CN108837848B - 一种碳点复合材料的制备方法及应用 - Google Patents

一种碳点复合材料的制备方法及应用 Download PDF

Info

Publication number
CN108837848B
CN108837848B CN201810716634.5A CN201810716634A CN108837848B CN 108837848 B CN108837848 B CN 108837848B CN 201810716634 A CN201810716634 A CN 201810716634A CN 108837848 B CN108837848 B CN 108837848B
Authority
CN
China
Prior art keywords
composite material
electrode
dot composite
carbon dot
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810716634.5A
Other languages
English (en)
Other versions
CN108837848A (zh
Inventor
匡芮
刘勇
解辉
赵连地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jiaotong University
Original Assignee
Shandong Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jiaotong University filed Critical Shandong Jiaotong University
Priority to CN201810716634.5A priority Critical patent/CN108837848B/zh
Publication of CN108837848A publication Critical patent/CN108837848A/zh
Application granted granted Critical
Publication of CN108837848B publication Critical patent/CN108837848B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种碳点复合材料的制备方法及应用,属于纳米材料、金属有机配合物与电化学检测技术领域。具体是基于碳点复合材料CDs/Cu(II)‑CN/Cu制备电化学传感器,用于检测邻苯二甲酸酯。步骤包括制备三聚氰氯基配体CN‑NA、采用电化学沉积的方法制备配合物复合材料Cu(II)‑CN‑NA/Cu和碳点复合材料CDs/Cu(II)‑CN/Cu、构建CDs/Cu(II)‑CN/Cu电化学传感器。由于碳点复合材料具有大的比表面积和更多的活性位点、优异的吸附性能,制备的化学传感器,具有检测邻苯二甲酸酯灵敏度高、检测限低、稳定性高,易操作等优势。

Description

一种碳点复合材料的制备方法及应用
技术领域
本发明涉及一种碳点复合材料的制备方法及应用,属于纳米材料、金属有机配合物与电化学检测技术领域。
背景技术
近年来,环境内分泌干扰物成为各国学者关注的焦点,因为它们在环境中极低的浓度就能引起对野生动物的内分泌干扰效应,因此引起了人们的越来越多的关注,已经有研究表明,环境雌激素排放进入环境后,主要分布于水、土壤和空气中,并通过食物链网迁移到各个角落并沿着食物链呈现放大作用,对人类和动物构成巨大威胁。20世纪70年代开始,欧美等发达国家就意识到城市污水的问题,我国也同样面临着污水对人民生命财产安全构成的威胁,因此,对城市污水中环境雌激素进行定性与定量分析十分必要。
由两种或多种性质不同的物质,经特殊加工而制成的材料称为复合材料。在复合材料中,连续相一般称为基相;分散相一般作为增强相,两相之间存在相界面。复合材料既保持了原有材料的特点,又使个组分间协同作用,形成了优于原材料的特性,其各组分间的“扬长补短”作用开辟了材料设计方面的新途径。如今,复合正向着精细化方向发展,出现了诸如仿生复合、纳米复合、分子复合、智能复合等新方法,相信随着科学技术的进步,复合材料将显示出广阔的应用前景。
自从2004年,碳量子点被发现以来,已有大量的关于其制备和性质的报道,碳量子点容易制备,制备使用的原材料廉价、广泛。此外,碳量子点低毒,具有好的生物兼容性,克服了无机量子点高毒、不利于在生物体内应用的缺点。由于碳量子点具备以上的诸多优点,受到了广泛的关注。但碳量子点作为纳米科学与技术领域中的研究热点,还需要各界学者进一步的完善和挖掘其潜在的应用价值。
电化学沉积法是一种低温制备膜材料的方法。1840年,金属电化学沉积已出现银和金的镀覆专利,随着科学技术的不断发展和深入,电化学沉积的研究领域也再不断拓宽和扩展,如今已迅速地发展成为具有重大工业意义的技术。电化学沉积法是将含有所需要的生长元素的溶液作为电解液,所需要沉积的基底作为阳极,惰性耐腐蚀材料作为阴极,在外加电场的作用下,阴阳离子在电极附近发生化学反应并形成沉淀的过程。因为操作简单,工艺成本低廉,室温下即可操作等优点,电化学沉积在制备纳米材料和纳米微加工技术中有着广阔的应用前景,迄今为止,用电沉积方法制备了很多纳米结构材料,如Cu/Ni、Cu/Ag、Co-Ni-Cu/Cu等。另外,电化学沉积还能够应用于制备复合镀层,提高材料的耐磨、耐腐蚀性和强度。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种碳点复合材料的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供所述碳点复合材料的用途,即将碳点复合材料用于检测环境雌激素邻苯二甲酸酯,具有良好的电化学活性和稳定性。
为实现上述目的,本发明采用的技术方案如下:
1.一种碳点复合材料的制备方法,步骤如下:
(1)制备三聚氰氯基配体CN-NA
将13.9-17.6g 6-氨基-2-萘酸加入到150mL水中,加入4.7-6.2g氢氧化钠,7.1-10.4g 碳酸氢钠,室温搅拌5-10min;
将3.2-4.2g三聚氰氯溶解于50mL乙醇,制得三聚氰氯乙醇溶液;
将两种溶液混合,升温至100℃,保温搅拌过夜,用盐酸调节pH值至2-3,过滤后,用蒸馏水洗涤3次,60℃干燥后得到三聚氰氯基配体CN-NA粉末,产率为87-90%;
所述三聚氰氯基配体CN-NA,构造式如下:
Figure DEST_PATH_IMAGE001
(2)制备配合物复合材料Cu(II)-CN-NA/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为0.5-1.5%三聚氰氯基配体CN-NA的N,N-二甲基甲酰胺溶液中,采用恒电位沉积,沉积8-12min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-CN-NA/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位,沉积电位为1.20V-1.60V;
(3)制备碳点复合材料CDs/Cu(II)-CN /Cu
将0.35-0.45g柠檬酸和5mL水混合,制得柠檬酸水溶液;
在柠檬酸水溶液里,采用三电极体系,将配合物复合材料Cu(II)-CN-NA/Cu作为工作电极,铂片为对电极,饱和硫酸亚汞电极为参比电极,采用循环伏安法电沉积,制得碳量子点复合材料,即碳点复合材料CDs/Cu(II)-CN/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积300圈,扫速为0.01V/s。
2. 如上1所述的制备方法制备的碳点复合材料CDs/Cu(II)-CN/Cu用于电化学检测邻苯二甲酸酯的应用,步骤如下:
(1)制备电化学传感器
将上1制备的碳点复合材料CDs/Cu(II)-CN/Cu作为工作电极、Hg/HgO电极为参比电极、铂丝电极为对电极连接在电化学工作站上,制得了碳点复合材料CDs/Cu(II)-CN/Cu电化学传感器;
(2)电化学检测邻苯二甲酸酯
将乙醇与水按体积比1:1比例溶解,制得乙醇水溶液;
用乙醇水溶液溶解并定容邻苯二甲酸酯,分别配制浓度为10-6~102µg/mL范围内不同浓度的邻苯二甲酸酯标准溶液;
使用步骤(1)制得的碳点复合材料CDs/Cu(II)-CN/Cu电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的邻苯二甲酸酯溶液在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与邻苯二甲酸酯浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替邻苯二甲酸酯标准溶液,进行样品的检测,检测结果从工作曲线中查得;
实验结果表明,本传感器的差分脉冲伏安氧化峰电流与邻苯二甲酸酯在10-6~102 µg/mL范围内保持良好的线性关系,相关系数在0.9936以上,检测限为3.3ng/mL。
本发明的有益的技术效果:
(1)本发明中间体配合物复合材料Cu(II)-CN-NA/Cu的制备,是以泡沫铜为工作电极,仅仅加入三聚氰氯基配体CN-NA,采用恒电位沉积,泡沫铜表面铜原子部分失去电子生成Cu(II)正离子,该正离子与溶液中的三聚氰氯基配体CN-NA反应,生成粒径为小于100nm的三聚氰氯基纳米配合物复合材料Cu(II)-CN-NA/Cu;该方法生成的复合材料均匀;沉积时间8-12min,时间短,效率高,比表面积高。
(2)本发明碳点复合材料的制备方法,没有加入其他的稳定剂,是采用恒电位沉积法,通过电解柠檬酸,生成碳量子点,提高了生物相容性、电学特性和稳定性,将碳量子点在线锚固到复合材料Cu(II)-CN-NA/Cu上,量子点分布均匀;本方法制得的碳点复合材料CDs/Cu(II)-CN/Cu电化学传感器,化学稳定性高,比表面积大;由于两种纳米材料,即碳量子点CDs和复合材料Cu(II)-CN-NA/Cu的协同效应,电催化活性高。
(3)本发明制得的碳点复合材料CDs/Cu(II)-CN/Cu电化学传感器,免除了传统工作电极采用全氟化树脂或其它胶黏剂黏结催化剂粉末,可以直接用于电化学检测邻苯二甲酸酯,因此保留了更多的活性位点,使得基于该复合材料制得的传感器,具有检测邻苯二甲酸酯灵敏度高、检测限低、稳定性高,易操作等优势。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1一种碳点复合材料的制备方法
(1)制备三聚氰氯基配体CN-NA
将13.9g 6-氨基-2-萘酸加入到150mL水中,加入4.7g氢氧化钠,7.1g碳酸氢钠,室温搅拌5min;
将3.2g三聚氰氯溶解于50mL乙醇,制得三聚氰氯乙醇溶液;
将两种溶液混合,升温至100℃,保温搅拌过夜,用盐酸调节pH值至2-3,过滤后,用蒸馏水洗涤3次,60℃干燥后得到三聚氰氯基配体CN-NA粉末,产率为87%;
所述三聚氰氯基配体CN-NA,构造式如下:
Figure 995922DEST_PATH_IMAGE002
(2)制备配合物复合材料Cu(II)-CN-NA/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为0.5%三聚氰氯基配体CN-NA的N,N-二甲基甲酰胺溶液中,采用恒电位沉积,沉积8min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-CN-NA/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位,沉积电位为1.20V-1.60V;
(3)制备碳点复合材料CDs/Cu(II)-CN /Cu
将0.35g柠檬酸和5mL水混合,制得柠檬酸水溶液;
在柠檬酸水溶液里,采用三电极体系,将配合物复合材料Cu(II)-CN-NA/Cu作为工作电极,铂片为对电极,饱和硫酸亚汞电极为参比电极,采用循环伏安法电沉积,制得碳量子点复合材料,即碳点复合材料CDs/Cu(II)-CN/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积300圈,扫速为0.01V/s。
实施例2 一种碳点复合材料的制备方法
(1)制备三聚氰氯基配体CN-NA
将15.8g 6-氨基-2-萘酸加入到150mL水中,加入5.5g氢氧化钠,8.8g碳酸氢钠,室温搅拌7min;
将3.7g三聚氰氯溶解于50mL乙醇,制得三聚氰氯乙醇溶液;
将两种溶液混合,升温至100℃,保温搅拌过夜,用盐酸调节pH值至2-3,过滤后,用蒸馏水洗涤3次,60℃干燥后得到三聚氰氯基配体CN-NA粉末,产率为90%;
所述三聚氰氯基配体CN-NA,构造式如下:
Figure 975380DEST_PATH_IMAGE002
(2)制备配合物复合材料Cu(II)-CN-NA/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为1%三聚氰氯基配体CN-NA的N,N-二甲基甲酰胺溶液中,采用恒电位沉积,沉积10min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-CN-NA/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位,沉积电位为1.20V-1.60V;
(3)制备碳点复合材料CDs/Cu(II)-CN /Cu
将0.4g柠檬酸和5mL水混合,制得柠檬酸水溶液;
在柠檬酸水溶液里,采用三电极体系,将配合物复合材料Cu(II)-CN-NA/Cu作为工作电极,铂片为对电极,饱和硫酸亚汞电极为参比电极,采用循环伏安法电沉积,制得碳量子点复合材料,即碳点复合材料CDs/Cu(II)-CN/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积300圈,扫速为0.01V/s。
实施例3 一种碳点复合材料的制备方法
(1)制备三聚氰氯基配体CN-NA
将17.6g 6-氨基-2-萘酸加入到150mL水中,加入6.2g氢氧化钠,10.4g 碳酸氢钠,室温搅拌10min;
将4.2g三聚氰氯溶解于50mL乙醇,制得三聚氰氯乙醇溶液;
将两种溶液混合,升温至100℃,保温搅拌过夜,用盐酸调节pH值至2-3,过滤后,用蒸馏水洗涤3次,60℃干燥后得到三聚氰氯基配体CN-NA粉末,产率为88%;
所述三聚氰氯基配体CN-NA,构造式如下:
Figure 879751DEST_PATH_IMAGE001
(2)制备配合物复合材料Cu(II)-CN-NA/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为1.5%三聚氰氯基配体CN-NA的N,N-二甲基甲酰胺溶液中,采用恒电位沉积,沉积12min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-CN-NA/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位,沉积电位为1.20V-1.60V;
(3)制备碳点复合材料CDs/Cu(II)-CN /Cu
将0.45g柠檬酸和5mL水混合,制得柠檬酸水溶液;
在柠檬酸水溶液里,采用三电极体系,将配合物复合材料Cu(II)-CN-NA/Cu作为工作电极,铂片为对电极,饱和硫酸亚汞电极为参比电极,采用循环伏安法电沉积,制得碳量子点复合材料,即碳点复合材料CDs/Cu(II)-CN/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积300圈,扫速为0.01V/s。
实施例4 实施例1-3所述的制备方法制备的碳点复合材料CDs/Cu(II)-CN/Cu用于电化学检测邻苯二甲酸酯的应用
(1)制备电化学传感器
将实施例1、实施例2或实施例3制备的碳点复合材料CDs/Cu(II)-CN/Cu作为工作电极、Hg/HgO电极为参比电极、铂丝电极为对电极连接在电化学工作站上,制得了碳点复合材料CDs/Cu(II)-CN/Cu电化学传感器;
(2)电化学检测邻苯二甲酸酯
将乙醇与水按体积比1:1比例溶解,制得乙醇水溶液;
用乙醇水溶液溶解并定容邻苯二甲酸酯,分别配制浓度为10-6~102µg/mL范围内不同浓度的邻苯二甲酸酯标准溶液;
使用步骤(1)制得的碳点复合材料CDs/Cu(II)-CN/Cu电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的邻苯二甲酸酯溶液在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与邻苯二甲酸酯浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替邻苯二甲酸酯标准溶液,进行样品的检测,检测结果从工作曲线中查得;
实验结果表明,本传感器的差分脉冲伏安氧化峰电流与邻苯二甲酸酯在10-6~102µg/mL范围内保持良好的线性关系,相关系数在0.9936以上,检测限为3.3ng/mL。

Claims (2)

1.一种碳点复合材料的制备方法,其特征在于,步骤如下:
(1)制备三聚氰氯基配体CN-NA
将13.9-17.6g 6-氨基-2-萘酸加入到150mL水中,加入4.7-6.2g氢氧化钠,7.1-10.4g碳酸氢钠,室温搅拌5-10min;
将3.2-4.2g三聚氰氯溶解于50mL乙醇,制得三聚氰氯乙醇溶液;
将两种溶液混合,升温至100℃,保温搅拌过夜,用盐酸调节pH值至2-3,过滤后,用蒸馏水洗涤3次,60℃干燥后得到三聚氰氯基配体CN-NA粉末,产率为87-90%;
所述三聚氰氯基配体CN-NA,构造式如下:
Figure FDA0002658696060000011
(2)制备配合物复合材料Cu(II)-CN-NA/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为0.5-1.5%三聚氰氯基配体CN-NA的N,N-二甲基甲酰胺溶液中,采用恒电位沉积,沉积8-12min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-CN-NA/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位,沉积电位为1.20V-1.60V;
(3)制备碳点复合材料CDs/Cu(II)-CN/Cu
将0.35-0.45g柠檬酸和5mL水混合,制得柠檬酸水溶液;
在柠檬酸水溶液里,采用三电极体系,将配合物复合材料Cu(II)-CN-NA/Cu作为工作电极,铂片为对电极,饱和硫酸亚汞电极为参比电极,采用循环伏安法电沉积,制得碳量子点复合材料,即碳点复合材料CDs/Cu(II)-CN/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积300圈,扫速为0.01V/s。
2.如权利要求1所述的制备方法制备的碳点复合材料CDs/Cu(II)-CN/Cu用于电化学检测邻苯二甲酸酯的应用;其特征在于,步骤如下:
(1)制备电化学传感器
将权利要求1制备的碳点复合材料CDs/Cu(II)-CN/Cu作为工作电极、Hg/HgO电极为参比电极、铂丝电极为对电极连接在电化学工作站上,制得了碳点复合材料CDs/Cu(II)-CN/Cu电化学传感器;
(2)电化学检测邻苯二甲酸酯
将乙醇与水按体积比1:1比例溶解,制得乙醇水溶液;
用乙醇水溶液溶解并定容邻苯二甲酸酯,分别配制浓度为10-6~102μg/mL范围内不同浓度的邻苯二甲酸酯标准溶液;
使用步骤(1)制得的碳点复合材料CDs/Cu(II)-CN/Cu电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的邻苯二甲酸酯溶液在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与邻苯二甲酸酯浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替邻苯二甲酸酯标准溶液,进行样品的检测,检测结果从工作曲线中查得;
本传感器的差分脉冲伏安氧化峰电流与邻苯二甲酸酯在10-6~102μg/mL范围内保持良好的线性关系。
CN201810716634.5A 2018-07-03 2018-07-03 一种碳点复合材料的制备方法及应用 Expired - Fee Related CN108837848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810716634.5A CN108837848B (zh) 2018-07-03 2018-07-03 一种碳点复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810716634.5A CN108837848B (zh) 2018-07-03 2018-07-03 一种碳点复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN108837848A CN108837848A (zh) 2018-11-20
CN108837848B true CN108837848B (zh) 2021-02-23

Family

ID=64201355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810716634.5A Expired - Fee Related CN108837848B (zh) 2018-07-03 2018-07-03 一种碳点复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN108837848B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618198B2 (zh) * 1973-09-21 1981-04-27
CN106990079B (zh) * 2017-03-20 2019-06-25 中国科学院化学研究所 一种表面多功能化涂层及其制备方法与应用
CN108017591B (zh) * 2017-12-29 2020-03-03 济南大学 一种分子探针及其制备方法和应用
CN108047210B (zh) * 2017-12-29 2020-03-27 济南大学 一种均三嗪分子探针及其制备方法和应用

Also Published As

Publication number Publication date
CN108837848A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
Momeni et al. CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation
Cuellar et al. Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities
Pang et al. Semiconductor‐Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis
CN108745340A (zh) 一种碳负载铋纳米颗粒催化剂的制备方法及应用
CN109097787B (zh) 一种金属多酚配合物晶体电催化剂的制备方法与应用
CN108841378B (zh) 一种功能化修饰碳量子点的制备方法及应用
CN104289725A (zh) Pd基复合纳米粒子及其制备方法
Guo et al. Photoelectrocatalytic interface of boron-doped diamond: Modification, functionalization and environmental applications
CN108950585A (zh) 一种MoS2@Cu2S@泡沫铜复合纳米材料及其制备方法和应用
CN113638002A (zh) 一种FeCo LDH/Ti3C2 MXene/NF复合材料及其制备方法和应用
CN113267547A (zh) 生物质炭为碳源的镍锌基金属有机骨架材料的制备方法
CN110133063A (zh) 一种钼酸铋/硼氮掺杂石墨烯光电功能材料的制备方法及其用途
CN107739075B (zh) 一种含氯代有机污染物废水电催化还原脱氯的方法
CN114774961B (zh) 一种铋基纳米颗粒催化剂及其制备方法和应用
CN112362713A (zh) 一种用于水中氨氮直接电化学检测的敏感电极材料及其制备方法
CN108822293B (zh) 一种Cu2S复合材料的制备方法及应用
CN108837848B (zh) 一种碳点复合材料的制备方法及应用
CN112934233B (zh) 复合光催化剂及其制备方法和应用
CN109626513A (zh) 光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法
CN107694586A (zh) 一种石墨烯缠绕碳化钼/碳微球电催化剂及其制备方法以及在酸性条件下电解水制氢中应用
CN108842165B (zh) 溶剂热法制备硫掺杂的NiFe(CN)5NO电解水析氧催化剂及其应用
CN116282393A (zh) 钯-磷化镍铜-泡沫镍复合电极及其制备方法和应用
CN115433957A (zh) 过渡金属复合铜基催化剂、其制备方法及应用
CN111519228B (zh) 一种氧化铈纳米棒阵列/石墨烯复合材料的制备方法及其在光阴极保护中的应用
CN111422929B (zh) 一种棒状二硫化镍-二硫化钼纳米复合物的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210223

Termination date: 20210703

CF01 Termination of patent right due to non-payment of annual fee