CN108822293B - 一种Cu2S复合材料的制备方法及应用 - Google Patents

一种Cu2S复合材料的制备方法及应用 Download PDF

Info

Publication number
CN108822293B
CN108822293B CN201810718176.9A CN201810718176A CN108822293B CN 108822293 B CN108822293 B CN 108822293B CN 201810718176 A CN201810718176 A CN 201810718176A CN 108822293 B CN108822293 B CN 108822293B
Authority
CN
China
Prior art keywords
ppy
electrode
polypyrrole
aqueous solution
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810718176.9A
Other languages
English (en)
Other versions
CN108822293A (zh
Inventor
匡芮
张爱勤
王保群
解辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jiaotong University
Original Assignee
Shandong Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jiaotong University filed Critical Shandong Jiaotong University
Priority to CN201810718176.9A priority Critical patent/CN108822293B/zh
Publication of CN108822293A publication Critical patent/CN108822293A/zh
Application granted granted Critical
Publication of CN108822293B publication Critical patent/CN108822293B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本发明公开了一种Cu2S复合材料的制备方法及应用,属于纳米材料、金属有机配合物与电化学检测技术领域。具体是基于Cu2S复合材料Cu2S@Cu(II)‑PPy/Cu,制备化学传感器,用于检测双酚A。具体步骤包括:(1)制备聚吡咯(PPy),(2)采用电化学沉积的方法制备聚吡咯复合材料Cu(II)‑PPy/Cu,(3)采用电化学沉积的方法制备Cu2S复合材料Cu2S@Cu(II)‑PPy/Cu,并构建电化学传感器。由于Cu2S@Cu(II)‑PPy/Cu具有大的比表面积和更多的活性位点、优异的吸附性能,制备的化学传感器,具有检测双酚A灵敏度高、检测限低、稳定性高,易操作等优势。

Description

一种Cu2S复合材料的制备方法及应用
技术领域
本发明涉及一种基于Cu2S复合材料的制备方法及应用,属于纳米材料、金属有机配合物与电化学检测技术领域。
背景技术
环境雌激素是指一类能够干扰机体内正常激素的合成、释放、运输、代谢,结合等过程,激活或抑制内分泌系统功能,从而破坏其维持机体生殖、生长、发育和行为稳定性和调控作用的外源化学物质。自1979年,全球很多国家都召开了环境雌激素学术研讨会,越来越多的科学家关注并且深入研究了这类化合物对动物和人类健康的不良影响。经研究证实,约有60~70种环境化学污染物具有雌激素活性,达数百种已被确定具有激素作用,能干扰机体内分泌结构和功能产生各种毒效应。因此,环境雌激素的检测和处理问题亟待解决。
纳米材料具有特殊的光学、力学、磁学、电学、电化学、催化、等性能。Cu2S为P 型半导体材料,其带隙宽度约为1.2eV,随着纳米技术的发展,Cu2S纳米材料许多优点吸引了人们的关注,包括良好的光吸收性能,低成本,高效率的光伏转换性能等。由于与CdSe, CdTe等含Cd量子点相比,Cu2S还具有较好的稳定性和较低的毒性,故其在传感器、发光器件、生物医学等方面也有着广泛的应用。
聚吡咯是含有共扼大π键结构的本征型导电聚合物,具有易于合成、成本低、环境友好和氧化还原可逆等优点,在电催化、电磁屏蔽、吸附等领域都具有广泛的应用,聚吡咯具有C=C双键交错排列的共轭结构,其自身结构提供导电载流子,当经过掺杂处理后,其导电率可大范围提高,甚至可以和金属相媲美。
电化学沉积方法结合许多材料如金属、陶瓷材料、半导体、超晶格和超导体薄膜等,可以在各种基底上制备具有不同特性如超导、生物活性、半导体电致变色、耐蚀、耐热等的薄膜、涂层,是一种构建功能复合材料的方法。这种方法设备投资少,工艺简单,操作容易,环境安全,生产方式灵活,适于工业化生产,越来越受到广大科学家的关注和青睐。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种Cu2S复合材料的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供所述Cu2S复合材料的用途,即将Cu2S复合材料用于检测环境雌激素双酚A,具有良好的电化学活性和稳定性。
为实现上述目的,本发明采用的技术方案如下:
1.一种Cu2S复合材料的制备方法,步骤如下:
(1)制备聚吡咯
将0.5-1.5mL吡咯单体溶于去离子水中,制得吡咯水溶液;
将3-5g氯化铁溶于60mL的水中,制得氯化铁水溶液;
在冰浴条件下,向吡咯水溶液中缓慢地滴加氯化铁水溶液,滴加时间为20-40min,磁力搅拌 1h,将产物真空抽滤后用乙醇和去离子水洗涤数次,至滤液澄清,干燥后得到黑色产物,即为聚吡咯(PPy),产率为74-80%;
所述的聚吡咯(PPy),分子链如下:
Figure GDA0002624360160000021
(2)制备聚吡咯复合材料
将0.2g聚吡咯溶于100mL水中,制得聚吡咯水溶液;
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,饱和甘汞电极为参比电极,在 20mL聚吡咯水溶液中,采用恒电位法沉积,沉积8-12min后,将工作电极用超纯水洗涤、室温干燥,得到聚吡咯复合材料Cu(II)-PPy/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V~1.60V;
(3)制备Cu2S复合材料Cu2S@Cu(II)-PPy/Cu
取0.3-0.5g硫酸铜溶于50mL的水中,制得硫酸铜水溶液;
取0.8-1.2g乙二胺四乙酸二钠溶于50mL的水中,制得乙二胺四乙酸二钠水溶液;
将硫酸铜水溶液和乙二胺四乙酸二钠水溶液混合,形成透明澄清的溶液,加入0.3-0.5g的硫代硫酸钠,采用三电极体系,以聚吡咯复合材料Cu(II)-PPy/Cu为工作电极,铂片为对电极, Hg/HgO电极为参比电极,采用循环伏安法电沉积,制得Cu2S复合材料Cu2S@Cu(II)- PPy/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积30圈,扫速为0.05V/s。
2.如上1所述的制备方法制备的Cu2S复合材料Cu2S@Cu(II)-PPy/Cu用于电化学检测双酚A的应用,步骤如下:
(1)制备电化学传感器
将上1制备的Cu2S复合材料Cu2S@Cu(II)-PPy/Cu作为工作电极、Hg/HgO电极为参比电极、铂丝电极为对电极连接在电化学工作站上,制得了Cu2S复合材料Cu2S@Cu(II)-PPy/Cu电化学传感器;
(2)电化学检测双酚A
采用甲醇溶解并定容,分别配制浓度为10-6-102μg/mL范围内不同浓度的双酚A溶液;
使用步骤(1)制得的电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的双酚A溶液进行扫描,在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与双酚A浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替双酚A标准溶液,进行样品的检测,检测结果从工作曲线中查得;
实验结果表明,本传感器的差分脉冲伏安氧化峰电流与双酚A在10-6-102μg/mL范围内保持良好的线性关系,相关系数在0.9941以上,检测限为3.0ng/mL。
本发明的有益的技术效果:
(1)本发明Cu2S复合材料的制备,是以泡沫铜为工作电极,仅仅加入聚吡咯,采用恒电位沉积,泡沫铜表面铜原子部分失去电子生成Cu(II)正离子,该正离子与溶液中的聚吡咯反应,生成粒径为小于100nm的聚吡咯复合材料,即聚吡咯基复合材料Cu(II)-PPy/Cu,掺杂使聚吡咯的能带部分填充进而提高其导电率;该方法生成的复合材料均匀;沉积时间8-12min,时间短,效率高;制得的聚吡咯基复合材料Cu(II)-PPy/Cu比表面积高,电催化活性高。
(2)本发明Cu2S量子点,在制备过程中没有加入其他稳定剂,采用恒电位沉积法,将硫酸铜和硫代硫酸钠反应生成Cu2S量子点,在线锚固到聚吡咯基材料Cu(II)-PPy/Cu上,与其他物理技术相比,电化学沉积法能够通过循环伏安曲线的扫描次数控制Cu2S量子点的锚固量,是一种低成本技术;本方法制得的聚吡咯基复合材料协同Cu2S量子点 Cu2S@Cu(II)-PPy/Cu电化学传感器,化学稳定性高,比表面积高;由于具有两种纳米材料,即Cu2S量子点和聚吡咯基复合材料Cu(II)-PPy的协同效应,电催化活性高。
(3)本发明制得的Cu2S复合材料Cu2S@Cu(II)-PPy/Cu电化学传感器,电极修饰均匀,节省了滴涂法制备电极的时间,免除了传统工作电极采用全氟化树脂或其它胶黏剂黏结催化剂粉末,可以直接用于电化学检测双酚A,因此保留了更多的活性位点,使得基于该复合材料制得的传感器,具有检测双酚A灵敏度高、检测限低、稳定性好,操作简单等优势。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1一种Cu2S复合材料的制备方法
(1)制备聚吡咯
将0.5mL吡咯单体溶于去离子水中,制得吡咯水溶液;
将3g氯化铁溶于60mL的水中,制得氯化铁水溶液;
在冰浴条件下,向吡咯水溶液中缓慢地滴加氯化铁水溶液,滴加时间为20min,磁力搅拌1h,将产物真空抽滤后用乙醇和去离子水洗涤数次,至滤液澄清,干燥后得到黑色产物,即为聚吡咯(PPy),产率为74%;
所述的聚吡咯(PPy),分子链如下:
Figure GDA0002624360160000041
(2)制备聚吡咯复合材料
将0.2g聚吡咯溶于100mL水中,制得聚吡咯水溶液;
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,饱和甘汞电极为参比电极,在 20mL聚吡咯水溶液中,采用恒电位法沉积,沉积8min后,将工作电极用超纯水洗涤、室温干燥,得到聚吡咯复合材料Cu(II)-PPy/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V~1.60V;
(3)制备Cu2S复合材料Cu2S@Cu(II)-PPy/Cu
取0.3g硫酸铜溶于50mL的水中,制得硫酸铜水溶液;
取0.8g乙二胺四乙酸二钠溶于50mL的水中,制得乙二胺四乙酸二钠水溶液;
将硫酸铜水溶液和乙二胺四乙酸二钠水溶液混合,形成透明澄清的溶液,加入0.3g的硫代硫酸钠,采用三电极体系,以聚吡咯复合材料Cu(II)-PPy/Cu为工作电极,铂片为对电极, Hg/HgO电极为参比电极,采用循环伏安法电沉积,制得Cu2S复合材料Cu2S@Cu(II)- PPy/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积30圈,扫速为0.05V/s。
实施例2一种Cu2S复合材料的制备方法
(1)制备聚吡咯
将1mL吡咯单体溶于去离子水中,制得吡咯水溶液;
将4g氯化铁溶于60mL的水中,制得氯化铁水溶液;
在冰浴条件下,向吡咯水溶液中缓慢地滴加氯化铁水溶液,滴加时间为30min,磁力搅拌1h,将产物真空抽滤后用乙醇和去离子水洗涤数次,至滤液澄清,干燥后得到黑色产物,即为聚吡咯(PPy),产率为80%;
所述的聚吡咯(PPy),分子链如下:
Figure GDA0002624360160000051
(2)制备聚吡咯复合材料
将0.2g聚吡咯溶于100mL水中,制得聚吡咯水溶液;
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,饱和甘汞电极为参比电极,在 20mL聚吡咯水溶液中,采用恒电位法沉积,沉积10min后,将工作电极用超纯水洗涤、室温干燥,得到聚吡咯复合材料Cu(II)-PPy/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V~1.60V;
(3)制备Cu2S复合材料Cu2S@Cu(II)-PPy/Cu
取0.4g硫酸铜溶于50mL的水中,制得硫酸铜水溶液;
取1.0g乙二胺四乙酸二钠溶于50mL的水中,制得乙二胺四乙酸二钠水溶液;
将硫酸铜水溶液和乙二胺四乙酸二钠水溶液混合,形成透明澄清的溶液,加入0.4g的硫代硫酸钠,采用三电极体系,以聚吡咯复合材料Cu(II)-PPy/Cu为工作电极,铂片为对电极, Hg/HgO电极为参比电极,采用循环伏安法电沉积,制得Cu2S复合材料Cu2S@Cu(II)- PPy/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积30圈,扫速为0.05V/s。
实施例3一种Cu2S复合材料的制备方法
(1)制备聚吡咯
将1.5mL吡咯单体溶于去离子水中,制得吡咯水溶液;
将5g氯化铁溶于60mL的水中,制得氯化铁水溶液;
在冰浴条件下,向吡咯水溶液中缓慢地滴加氯化铁水溶液,滴加时间为40min,磁力搅拌1h,将产物真空抽滤后用乙醇和去离子水洗涤数次,至滤液澄清,干燥后得到黑色产物,即为聚吡咯(PPy),产率为76%;
所述的聚吡咯(PPy),分子链如下:
Figure GDA0002624360160000061
(2)制备聚吡咯复合材料
将0.2g聚吡咯溶于100mL水中,制得聚吡咯水溶液;
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,饱和甘汞电极为参比电极,在 20mL聚吡咯水溶液中,采用恒电位法沉积,沉积12min后,将工作电极用超纯水洗涤、室温干燥,得到聚吡咯复合材料Cu(II)-PPy/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V~1.60V;
(3)制备Cu2S复合材料Cu2S@Cu(II)-PPy/Cu
取0.5g硫酸铜溶于50mL的水中,制得硫酸铜水溶液;
取1.2g乙二胺四乙酸二钠溶于50mL的水中,制得乙二胺四乙酸二钠水溶液;
将硫酸铜水溶液和乙二胺四乙酸二钠水溶液混合,形成透明澄清的溶液,加入0.5g的硫代硫酸钠,采用三电极体系,以聚吡咯复合材料Cu(II)-PPy/Cu为工作电极,铂片为对电极, Hg/HgO电极为参比电极,采用循环伏安法电沉积,制得Cu2S复合材料Cu2S@Cu(II)- PPy/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积30圈,扫速为0.05V/s。
实施例4实施例1-3所述的制备方法制备的Cu2S复合材料Cu2S@Cu(II)-PPy/Cu用于电化学检测双酚A的应用
(1)制备电化学传感器
将实施例1、实施例2或实施例3制备的Cu2S复合材料Cu2S@Cu(II)-PPy/Cu作为工作电极、Hg/HgO电极为参比电极、铂丝电极为对电极连接在电化学工作站上,制得了Cu2S复合材料Cu2S@Cu(II)-PPy/Cu电化学传感器;
(2)电化学检测双酚A
采用甲醇溶解并定容,分别配制浓度为10-6-102μg/mL范围内不同浓度的双酚A溶液;
使用步骤(1)制得的电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的双酚A溶液进行扫描,在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与双酚A浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替双酚A标准溶液,进行样品的检测,检测结果从工作曲线中查得;
实验结果表明,本传感器的差分脉冲伏安氧化峰电流与双酚A在10-6-102μg/mL范围内保持良好的线性关系,相关系数在0.9941以上,检测限为3.0ng/mL。

Claims (3)

1.一种Cu2S复合材料的制备方法,其特征在于,步骤如下:
(1)制备聚吡咯
将0.5-1.5mL吡咯单体溶于去离子水中,制得吡咯水溶液;
将3-5g氯化铁溶于60mL的水中,制得氯化铁水溶液;
在冰浴条件下,向吡咯水溶液中缓慢地滴加氯化铁水溶液,滴加时间为20-40min,磁力搅拌1h,将产物真空抽滤后用乙醇和去离子水洗涤数次,至滤液澄清,干燥后得到黑色产物,即为聚吡咯(PPy) ,产率为74-80%;
所述的聚吡咯(PPy),分子链如下:
Figure DEST_PATH_IMAGE002
(2)制备聚吡咯复合材料
将0.2g聚吡咯溶于100mL水中,制得聚吡咯水溶液;
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,饱和甘汞电极为参比电极,在20mL聚吡咯水溶液中,采用恒电位法沉积,沉积8-12min后,将工作电极用超纯水洗涤、室温干燥,得到聚吡咯复合材料Cu(II)-PPy/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V~1.60V;
(3)制备Cu2S复合材料Cu2S@Cu(II)-PPy/Cu
取0.3-0.5g 硫酸铜溶于50mL的水中,制得硫酸铜水溶液;
取0.8-1.2g乙二胺四乙酸二钠溶于50mL的水中,制得乙二胺四乙酸二钠水溶液;
将硫酸铜水溶液和乙二胺四乙酸二钠水溶液混合,形成透明澄清的溶液,加入0.3-0.5g的硫代硫酸钠,采用三电极体系,以聚吡咯复合材料Cu(II)-PPy/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,采用循环伏安法电沉积,制得Cu2S复合材料Cu2S@Cu(II)-PPy/Cu;
所述循环伏安法,沉积电位为-0.20 V~-0.60V,沉积30圈,扫速为0.05V/s。
2.如权利要求1所述的制备方法制备的Cu2S复合材料Cu2S@Cu(II)-PPy/Cu用于电化学检测双酚A的应用。
3.如权利要求2所述的用于电化学检测双酚A的应用,其特征在于,步骤如下:
(1)制备电化学传感器
将权利要求1制备的Cu2S复合材料Cu2S@Cu(II)-PPy/Cu作为工作电极、Hg/HgO电极为参比电极、铂丝电极为对电极连接在电化学工作站上,制得了Cu2S复合材料Cu2S@Cu(II)-PPy/Cu电化学传感器;
(2)电化学检测双酚A
采用甲醇溶解并定容,分别配制浓度为10-6-102µg/mL范围内不同浓度的双酚A溶液;
使用步骤(1)制得的电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的双酚A溶液进行扫描,在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与双酚A浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替双酚A标准溶液,进行样品的检测,检测结果从工作曲线中查得。
CN201810718176.9A 2018-07-03 2018-07-03 一种Cu2S复合材料的制备方法及应用 Expired - Fee Related CN108822293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810718176.9A CN108822293B (zh) 2018-07-03 2018-07-03 一种Cu2S复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810718176.9A CN108822293B (zh) 2018-07-03 2018-07-03 一种Cu2S复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN108822293A CN108822293A (zh) 2018-11-16
CN108822293B true CN108822293B (zh) 2020-11-03

Family

ID=64134431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810718176.9A Expired - Fee Related CN108822293B (zh) 2018-07-03 2018-07-03 一种Cu2S复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN108822293B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324028B (zh) * 2018-11-19 2021-04-09 湖南科技大学 一种以乙二胺和硝酸为原料微波快速合成碳点溶液检测Cr(VI)的方法
CN110736793A (zh) * 2019-09-24 2020-01-31 南京市产品质量监督检验院 聚吡咯纳米纤维用于提取双酚s的用途、基于该用途的提取装置与检测方法
CN115595005B (zh) * 2022-10-12 2024-01-30 东北电力大学 一种低温可逆热致变色抗压防腐涂料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037787A (zh) * 2007-01-25 2007-09-19 西安交通大学 一种高密度聚吡咯膜防腐涂层的制备工艺
CN102174678A (zh) * 2011-03-30 2011-09-07 山东大学 一种纳米多孔金属/导电聚合物复合材料及其制备方法
CN105316702A (zh) * 2014-07-30 2016-02-10 中国科学院大连化学物理研究所 一种聚吡咯/纳米铜复合气体扩散电极及其制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037787A (zh) * 2007-01-25 2007-09-19 西安交通大学 一种高密度聚吡咯膜防腐涂层的制备工艺
CN102174678A (zh) * 2011-03-30 2011-09-07 山东大学 一种纳米多孔金属/导电聚合物复合材料及其制备方法
CN105316702A (zh) * 2014-07-30 2016-02-10 中国科学院大连化学物理研究所 一种聚吡咯/纳米铜复合气体扩散电极及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electronically conducting montmorillonite-Cu2S and montmorillonite-Cu2S-polypyrrole nanocomposites;Ranaweera A.U. et al;《ELECTROCHIMICA ACTA》;20070524;第52卷(第25期);7203-7209 *

Also Published As

Publication number Publication date
CN108822293A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
Wang et al. One-pot synthesis of N-graphene quantum dot-functionalized I-BiOCl Z-scheme cathodic materials for “signal-off” photoelectrochemical sensing of chlorpyrifos
CN108822293B (zh) 一种Cu2S复合材料的制备方法及应用
Nichols et al. Hybrid bioinorganic approach to solar-to-chemical conversion
Lu et al. Significant tetracycline hydrochloride degradation and electricity generation in a visible-light-driven dual photoelectrode photocatalytic fuel cell using BiVO4/TiO2 NT photoanode and Cu2O/TiO2 NT photocathode
Li et al. Facile synthesis of Pd− Cu@ Cu2O/N-RGO hybrid and its application for electrochemical detection of tryptophan
Sacco Electrochemical impedance spectroscopy as a tool to investigate the electroreduction of carbon dioxide: A short review
Keng et al. Colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles into Pt-Co3O4 nanowires
Kim et al. The study of post annealing effect on Cu2O thin-films by electrochemical deposition for photoelectrochemical applications
Zhan et al. Composition-Tuned ZnO/Zn x Cd1–x Te Core/Shell Nanowires Array with Broad Spectral Absorption from UV to NIR for Hydrogen Generation
Chouhan et al. Array of CdSe QD-sensitized ZnO nanorods serves as photoanode for water splitting
Atacan et al. Enhancement of photoelectrochemical hydrogen production by using a novel ternary Ag2CrO4/GO/MnFe2O4 photocatalyst
Singh et al. Halide perovskite-based photocatalysis systems for solar-driven fuel generation
Maji et al. Nanocrystalline FeS thin film used as an anode in photo-electrochemical solar cell and as hydrogen peroxide sensor
Velmurugan et al. Fabrication of high-performance molybdenum disulfide–graphitic carbon nitride p–n heterojunction stabilized rGO/ITO photoelectrode for photoelectrochemical determination of dopamine
Guo et al. Photoelectrocatalytic interface of boron-doped diamond: Modification, functionalization and environmental applications
Wang et al. A novel electrochemical sensor based on Cu3P@ NH2-MIL-125 (Ti) nanocomposite for efficient electrocatalytic oxidation and sensitive detection of hydrazine
Singh et al. Delocalization of π electrons and trapping action of ZnO nanoparticles in PPY matrix for hybrid solar cell application
Manzano et al. Recent progress in the electrochemical deposition of ZnO nanowires: synthesis approaches and applications
Tian et al. Enhanced photocatalytic hydrogen evolution on TiO2 employing vanadium carbide as an efficient and stable cocatalyst
Cao et al. Facile and large-area preparation of porous Ag3PO4 photoanodes for enhanced photoelectrochemical water oxidation
Li et al. Non-noble copper ion anchored on NH2-MIL-101 (Fe) as a novel cocatalyst with transient metal centers for efficient photocatalytic water splitting
Mohan et al. Dependence of (photo) electrochemical properties on geometry factors of hydrothermally synthesized delafossite copper gallium oxide CuGaO2 toward oxygen evolution reaction
Dash et al. High catalytic activity of Au-PEDOT nanoflowers toward electrooxidation of glucose
CN108841378B (zh) 一种功能化修饰碳量子点的制备方法及应用
Conte et al. Copper and silver nanowires for CO 2 electroreduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201103

Termination date: 20210703

CF01 Termination of patent right due to non-payment of annual fee