CN108796474B - 一种基于溶液法同质外延MgO薄膜的制备方法 - Google Patents

一种基于溶液法同质外延MgO薄膜的制备方法 Download PDF

Info

Publication number
CN108796474B
CN108796474B CN201810618364.4A CN201810618364A CN108796474B CN 108796474 B CN108796474 B CN 108796474B CN 201810618364 A CN201810618364 A CN 201810618364A CN 108796474 B CN108796474 B CN 108796474B
Authority
CN
China
Prior art keywords
solution
mgo
base band
homoepitaxy
rotating wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810618364.4A
Other languages
English (en)
Other versions
CN108796474A (zh
Inventor
陶伯万
马寅畅
赵睿鹏
唐浩
苟继涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810618364.4A priority Critical patent/CN108796474B/zh
Publication of CN108796474A publication Critical patent/CN108796474A/zh
Application granted granted Critical
Publication of CN108796474B publication Critical patent/CN108796474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate

Abstract

本发明属于薄膜制备技术领域,涉及在镀有IBAD‑MgO的金属基带上制备同质外延MgO薄膜的方法,具体为一种基于溶液法同质外延MgO薄膜的制备方法。本发明用低成本的溶液沉积法完全替代了传统高成本工艺复杂PVD方法,且制备的同质外延MgO薄膜表面形貌相比传统方法更优。

Description

一种基于溶液法同质外延MgO薄膜的制备方法
技术领域
本发明属于薄膜制备技术领域,涉及在镀有IBAD-MgO的金属基带上制备同质外延氧化镁(MgO)薄膜的方法,具体为一种基于溶液法同质外延MgO薄膜的制备方法。
背景技术
高温超导带材被广泛运用于电力传输、能源存储、传感器等诸多领域。双轴织构MgO缓冲层是高温超导带材的重要组成部分之一;制备平整度高、均一性好、取向一致性好的MgO缓冲层是制备高性能YBCO(钇钡铜氧)高温超导带材的前提,高质量、低成本、高效率的双轴织构MgO缓冲层制备技术对于高温超导带材的产业化具有重要意义。溶液沉积法因为具有高产量、低成本、工艺简单等优点,在高温超导带材领域中得到越来越多的关注。
目前高温超导带材的MgO缓冲层制备主流制备路线为:先利用离子束辅助沉积法(IBAD)在基带上沉积一层厚度为8~12nm的双轴织构MgO薄膜,然后通过物理气相沉积(PVD)的方法同质外延一层更厚的MgO薄膜,实现薄膜中晶粒取向的优化。但是通过PVD同质外延的工艺流程复杂,需要在高真空环境中进行,因此设备质量要求高,成本高,薄膜结构和形貌不够理想(均方根粗糙度大于3 nm)。
发明内容
针对上述存在的问题或不足,为了降低生产成本,提产品高性价比,优化薄膜表面形貌,本发明提供了一种基于溶液法同质外延MgO薄膜的制备方法。通过在金属基带上通电流的方式,使得金属基带本体能够均匀发热,实现MgO薄膜自下而上外延生长。采用溶液沉积法,使得薄膜表面平整致密,生产成本大幅降低。
技术方案如下:
步骤1、配置MgO前驱液:在0.1mol/L的氯化镁溶液中加入各占其质量百分比2.5%~3%的二乙醇胺和二乙烯三胺,并混合均匀,得到MgO前驱液。
步骤2、将已沉积8-12nm的IBAD-MgO的哈氏合金基带装入卷绕轮1中,其一端从卷绕轮1中拉出依次引入转轮1、转轮2、加热装置、转轮3后接入卷绕轮2中;步骤1所得MgO前驱液置于溶液池;转轮2位于溶液池内以调转基带在溶液中的移动方向。
步骤3、在加热装置对哈氏合金基带升温至500~600℃的条件下,卷绕轮2以100~150mm/min的速度牵引哈氏合金基带由卷绕轮1到转轮1,然后经过溶液池蘸取溶液并经转轮2调转方向后,垂直进入加热装置,最后被收集至卷绕轮2;即可制得同质外延MgO薄膜。
进一步的,所述步骤1中MgO前驱液制备后,再向其中加入占氯化镁溶液质量百分比0.5%~1%的冰醋酸再进行后续步骤,以防止Mg+水解,使得溶液体系稳定至少30天。
进一步的,所述加热装置为两组电极,电流从正极流入,通过分流电阻均分成n(n≥3)股电流从不同位置流入金属带材,同样均分成n股电流从负极流出。电极向基带输送电流,使得带材在焦耳效应的作用下温度升高并产生温度梯度,最终达到薄膜结晶条件,采用此种加热装置,可以使得薄膜由内向外结晶,生长出的薄膜拥有更好的织构。
本发明用低成本的溶液沉积法完全替代了传统高成本工艺复杂 PVD方法,且制备的同质外延MgO薄膜表面形貌相比传统方法更优。
附图说明
图1是实施例的溶液沉积装置示意图;
图2是实施例的加热装置示意图;
图3是实施例制备的MgO薄膜高能衍射电子枪(RHEED)衍射图案;
图4是实施例制备的MgO薄膜的原子力显微镜(AFM)测试图;
图5是MgO薄膜X射线光电子能谱(XPS)测试图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例:配置0.1mol/L的氯化镁酒精溶液作为MgO的前驱液,在镀有IBAD-MgO的10m金属基带上用化学溶液沉积法同质外延一层MgO薄膜。包括以下步骤:
步骤1、称量0.02mol的六水合氯化镁晶体4.6g,放入鼓风干燥箱烘烤恒温90℃烘烤4小时;
步骤2、将步骤1所得固体倒入200ml烧杯中,加无水乙醇定容至150ml,放入超声清洗器中,超声溶解30min,得到澄清透明的溶液;
步骤3、将步骤2所得溶液于烧杯中置于磁力搅拌器上,放入搅拌子,并开启加热模式加热至40℃,磁力搅拌2小时;
步骤4、向步骤3所得溶液加入1ml冰醋酸,并加入二乙醇胺和二乙烯三胺各5ml,加无水乙醇定容至200ml;
步骤5、向步骤4所得溶液放入搅拌子,磁力搅拌2小时使其混合均匀,得到稳定的MgO前驱液;该MgO前驱液在室温下密闭保存,此体系能稳定至少30天。
步骤6、准备、处理基带:将宽12mm、长10m已沉积10nm的IBAD-MgO哈氏合金基带,两端各焊接一条3m长的牵引基带,装入卷绕轮1中;
步骤7、将步骤5所得MgO前驱液置于溶液池中,将牵引带一端从卷绕轮1中拉出依次引入转轮1、溶液池中转轮2、加热电极、转轮3后装入提供牵引动力的卷绕轮2中;
步骤8、选用加热装置为两组电极,电流从正极流入,通过分流电阻均分成4股电流从不同位置流入金属带材,同样均分成4股电流从负极流出。电极向基带输送电流,使得带材在焦耳效应的作用下温度升高并产生温度梯度,最终达到薄膜结晶条件,采用此种自加热的加热装置,可以使得薄膜由内向外结晶,生长出的薄膜拥有更好的织构。
在加热电极向基带输送16A电流的条件下,卷绕轮2以120mm/min的牵引速度,牵引基带由卷绕轮1到转轮1,经过溶液池中转轮2,蘸取溶液后垂直进入加热电极,最后经转轮3被收集至卷绕轮2;即可制得同质外延MgO薄膜。
与哈氏合金基带接触的电极选摩擦力小、耐高温、导电性好的银钨合金棒,固定银钨合金棒的为弹性钢片,以确保基带与电极良好的接触。
上述步骤8制备好的同质外延MgO薄膜的XRD(X射线衍射)和AFM(原子力显微镜)的测试结果如下:
图3是实施例中MgO薄膜的(高能电子衍射)RHEED图案,表明MgO薄膜有良好的(100)面外取向和(110)面内取向。
图4是实施例中MgO薄膜原子力显微镜(AFM)的测试图,MgO颗粒分布均匀,表面平整致密无裂痕,其5mm×5mm范围类的均方根粗糙度(RMS)为0.594nm,可见其表面形貌平整度远好于通过常规方法制备的外延MgO薄膜。
图5是实施例中X射线光电子能谱(XPS)测试图,前驱液中的MgCl2已经充分受热分解为MgO,前驱液中的Cl元素以及添加剂(二乙醇胺、二乙烯三胺)中的C、N元素基本无残留。

Claims (2)

1.一种基于溶液法同质外延MgO薄膜的制备方法,具体步骤如下:
步骤1、配置MgO前驱液:在0.1mol/L的氯化镁溶液中加入各占其质量百分比2.5%~3%的二乙醇胺和二乙烯三胺,并混合均匀,得到MgO前驱液;
步骤2、将已沉积8-12nm的IBAD-MgO的哈氏合金基带装入卷绕轮(1)中,其一端从卷绕轮(1)中拉出依次引入转轮(1)、转轮(2)、加热装置、转轮(3)后接入卷绕轮(2)中;步骤1所得MgO前驱液置于溶液池;转轮(2)位于溶液池内以调转基带在溶液中的移动方向;
所述加热装置为两组电极,电流从正极流入,通过分流电阻均分成n股电流从不同位置流入金属带材,同样均分成n股电流从负极流出,n≥3;
步骤3、在加热装置对哈氏合金基带升温至500~600℃的条件下,卷绕轮(2)以100~150mm/min的速度牵引哈氏合金基带由卷绕轮(1)到转轮(1),然后经过溶液池蘸取溶液并经转轮(2)调转方向后,垂直进入加热装置,最后被收集至卷绕轮(2);即可制得同质外延MgO薄膜。
2.如权利要求1所述基于溶液法同质外延MgO薄膜的制备方法,其特征在于:所述步骤1中MgO前驱液制备后,再向其中加入占氯化镁溶液质量百分比0.5%~1%的冰醋酸再进行后续步骤。
CN201810618364.4A 2018-06-15 2018-06-15 一种基于溶液法同质外延MgO薄膜的制备方法 Active CN108796474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810618364.4A CN108796474B (zh) 2018-06-15 2018-06-15 一种基于溶液法同质外延MgO薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810618364.4A CN108796474B (zh) 2018-06-15 2018-06-15 一种基于溶液法同质外延MgO薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN108796474A CN108796474A (zh) 2018-11-13
CN108796474B true CN108796474B (zh) 2020-05-12

Family

ID=64086350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810618364.4A Active CN108796474B (zh) 2018-06-15 2018-06-15 一种基于溶液法同质外延MgO薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN108796474B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8505811D0 (en) * 1985-03-06 1985-04-11 Bekaert Sa Nv Induction heating
JP2005516882A (ja) * 2001-07-31 2005-06-09 アメリカン スーパーコンダクター コーポレイション 超電導体の作製方法及び反応装置
FR2944982B1 (fr) * 2009-04-30 2011-10-14 Commissariat Energie Atomique Procede de preparation d'un substrat metallise,ledit substrat et ses utilisations
CN104021880B (zh) * 2014-06-03 2016-08-24 电子科技大学 一种涂层导体用双面MgO缓冲层的制备方法

Also Published As

Publication number Publication date
CN108796474A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN106835260B (zh) 超大尺寸多层单晶石墨烯和大尺寸单晶铜镍合金的制备方法
CN100372140C (zh) 一种大面积均匀薄膜或长超导导线的制备方法及其装置
CN109537263B (zh) 一种ZnO/碳纤维的柔性材料及其制备方法
CN102306702B (zh) 适合于连续化制备高温超导带材的方法
Zhao et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method
CN107190321A (zh) 非互易自旋波异质结波导材料及其制备方法和用途
CN103606683A (zh) 一种线团状的锗纳米材料及其制备方法
CN101914753A (zh) 一种利用磁控溅射法制备NbTi薄膜的方法
CN108796474B (zh) 一种基于溶液法同质外延MgO薄膜的制备方法
CN105803434B (zh) 一种在氧化铝晶体基底上制备高温超导薄膜的方法
CN104992777B (zh) 一种双轴织构缓冲层结构
CN108010985B (zh) 柔性薄膜太阳能电池及其制备方法
CN106531845B (zh) 化学水浴制备太阳能电池吸收层CuInS2薄膜的方法
CN107298437A (zh) 一种pvd法低温制备石墨烯的方法
CN105441877A (zh) 电阻式热蒸发制备铁磁性材料Fe3Si薄膜的工艺
CN109336099B (zh) 一种石墨烯纳米片结构缺陷修复与片间拼接方法
CN103208586A (zh) 一种低成本制备双轴织构氧化物缓冲层的方法
CN102255040B (zh) 双面超导带材缓冲层的连续制备方法
CN102682919B (zh) 一种简化的高温超导长带退火方法
CN102242357A (zh) 一种ybco涂层导体阻挡层的制备方法
CN111874876B (zh) 一种生长碲化铜的方法、碲化铜及应用
CN105118888A (zh) 一种由硫酸铜制备氧化亚铜光电薄膜的方法
CN109830413B (zh) GaN微米棒阵列/石墨烯场发射阴极复合材料制备方法
CN102912437B (zh) 花状多级结构氧化锌支撑骨架及其制备方法和应用
CN207142834U (zh) 一种在基板表面生长石墨烯薄膜的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant