CN108821762A - 一种防静电掺铝氧化锌导电粉及其制备方法和应用 - Google Patents

一种防静电掺铝氧化锌导电粉及其制备方法和应用 Download PDF

Info

Publication number
CN108821762A
CN108821762A CN201810683877.3A CN201810683877A CN108821762A CN 108821762 A CN108821762 A CN 108821762A CN 201810683877 A CN201810683877 A CN 201810683877A CN 108821762 A CN108821762 A CN 108821762A
Authority
CN
China
Prior art keywords
powder
ball
conducting powder
doped zno
antistatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810683877.3A
Other languages
English (en)
Other versions
CN108821762B (zh
Inventor
周建
陈小凤
夏亮亮
王武峰
水中和
张宏泉
王雷冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Lingwan New Mstar Technology Ltd
Zhongshan Advanced Engineering And Technology Research Institute Wuhan University Of Technology
Original Assignee
Zhongshan Lingwan New Mstar Technology Ltd
Zhongshan Advanced Engineering And Technology Research Institute Wuhan University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Lingwan New Mstar Technology Ltd, Zhongshan Advanced Engineering And Technology Research Institute Wuhan University Of Technology filed Critical Zhongshan Lingwan New Mstar Technology Ltd
Priority to CN201810683877.3A priority Critical patent/CN108821762B/zh
Publication of CN108821762A publication Critical patent/CN108821762A/zh
Application granted granted Critical
Publication of CN108821762B publication Critical patent/CN108821762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种防静电掺铝氧化锌导电粉的制备方法,具体包括如下步骤:(1)将ZnO和Al2O3粉体放入球磨罐中,在球磨机上进行球磨混合;(2)混合均匀后放入干燥箱中,在100℃下进行干燥;(3)将干燥后的混合粉末装入氧化铝坩埚内,将坩埚放在微波连续化合成炉中进行合成,合成条件为1200‑1300℃,保温0.5‑1h,得到导电粉;(4)将微波合成的导电粉放入球磨罐中,按导电粉、磨球的重量比例为1:(1.6‑2)在球磨机中进行研磨,球磨时间为1‑3小时,过150~200目筛后,得到掺铝氧化锌导电粉。本发明采用微波连续化合成方法制备掺铝氧化锌导电粉,合成速度快、温度低、节能环保且产量高,导电粉体电阻率为3.0‑9.8kΩ·cm。

Description

一种防静电掺铝氧化锌导电粉及其制备方法和应用
技术领域
本发明涉及无机导电粉料技术领域,特别涉及一种防静电掺铝氧化锌导电粉及其制备方法和应用。
背景技术
ZnO属于n型半导体材料,其室温下禁带宽度约为3.37eV,未经掺杂的氧化锌由于填隙锌原子电离的电子数较少,载流子浓度低,所以电阻率高。通过掺入Al3+、Ti4+、Mg2+、Li+和Ga3+等杂质原子使氧化锌的导电性得到了显著的改善。掺铝氧化锌的合成方法有多种,其中固相法由于适合大批量生产,成本低而得到广泛运用。但常规高温固相法合成的样品晶粒尺寸大、分布不均匀,同时对能源的消耗较大,同时掺铝质量比一般少于1.25%,高于1.25%后容易形成不导电的ZnAl2O4尖晶石相。而微波固相法是一种新兴的合成方式,具有合成速度快、温度低、节能环保的优点,微波连续化后提高了产量。
发明内容:
本发明的目的在于克服现有技术的缺陷,提供一种防静电掺铝氧化锌导电粉及其制备方法和应用。
本发明采用以下技术方案:
一种防静电掺铝氧化锌导电粉的制备方法,其特征在于,防静电掺铝氧化锌导电粉是利用微波连续化合成工艺合成的,具体包括如下步骤:
(1)将ZnO和Al2O3粉体放入球磨罐中,再按粉体、磨球与乙醇的重量比例为1:(1.6-2):(0.5-1)加入磨球和乙醇溶液进行分散,在球磨机上进行球磨混合,球磨时间为10-15h;
(2)混合均匀后放入干燥箱中,在100℃下进行干燥;
(3)将干燥后的混合粉末装入氧化铝坩埚内,将坩埚放在微波连续化合成炉中进行合成,合成条件为1200-1300℃,保温0.5-1h,得到导电粉;
(4)将微波合成的导电粉放入球磨罐中,按导电粉、磨球的重量比例为1:(1.6-2)在球磨机中进行研磨,球磨时间为1-3小时,过150~200目筛后,得到掺铝氧化锌导电粉。
优选地,所述的粉体中,Al2O3粉体含量为1.25-2.50wt%。。
优选地,所述的微波连续化合成,功率为1.0-5.0kW。
一种防静电掺铝氧化锌导电粉是根据上述任一项的制备方法制得。
一种防静电掺铝氧化锌导电粉在防静电陶瓷砖中的应用。
一种防静电掺铝氧化锌导电粉在防静电涂料中的应用。
防静电掺铝氧化锌导电粉在防静电陶瓷砖中的应用:将防静电掺铝氧化锌导电粉末压制成型制成防静电陶瓷砖生坯,然后进行微波烧结。微波烧结方法的烧结温度在1200-1300℃并保温0.25-0.5h。
防静电掺铝氧化锌导电粉在防静电涂料中的应用:将防静电掺铝氧化锌导电粉末加入到涂料中,经搅拌均匀后制成防静电涂料。防静电掺铝氧化锌导电粉加入到涂料中的体积比例为20-30%。
根据Al2O3粉体和ZnO粉体的平均粒径(纳米、亚微米、微米)和Al2O3粉体含量(1.25-2.50wt%),适当调节微波的功率(1-5kW连续可调)来控制加热速率,以便根据实际情况更好地实施掺铝氧化锌导电粉末的微波连续化合成。
本发明的有益效果:本发明采用微波连续化合成方法制备掺铝氧化锌导电粉,合成速度快、温度低、节能环保且产量高,导电粉体电阻率为3.0-9.8kΩ·cm。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
实施例1:
防静电掺铝氧化锌导电粉的制备:
(1)将ZnO和Al2O3粉体放入球磨罐中,其中Al2O3粉体为粉体总量的2.5%,再按粉体、磨球与乙醇的重量比例为1:1.6:1加入磨球和乙醇溶液进行分散,在球磨机上进行球磨混合,球磨时间为12h;
(2)混合均匀后放入干燥箱中,在100℃下进行干燥;
(3)将干燥后的混合粉末装入氧化铝坩埚内,将坩埚放在微波连续化合成炉中进行合成,微波功率一般选择5kW,合成条件为1250℃,保温1h,得到导电粉;
(4)将微波合成的导电粉放入球磨罐中,按导电粉、磨球的重量比例为1:2在球磨机中进行研磨,球磨时间为3小时,过180目筛后,得到掺铝氧化锌导电粉,导电粉体电阻率为9.8kΩ·cm。
实施例2:
防静电掺铝氧化锌导电粉的制备:
(1)将ZnO和Al2O3粉体放入球磨罐中,其中Al2O3粉体为粉体总量的1.25%,再按粉体、磨球与乙醇的重量比例为1:2:0.5加入磨球和乙醇溶液进行分散,在球磨机上进行球磨混合,球磨时间为15h;
(2)混合均匀后放入干燥箱中,在100℃下进行干燥;
(3)将干燥后的混合粉末装入氧化铝坩埚内,将坩埚放在微波连续化合成炉中进行合成,微波功率一般选择3kW,合成条件为1300℃,保温0.5h,得到导电粉;
(4)将微波合成的导电粉放入球磨罐中,按导电粉、磨球的重量比例为1:1.8在球磨机中进行研磨,球磨时间为2小时,过200目筛后,得到掺铝氧化锌导电粉,导电粉体电阻率为5.8kΩ·cm。
实施例3:
防静电掺铝氧化锌导电粉的制备:
(1)将ZnO和Al2O3粉体放入球磨罐中,其中Al2O3粉体为粉体总量的2.0%,再按粉体、磨球与乙醇的重量比例为1:1.8:0.8加入磨球和乙醇溶液进行分散,在球磨机上进行球磨混合,球磨时间为10h;
(2)混合均匀后放入干燥箱中,在100℃下进行干燥;
(3)将干燥后的混合粉末装入氧化铝坩埚内,将坩埚放在微波连续化合成炉中进行合成,微波功率一般选择1kW,合成条件为1200℃,保温0.8h,得到导电粉;
(4)将微波合成的导电粉放入球磨罐中,按导电粉、磨球的重量比例为1:1.6在球磨机中进行研磨,球磨时间为1小时,过150目筛后,得到掺铝氧化锌导电粉,导电粉体电阻率为3.0kΩ·cm。
实施例4:
将实施例1制备的掺铝氧化锌导电粉末压制成型成防静电陶瓷砖生坯,然后采用微波连续化烧结方法在1200-1300℃烧结温度并保温0.25-0.5h进行微波连续化烧结制成防静电陶瓷砖,电阻率为3.0-9.8kΩ·cm。
微波功率的选择随着掺铝氧化锌导电粉末平均粒径和陶瓷砖生坯的大小不同会有一些变化,典型的微波功率一般选择3kW。
实施例5:
将体积比例为20-30%的掺铝氧化锌导电粉末直接加入到市购涂料中,经搅拌均匀后制成防静电涂料,电阻率为3.0-9.0kΩ·cm。
上述实施例仅用以说明本发明的技术方案而并非对其进行限制,凡未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明技术方案的范围。

Claims (6)

1.一种防静电掺铝氧化锌导电粉的制备方法,其特征在于,防静电掺铝氧化锌导电粉是利用微波连续化合成工艺合成的,具体包括如下步骤:
(1)将ZnO和Al2O3粉体放入球磨罐中,再按粉体、磨球与乙醇的重量比例为1:(1.6-2):(0.5-1)加入磨球和乙醇溶液进行分散,在球磨机上进行球磨混合,球磨时间为10-15h;
(2)混合均匀后放入干燥箱中,在100℃下进行干燥;
(3)将干燥后的混合粉末装入氧化铝坩埚内,将坩埚放在微波连续化合成炉中进行合成,合成条件为1200-1300℃,保温0.5-1h,得到导电粉;
(4)将微波合成的导电粉放入球磨罐中,按导电粉、磨球的重量比例为1:(1.6-2)在球磨机中进行研磨,球磨时间为1-3小时,过150~200目筛后,得到掺铝氧化锌导电粉。
2.根据权利要求1所述的一种防静电掺铝氧化锌导电粉的制备方法,其特征在于,所述的粉体中,Al2O3粉体含量为1.25-2.50wt%。
3.根据权利要求1所述的一种防静电掺铝氧化锌导电粉的制备方法,其特征在于,所述的微波连续化合成,功率为1.0-5.0kW。
4.一种防静电掺铝氧化锌导电粉,其特征在于,防静电掺铝氧化锌导电粉是根据权利要求1-3任一项的制备方法制得。
5.一种防静电掺铝氧化锌导电粉在防静电陶瓷砖中的应用。
6.一种防静电掺铝氧化锌导电粉在防静电涂料中的应用。
CN201810683877.3A 2018-06-28 2018-06-28 一种防静电掺铝氧化锌导电粉及其制备方法和应用 Active CN108821762B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810683877.3A CN108821762B (zh) 2018-06-28 2018-06-28 一种防静电掺铝氧化锌导电粉及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810683877.3A CN108821762B (zh) 2018-06-28 2018-06-28 一种防静电掺铝氧化锌导电粉及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108821762A true CN108821762A (zh) 2018-11-16
CN108821762B CN108821762B (zh) 2021-07-13

Family

ID=64139191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810683877.3A Active CN108821762B (zh) 2018-06-28 2018-06-28 一种防静电掺铝氧化锌导电粉及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108821762B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111744626A (zh) * 2020-07-07 2020-10-09 宁波思创新能源研究院有限公司 一种锂离子电池负极硅碳复合材料的制备设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531392A (zh) * 2009-03-27 2009-09-16 华东理工大学 一种浅色导电纳米粉体材料的制备方法
CN101857428A (zh) * 2010-05-21 2010-10-13 华东理工大学 一种导电氧化锌粉体的制备方法
CN103496966A (zh) * 2013-09-16 2014-01-08 电子科技大学 一种低阻氧化锌陶瓷材料的制备方法
CN103693954A (zh) * 2013-12-09 2014-04-02 中国科学院福建物质结构研究所 高电导率氧化锌陶瓷及其制备方法
CN105272209A (zh) * 2015-11-11 2016-01-27 攀枝花学院 掺铝钛氧化锌靶材的制备方法
CN105622084A (zh) * 2014-10-31 2016-06-01 陕西高华知本化工科技有限公司 一种氧化锌压敏电阻的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531392A (zh) * 2009-03-27 2009-09-16 华东理工大学 一种浅色导电纳米粉体材料的制备方法
CN101857428A (zh) * 2010-05-21 2010-10-13 华东理工大学 一种导电氧化锌粉体的制备方法
CN103496966A (zh) * 2013-09-16 2014-01-08 电子科技大学 一种低阻氧化锌陶瓷材料的制备方法
CN103693954A (zh) * 2013-12-09 2014-04-02 中国科学院福建物质结构研究所 高电导率氧化锌陶瓷及其制备方法
CN105622084A (zh) * 2014-10-31 2016-06-01 陕西高华知本化工科技有限公司 一种氧化锌压敏电阻的制备方法
CN105272209A (zh) * 2015-11-11 2016-01-27 攀枝花学院 掺铝钛氧化锌靶材的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘应亮等: "《无机材料学基础》", 31 August 1999, 暨南大学出版社 *
李永存著: "《微波快速烧结微结构演化机理的在线实验研究》", 30 June 2016, 山西科学技术出版社 *
蔡晓峰等: "导电氧化锌的制备及其在浅色防静电瓷砖中的应用", 《佛山陶瓷》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111744626A (zh) * 2020-07-07 2020-10-09 宁波思创新能源研究院有限公司 一种锂离子电池负极硅碳复合材料的制备设备
CN111744626B (zh) * 2020-07-07 2022-12-23 宁波思创新能源研究院有限公司 一种锂离子电池负极硅碳复合材料的制备设备

Also Published As

Publication number Publication date
CN108821762B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
JP3746094B2 (ja) ターゲットおよびその製造方法
JP5224073B2 (ja) 酸化物蒸着材とその製造方法
CN106946460B (zh) 一种堇青石透明耐磨釉及其制备方法
CN101851745B (zh) 一种透明导电膜用izgo溅射靶材及制造方法
CN101531505B (zh) 一种防辐射陶瓷及其制备方法
CN113277859B (zh) 一种纳米包覆氧化铝颗粒及用其制备的高纯抗热震氧化铝陶瓷材料
CN102276250A (zh) 铝掺杂氧化锌溅射靶
CN103787653A (zh) 一种碳改性CaCu3Ti4O12高介电材料的制备方法
CN108821762A (zh) 一种防静电掺铝氧化锌导电粉及其制备方法和应用
CN109207947A (zh) 一种靶材的制备方法
JP6024545B2 (ja) 酸化亜鉛系焼結体とその製造方法およびスパッタリングターゲット
CN103641468B (zh) 利用氧化锌铝残靶粉末制备氧化锌铝靶材的方法及其制品
CN102503399B (zh) 一种具有择优取向的多晶钇铝石榴石透明陶瓷的制备方法
CN101698597A (zh) 一种高梯度非线性电阻片的原料配方及其制造方法
CN109608164A (zh) 接地气防辐射抗菌负离子瓷砖及其制备方法
CN106187151A (zh) 一种铝钇掺杂氧化锌陶瓷靶材及其制备方法
CN106587976B (zh) 一种镁铁氧体基磁介材料及其制备方法
CN105777107A (zh) 一种利用磁控溅射方法制备导电玻璃用陶瓷靶材
CN105924150B (zh) 一种低温烧结的导电陶瓷材料及其制备方法
CN104505146A (zh) 一种具有纳米核壳及内晶型结构的介电复合材料及制备方法
JP2019119664A (ja) ケイ酸マグネシウム粉末及びその製造方法並びに電子写真用トナー外添剤
KR20150084834A (ko) 산화물 소결체, 그것을 이용한 스퍼터링 타깃 및 산화물막
CN104230315A (zh) 氧化铝陶瓷造粒粉的配方
KR101322595B1 (ko) Ito 타겟 제조방법 및 이에 의해 제조된 ito 타겟
CN112725752A (zh) 一种镁掺杂氧化锌磁控溅射靶材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant