备具有包覆结构的纳米片复合材料的新的制备方法。
附图说明
图1、实施例1中所制得产物B的XRD图;
图2、实施例1中所制得多孔氮掺杂碳插层包覆氧化铁纳米板材料的XRD图;
图3、实施例1中所制得多孔氮掺杂碳插层包覆氧化铁纳米板材料的TEM图。
具体实施方式
下面结合实施例和说明书附图对本发明做进一步说明。
实施例1-10中所用氯氧化铁均为以三氯化铁为原料,在270℃下煅烧制得。
实施例1
(1)将0.05g氯氧化铁和0.5mL苯胺分散到20mL乙腈中,于90℃反应12h,得溶剂热产物A;
(2)将溶剂热产物A用乙醇洗涤三次,然后在80℃干燥12h,得产物B;
(3)将产物B在氮气气氛下煅烧,即5℃/min的升温速率升温至700℃后保温4h得多孔碳插层包覆氧化铁纳米板成品。
由图1可知,氯氧化铁(010)峰的消失(11.05o)和新出现的特征峰(12.5o),表明产物B中苯胺成功插层进入氯氧化铁层间;
由图2可知,煅烧产物为氮掺杂碳包覆氧化铁,氮掺杂碳的晶型为无定形结构;
由图3可知,所制得成品为纳米板,纳米板的表面存在纳米孔,氮掺杂碳包覆于氧化铁的表面,同时也存在于在层状氧化铁纳米板的层间。
为了进一步说明所制得多孔氮掺杂碳插层包覆氧化铁纳米板材料的优异性能,以光催化性能为例进行说明:将0.05g本实施例所制得的成品加入到100mL浓度为10mg/L的罗丹明B溶液中,黑暗中搅拌30min后,加入0.5mL浓度为30wt%的双氧水进行降解实验。对罗丹明B的降解可知,本实施例所制得的多孔氮掺杂碳插层包覆氧化铁纳米板材料在60分钟内可完全降解罗丹明B。
实施例2
如实施例1所述,所不同的是加入0.5g二苯胺于乙醇中120℃反应20h,煅烧时将产物B在氮气气氛下于2℃/min升温至900℃保温5h后得多孔碳插层包覆氧化铁纳米板材料。本实施例所制得的成品在60min内可完全降解罗丹明B。
实施例3
如实施例1所述,所不同的是加入1.0mL二甲基苯胺于乙醇中180℃反应10h,煅烧时将产物B在氮气气氛下于10℃/min升温至850℃保温4h后得多孔碳插层包覆氧化铁纳米板材料。本实施例所制得的成品在60min内可降解98%罗丹明B。
实施例4
如实施例1所述,所不同的是加入1.0mL二甲基甲酰胺于乙腈中200℃反应1h,煅烧时将产物B在氩气气氛下于15℃/min升温至850℃保温4h后得多孔碳插层包覆氧化铁纳米板材料。本实施例所制得的成品在60min内可完全降解罗丹明B。
实施例5
如实施例1所述,所不同的是加入1.0mL二甲基甲酰胺于乙腈中200℃反应1h,煅烧时将产物B在氩气气氛下于15℃/min升温至850℃保温4h后得多孔碳插层包覆氧化铁纳米板材料。本实施例所制得的成品在60min内可完全降解罗丹明B。
实施例6
如实施例1所述,所不同的是加入的是0.1g萘胺于乙醇中150℃反应24h,煅烧时以15℃/分钟的升温速率升至850℃保温2h后得多孔碳插层包覆氧化铁纳米板材料。本实施例所制得的成品在60min内可完全降解罗丹明B。
实施例7
如实施例1所述,所不同的是步骤(1)中加入1.5mL苯胺,煅烧时以8℃/分钟的升温速率升至750℃保温2h后得多孔碳插层包覆氧化铁纳米板材料。本实施例所制得的成品在60min内可降解95%的罗丹明B材料。本实施例所制得的成品在60min内可降解95%的罗丹明B。
实施例8
如实施例1所述,所不同的步骤(1)中加入50mL乙腈,步骤(2)中采用水洗涤,干燥时间为24h,干燥温度为50℃,步骤(3)煅烧时以5℃/分钟的升温速率升至800℃保温3h后得多孔碳插层包覆氧化铁纳米板材料。本实施例所制得的成品在60min内可降解95%的罗丹明B。
实施例9
如实施例1所述,所不同的步骤(1)中加入50mL乙腈,于60℃溶剂热反应36h,步骤(2)中采用丙酮洗涤,干燥时间为1h,干燥温度为100℃。本实施例所制得的成品在60min内可完全降解罗丹明B。
实施例10
如实施例1所述,所不同的步骤(1)中加入20mL丙酮于100℃溶剂热反应36h。本实施例所制得的成品在60min内可完全降解罗丹明B。
实施例11
如实施例1所述,所不同的是步骤(1)中加入1.0mL苯胺和0.03g萘胺。本实施例所制得的成品在60min内可降解100%的罗丹明B。

Claims (10)

1.一种多孔氮掺杂碳插层包覆氧化铁纳米板材料,其特征在于:具有层状结构的氧化铁纳米板在其层间及纳米板表面均有包覆层,包覆层为氮掺杂碳,氮掺杂碳为多孔结构。
2.一种多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,其特征在于:以具有层状结构的氯氧化铁为主体,利用有机胺在氯氧化铁层间的插层形成插层复合物,然后将插层复合物经高温煅烧所得。
3.根据权利要求1所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,其特征在于:具体包括以下步骤:
(1)将氯氧化铁和有机胺分散在有机溶剂中,然后在60-200℃温度下溶剂热反应1-36h,得产物A;
(2)将产物A洗涤、干燥得产物B;
(3)将产物B在气氛保护下煅烧:即以1-15℃/min的升温速率升温至500-900℃后保温1-6h,得成品。
4.根据权利要求3所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,其特征在于:有机胺为芳香胺类、萘胺、酰胺类中的一种或复配。
5.根据权利要求3所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,其特征在于:有机溶剂为乙腈、乙醇或丙酮中的一种。
6.根据权利要求3所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,其特征在于:步骤(1)中氯氧化铁、有机胺、有机溶剂的摩尔比为1:(5-30):(100-1000)。
7.根据权利要求3所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,其特征在于:步骤(2)中洗涤所用洗涤剂为水、丙酮或乙醇中的一种。
8.根据权利要求3所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,其特征在于:步骤(2)中干燥温度为50-100℃,干燥时间为1-24h。
9.根据权利要求3所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,其特征在于:煅烧所用气氛为氮气或氩气。
10.根据权利要求2-9所述的多孔氮掺杂碳插层包覆氧化铁纳米板材料的制备方法,其特征在于:氯氧化铁为以三氯化铁为原料,在200-270℃下煅烧制得。
CN201810650615.7A 2018-06-22 2018-06-22 多孔氮掺杂碳插层包覆氧化铁纳米板材料及其制备方法 Active CN108899494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810650615.7A CN108899494B (zh) 2018-06-22 2018-06-22 多孔氮掺杂碳插层包覆氧化铁纳米板材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810650615.7A CN108899494B (zh) 2018-06-22 2018-06-22 多孔氮掺杂碳插层包覆氧化铁纳米板材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108899494A true CN108899494A (zh) 2018-11-27
CN108899494B CN108899494B (zh) 2021-11-02

Family

ID=64345343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810650615.7A Active CN108899494B (zh) 2018-06-22 2018-06-22 多孔氮掺杂碳插层包覆氧化铁纳米板材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108899494B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618592A (zh) * 2022-03-18 2022-06-14 浙江稽山印染有限公司 一种高效非均相芬顿催化剂制备方法及其在印染废水处理中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544513A (zh) * 2012-01-12 2012-07-04 华东师范大学 一种乙二胺插层氯氧化铁的插层化合物的制备方法
CN106450189A (zh) * 2016-10-11 2017-02-22 华南师范大学 一种锂离子电池用氮掺杂的碳包覆氧化铁负极材料及制备
CN106935860A (zh) * 2017-03-24 2017-07-07 华中科技大学 一种碳插层v2o3纳米材料、其制备方法和应用
CN108101119A (zh) * 2017-12-29 2018-06-01 济宁学院 氧化纳米片材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544513A (zh) * 2012-01-12 2012-07-04 华东师范大学 一种乙二胺插层氯氧化铁的插层化合物的制备方法
CN106450189A (zh) * 2016-10-11 2017-02-22 华南师范大学 一种锂离子电池用氮掺杂的碳包覆氧化铁负极材料及制备
CN106935860A (zh) * 2017-03-24 2017-07-07 华中科技大学 一种碳插层v2o3纳米材料、其制备方法和应用
CN108101119A (zh) * 2017-12-29 2018-06-01 济宁学院 氧化纳米片材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618592A (zh) * 2022-03-18 2022-06-14 浙江稽山印染有限公司 一种高效非均相芬顿催化剂制备方法及其在印染废水处理中的应用
CN114618592B (zh) * 2022-03-18 2023-10-31 浙江稽山印染有限公司 一种高效非均相芬顿催化剂制备方法及其在印染废水处理中的应用

Also Published As

Publication number Publication date
CN108899494B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
Zhao et al. MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators
Xiao et al. Electrochemical performance of mesoporous ZnCo 2 O 4 nanosheets as an electrode material for supercapacitor
Xu et al. Multidimensional MOF-derived carbon nanomaterials for multifunctional applications
CN103752334B (zh) 离子液体促进合成石墨相氮化碳纳米片可见光催化剂
Yu et al. Electrochemical hydrogen storage of expanded graphite decorated with TiO2 nanoparticles
Sun et al. Hybrid symmetric supercapacitor assembled by renewable corn silks based porous carbon and redox-active electrolytes
CN108529619A (zh) 一种氮硫共掺杂多孔碳材料及其制备方法和应用
Liu et al. A sea-urchin-structured NiCo 2 O 4 decorated Mn 0.05 Cd 0.95 S p–n heterojunction for enhanced photocatalytic hydrogen evolution
CN108962632B (zh) 一种石墨烯/氮掺杂碳/镍/氧化镍复合材料制备方法
CN103318978B (zh) 一种介孔钴酸镍纤维的制备方法及其应用
CN104103430A (zh) 具有高体积比电容的氟氮共掺杂石墨化碳微球的制备方法
CN106910647B (zh) 石墨烯气凝胶复合钴酸镍纳米线阵列材料及其制备方法
CN109326456A (zh) 一种超级电容器及其制备方法
CN107321372B (zh) CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
CN106391085A (zh) 一种二硫化镍空心微球/氮化碳复合光催化剂的制备方法
CN110473712A (zh) 一种mof衍生纳米片插层材料及制备方法和其应用
CN108054020A (zh) 一种氮掺杂碳颗粒/石墨化碳氮复合材料的制备方法及应用
CN105321726B (zh) 高倍率活性炭/活性石墨烯复合电极材料及其制备方法
CN104715936A (zh) 一种用于超级电容器的分级多孔碳电极材料及制备方法
CN105152160A (zh) 一种氮掺杂碳微球的制备方法
CN104021944A (zh) 一种具有高体积比电容的氮掺杂石墨化碳微球的制备方法
Yue et al. Coral-like carbon structures derived from the complex of metal-organic frameworks and melamine formaldehyde resin with ideal electrochemical performances
Qu et al. Poly (ionic liquids) derived N, S co-doped carbon nanorod from in situ and template-free method as an efficient metal-free bifunctional electrocatalysts for direct methanol fuel cells
CN110164710A (zh) 一种超级电容器用二元金属化合物复合材料及其制备方法
CN109326453A (zh) 一种基于静电纺纳米纤维成纱技术的聚吡咯超级电容器复合电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231101

Address after: 262600 No. 008, Ying Long Road, Longshan hi tech Industrial Park, Linqu, Weifang, Shandong

Patentee after: Shandong copolymer silicone Technology Research Institute Co.,Ltd.

Address before: No.16 Haichuan Road, Jining high tech Zone, Shandong Province, 272001

Patentee before: JINING University

TR01 Transfer of patent right