CN106587976B - 一种镁铁氧体基磁介材料及其制备方法 - Google Patents

一种镁铁氧体基磁介材料及其制备方法 Download PDF

Info

Publication number
CN106587976B
CN106587976B CN201710004455.4A CN201710004455A CN106587976B CN 106587976 B CN106587976 B CN 106587976B CN 201710004455 A CN201710004455 A CN 201710004455A CN 106587976 B CN106587976 B CN 106587976B
Authority
CN
China
Prior art keywords
phase material
magnetic dielectric
based magnetic
magnesium ferrite
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710004455.4A
Other languages
English (en)
Other versions
CN106587976A (zh
Inventor
李强
李颉
包生祥
甘功雯
李元勋
张怀武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710004455.4A priority Critical patent/CN106587976B/zh
Publication of CN106587976A publication Critical patent/CN106587976A/zh
Application granted granted Critical
Publication of CN106587976B publication Critical patent/CN106587976B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

一种镁铁氧体基磁介材料及其制备方法,属于电子材料领域。该镁铁氧体基磁介材料由主相材料和辅助相材料按质量百分数比为100:(2~20)复合而成,所述主相材料为Mg1‑xCdxFe2O4尖晶石铁氧体,x的取值范围为0.1~0.3,所述辅助相材料为Bi2O3;主相材料和辅助相材料球磨混合后,烘干、过筛,经造粒,压制成型后,在880~960℃下烧结1~6h得到。本发明磁介材料实现了低温烧结和磁介近似相等,在0.1MHz~10MHz的频率范围内具有等磁介性和低损耗性;该磁介材料作为天线基板材料时,可很好地实现天线的小型化,且有利于提高微带天线的辐射效率和带宽,为小尺寸无线通信设备的设计提供了新的方案。

Description

一种镁铁氧体基磁介材料及其制备方法
技术领域
本发明属于电子材料领域,具体涉及一种镁铁氧体基磁介材料及其制备方法。
背景技术
随着通信设备的小型化、集成化的不断发展,如何实现天线的小型化成为了研究工作者的研究重点。根据天线结构尺寸的计算公式,天线的结构尺寸正比于波在介质中的波长,因此,采用传统的介电材料基板加工较低频率天线时,由于基板的介电常数较低,导致天线的尺寸较大,不能满足在小型通信设备中的应用。
为了减小较低频段微带天线的尺寸、质量和体积,根据天线的谐振频率可知,提高天线介质基板的有效磁导率μeff可有效降低天线基板的尺寸,并且还不易激起表面波,有利于天线能量的辐射。同时,如果能使基板材料的有效磁导率和有效介电常数相等,则天线介质基板的特性阻抗
Figure BDA0001202660440000012
即与真空的特性阻抗相等,因此,采用等磁介材料制备天线基板,可以有效减小天线辐射的能量反射,提高天线的辐射效率。此外,基板介电常数的大小决定了天线带宽,介电常数越小,天线的带宽越宽,这样,在天线的物理尺寸相同的情况下,等磁介材料的介电常数要小于纯介电材料的介电常数,使得采用等磁介材料的天线具有更宽的带宽。此外,为了进一步提高天线的增益,需要尽可能降低基板材料的磁损耗和介电损耗,而基板材料的磁导率和介电常数的截止频率都要高于天线的应用频率,因此,低损耗磁介材料一直是天线领域研究的热点之一。电子科技大学苏桦、唐晓莉等于2009年申请的中国发明专利“一种低频微带天线基板材料及其制备方法(申请号 200910058209.3)”,提出了一种尖晶石铁氧体与钛酸锶铋陶瓷复合的等磁介材料,但是该磁介材料的磁导率和介电常数均较高,限制了天线的尺寸。唐晓莉、苏桦等于2012年申请的中国发明专利“一种微带天线复合基板(申请号201110235563.5)”,提出了一种Co2Z钡锶铁氧体材料与聚丙烯树脂材料复合而成的等磁介材料,但是该磁介材料中采用的聚丙烯树脂有机物在实际应用中受温度影响很大,严重影响了天线的性能。
发明内容
本发明针对背景技术存在的缺陷,提出了一种镁铁氧体基磁介材料及其制备方法。本发明磁介材料为Bi2O3调控的Mg1-xCdxFe2O4尖晶石铁氧体材料,实现了低温烧结和磁介近似相等,同时在0.1MHz~10MHz的频率范围内具有等磁介性和低损耗性(其磁导率和介电常数均在10~45左右,且频段内比磁损耗系数和比介电损耗系数都低于0.01);该磁介材料作为天线基板材料时,可以很好地实现天线的小型化,且有利于提高微带天线的辐射效率和带宽,为小尺寸无线通信设备的设计提供了新的方案。
本发明的技术方案如下:
一种镁铁氧体基磁介材料,由主相材料和辅助相材料按质量百分数比为 100:(2~20)复合而成,所述主相材料为Mg1-xCdxFe2O4尖晶石铁氧体,其中x 的取值范围为0.1~0.3,所述辅助相材料为Bi2O3;所述主相材料和辅助相材料按质量百分数比为100:(2~20)的比例球磨混合后,烘干、过筛,经造粒,压制成型后,在880~960℃下烧结1~6h,随炉冷却至室温,即得到本发明所述镁铁氧体基磁介材料。
一种镁铁氧体基磁介材料的制备方法,包括以下步骤:
步骤1:以氧化镁(MgO)、氧化镉(CdO)和氧化铁(Fe2O3)为原料,按照主相材料Mg1- xCdxFe2O4中的金属元素的比例折算出MgO、CdO和Fe2O3的质量百分比,进行称料、混料、一次球磨后烘干,其中x的取值范围为0.1~0.3;
步骤2:将步骤1得到的一次球磨烘干料过筛后放入烧结炉内进行预烧,预烧温度为950℃~1100℃,时间为2~6h,然后随炉冷却至室温,得到预烧料;
步骤3:在步骤2得到的预烧料中按照主相材料和辅助相材料质量百分数比为100:(2~20)的比例加入Bi2O3辅助相材料,进行二次球磨,二次球磨后粉料的平均粒度控制在2μm以下,然后将二次球磨料烘干、过筛;
步骤4:在步骤3得到的混合粉料中加入8wt%~15wt%的PVA粘合剂,造粒,压制成型后,在880~960℃下烧结1~6h,随炉冷却至室温,即得到本发明所述镁铁氧体基磁介材料。
进一步地,步骤1中所述一次球磨的转速为220转/分,球磨时间为16-24h,球磨介质为去离子水。
本发明还提供了上述镁铁氧体基磁介材料作为天线基板材料的应用。
本发明的有益效果为:
1、本发明提供的镁铁氧体基磁介材料采用镉掺杂的镁铁氧体作为主相材料,镉掺杂提高了材料的磁导率特性,同时添加低熔点氧化物Bi2O3助烧剂,在降低铁氧体烧结温度的同时调节了材料的磁导率和介电常数,得到了等磁介材料,可用于微带天线的基板材料。
2、本发明磁介材料实现了低温烧结和磁介近似相等,在0.1MHz~10MHz的频率范围内具有等磁介性和低损耗性(其磁导率和介电常数均在10~45左右,且频段内比磁损耗系数和比介电损耗系数都低于0.01)。
3、本发明磁介材料作为天线基板材料时,可以很好地实现天线的小型化,且有利于提高微带天线的辐射效率和带宽,为小尺寸无线通信设备的设计提供了新的方案。
附图说明
图1为本发明镁铁氧体基磁介材料的制备方法流程图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种镁铁氧体基磁介材料的制备方法,包括以下步骤:
步骤1:以氧化镁(MgO)、氧化镉(CdO)和氧化铁(Fe2O3)为原料,按照主相材料Mg1- xCdxFe2O4(x=0.1)中的金属元素的比例折算出MgO、CdO和 Fe2O3的质量百分比后,分别称取氧化镁7.2g,氧化镉2.56g,氧化铁32.0g,然后在行星球磨机中湿磨18小时,转速220转/分,球磨介质为去离子水;
步骤2:将步骤1得到的一次球磨烘干料过筛后在烧结坩埚中压实,按2℃ /min的升温速率升至预烧温度进行预烧,随炉自然冷却至室温得到铁氧体预烧粉料;所述预烧温度为1050℃,保温时间为4h;
步骤3:在步骤2得到的预烧料中加入2.0gBi2O3助烧剂,进行二次球磨,二次球磨后粉料的平均粒度控制在2μm以下,然后将二次球磨料烘干、过筛;
步骤4:在步骤3得到的混合粉料中加入5.1gPVA粘合剂,造粒,压制成型后,在950℃下烧结6h,随炉冷却至室温,即得到本发明所述镁铁氧体基磁介材料。
实施例1得到的磁介材料的磁导率和介电常数如下:
Figure BDA0001202660440000041
实施例2
一种镁铁氧体基磁介材料的制备方法,包括以下步骤:
步骤1:以氧化镁(MgO)、氧化镉(CdO)和氧化铁(Fe2O3)为原料,按照主相材料Mg1- xCdxFe2O4(x=0.2)中的金属元素的比例折算出MgO、CdO和 Fe2O3的质量百分比后,分别称取氧化镁6.4g,氧化镉5.12g,氧化铁32.0g,然后在行星球磨机中湿磨18小时,转速220转/分,球磨介质为去离子水;
步骤2:将步骤1得到的一次球磨烘干料过筛后在烧结坩埚中压实,按2℃ /min的升温速率升至预烧温度进行预烧,随炉自然冷却至室温得到铁氧体预烧粉料;所述预烧温度为1100℃,保温时间为4h;
步骤3:在步骤2得到的预烧料中加入2.17g Bi2O3助烧剂,进行二次球磨,二次球磨后粉料的平均粒度控制在2μm以下,然后将二次球磨料烘干、过筛;
步骤4:在步骤3得到的混合粉料中加入5.2gPVA粘合剂,造粒,压制成型后,在920℃下烧结6h,随炉冷却至室温,即得到本发明所述镁铁氧体基磁介材料。
实施例2得到的磁介材料的磁导率和介电常数如下:
Figure BDA0001202660440000042
实施例3
一种镁铁氧体基磁介材料的制备方法,包括以下步骤:
步骤1:以氧化镁(MgO)、氧化镉(CdO)和氧化铁(Fe2O3)为原料,按照主相材料Mg1- xCdxFe2O4(x=0.3)中的金属元素的比例折算出MgO、CdO和 Fe2O3的质量百分比后,分别称取氧化镁5.6g,氧化镉7.68g,氧化铁32.0g,然后在行星球磨机中湿磨18小时,转速220转/分,球磨介质为去离子水;
步骤2:将步骤1得到的一次球磨烘干料过筛后在烧结坩埚中压实,按2℃ /min的升温速率升至预烧温度进行预烧,随炉自然冷却至室温得到铁氧体预烧粉料;所述预烧温度为1100℃,保温时间为4h;
步骤3:在步骤2得到的预烧料中加入2.26g Bi2O3助烧剂,进行二次球磨,二次球磨后粉料的平均粒度控制在2μm以下,然后将二次球磨料烘干、过筛;
步骤4:在步骤3得到的混合粉料中加入5.42g PVA粘合剂,造粒,压制成型后,在900℃下烧结6h,随炉冷却至室温,即得到本发明所述镁铁氧体基磁介材料。
实施例3得到的磁介材料的磁导率和介电常数如下:
Figure BDA0001202660440000051

Claims (4)

1.一种镁铁氧体基磁介材料,由主相材料和辅助相材料按质量百分数比为100:(200/41.76~226/45.28)复合而成,所述主相材料为Mg1-xCdxFe2O4尖晶石铁氧体,其中x的取值范围为0.1~0.3,所述辅助相材料为Bi2O3;所述主相材料和辅助相材料按质量百分数比为100:(200/41.76~226/45.28)的比例球磨混合后,烘干、过筛,经造粒,压制成型后,在880~960℃下烧结1~6h,随炉冷却至室温得到,所述镁铁氧体基磁介材料在0.1MHz~10MHz的频率范围内具有等磁介性,磁导率和介电常数为10~45,且介电损耗低于0.01。
2.一种镁铁氧体基磁介材料的制备方法,包括以下步骤:
步骤1:以MgO、CdO和Fe2O3为原料,按照主相材料Mg1-xCdxFe2O4中的金属元素的比例折算出MgO、CdO和Fe2O3的质量百分比,进行称料、混料、一次球磨后烘干,其中x的取值范围为0.1~0.3;
步骤2:将步骤1得到的一次球磨烘干料过筛后放入烧结炉内进行预烧,预烧温度为950℃~1100℃,时间为2~6h,然后随炉冷却至室温,得到预烧料;
步骤3:在步骤2得到的预烧料中按照主相材料和辅助相材料质量百分数比为100:(200/41.76~226/45.28)的比例加入Bi2O3辅助相材料,进行二次球磨,二次球磨后粉料的平均粒度控制在2μm以下,然后将二次球磨料烘干、过筛;
步骤4:在步骤3得到的混合粉料中加入PVA粘合剂,造粒,压制成型后,在880~960℃下烧结1~6h,随炉冷却至室温,即得到所述镁铁氧体基磁介材料。
3.根据权利要求2所述的镁铁氧体基磁介材料的制备方法,其特征在于,步骤1中所述一次球磨的转速为220转/分,球磨时间为16-24h,球磨介质为去离子水。
4.权利要求1所述镁铁氧体基磁介材料作为天线基板材料的应用。
CN201710004455.4A 2017-01-04 2017-01-04 一种镁铁氧体基磁介材料及其制备方法 Expired - Fee Related CN106587976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710004455.4A CN106587976B (zh) 2017-01-04 2017-01-04 一种镁铁氧体基磁介材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710004455.4A CN106587976B (zh) 2017-01-04 2017-01-04 一种镁铁氧体基磁介材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106587976A CN106587976A (zh) 2017-04-26
CN106587976B true CN106587976B (zh) 2020-01-10

Family

ID=58582712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710004455.4A Expired - Fee Related CN106587976B (zh) 2017-01-04 2017-01-04 一种镁铁氧体基磁介材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106587976B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078492B (zh) * 2019-04-30 2021-09-24 电子科技大学 一种镁铁氧体基低损耗磁介材料及其制备方法
CN113292327B (zh) * 2021-05-25 2022-01-07 湖北华磁电子科技有限公司 一种具有宽温性质的软磁铁氧体材料及其生产工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrical and magnetic properties of magnesium ferrite ceramics doped with Bi2O3;L.B. Kong et al.;《Acta Materialia》;20070925;第55卷;第6562页右栏第2段,第6571段左栏第3段 *
MOSSBAUER EFFECT AND ELECTRON SPIN RESONANCE STUDY of CdxMgl-xFe204 SYSTEM;N.A. EISSA et al.;《Hyperfine Interactions》;19861231;第28卷;第834-847页 *
Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique;R.Zahir et al.;《Journal of Magnetism and Magnetic Materials》;20160305;第410卷;第56页左栏第1段 *

Also Published As

Publication number Publication date
CN106587976A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN103304186B (zh) 一种铁氧体基复合磁介天线基板材料及其制备方法
CN108358632B (zh) 一种超低温烧结高Q×f值微波介质材料及其制备方法
CN112679204B (zh) 一种高饱和高介电常数低线宽微波铁氧体材料及其制备方法
CN109836149A (zh) 一种低磁矩、小损耗、高温度稳定性石榴石铁氧体材料
CN105000877A (zh) 一种高品质因数温度稳定型微波介质材料及其制备方法
CN107382299A (zh) 一种低介微波介质陶瓷的低温制备方法
CN108727022A (zh) 一种超低损耗铌酸镁锂体系微波介质陶瓷材料及其制备方法
CN102311260A (zh) 一种新型掺杂MnZn系铁氧体材料及其制备方法
CN112142456A (zh) 一种铁氧体吸波材料及其制备方法
CN106587976B (zh) 一种镁铁氧体基磁介材料及其制备方法
CN103787653A (zh) 一种碳改性CaCu3Ti4O12高介电材料的制备方法
CN103058657A (zh) 氧化钴掺杂铌钛酸锌微波介质陶瓷
CN103833351B (zh) 微波介质陶瓷及其制备方法
CN107500750A (zh) 镁铌共掺制备高q值锂基微波介质材料
CN101462872B (zh) 一种低频微带天线基板材料及其制备方法
CN112624768B (zh) 一种具有弱负介电性能的陶瓷基三元复合材料及制备方法
CN104817322B (zh) 一种温度稳定型电容器陶瓷材料Sr4EuTiNb9O30及其制备方法
CN103214243A (zh) 铌钛酸锌微波介质陶瓷及其制备方法
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN103467093A (zh) 一种氧化镍掺杂铌钛酸锌微波介质陶瓷及其制备方法
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN107285760A (zh) 一种低损耗巨介电常数陶瓷材料的制备方法
CN110698199A (zh) 一种采用分步预烧法制备的低损耗微波介质陶瓷
CN109231982A (zh) 一种钛酸镁基微波介质陶瓷的制备方法
CN102838346B (zh) 一种以尖晶石铁氧体为母体的天线基板材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200110