CN108794773B - 一种导电水凝胶的制备方法 - Google Patents

一种导电水凝胶的制备方法 Download PDF

Info

Publication number
CN108794773B
CN108794773B CN201810713932.9A CN201810713932A CN108794773B CN 108794773 B CN108794773 B CN 108794773B CN 201810713932 A CN201810713932 A CN 201810713932A CN 108794773 B CN108794773 B CN 108794773B
Authority
CN
China
Prior art keywords
conductive
mass
monomer
hydrogel
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810713932.9A
Other languages
English (en)
Other versions
CN108794773A (zh
Inventor
杜娟
佘小红
朱雯莉
李晓玉
刘嘉钰
李明田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN201810713932.9A priority Critical patent/CN108794773B/zh
Publication of CN108794773A publication Critical patent/CN108794773A/zh
Application granted granted Critical
Publication of CN108794773B publication Critical patent/CN108794773B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3247Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing combinations of different heteroatoms other than nitrogen and oxygen or nitrogen and sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

本发明公开了一种导电水凝胶的制备方法,步骤为:(1)将亲水性单体或亲水性聚合物均匀分散于盐酸水溶液中,得到稳定的分散液,再加入导电单体和金属醇盐,搅拌均匀,其中,导电单体的质量为盐酸水溶液质量的1~20%,导电单体的质量为金属醇盐质量的20~100%,导电单体质量为亲水性单体或亲水性聚合物的质量为的0.2~85%;(2)在步骤(1)的混合液中加入引发剂和催化剂,混匀后于‑20oC~50oC反应24~72小时,其中,引发剂的质量为导电单体质量的0.5~5%,催化剂的质量为亲水性单体质量的0.01~5%,反应完成后即得到所述的导电水凝胶。本发明制备的水凝胶具有优异的力学性能和电化学性能,而且只需一步即可制备得到,相较于现有方法制备工艺更简单、原料用量更少。

Description

一种导电水凝胶的制备方法
技术领域
本发明属于功能高分子材料领域,具体涉及一种导电水凝胶的制备方法。
技术背景
水凝胶是由水和三维聚合物网络构成的软质材料,网络中的交联点是共价键构成的化学交联点或者离子键、氢键、疏水作用、配位作用等非共价键构成的物理交联点。因其软湿特性与生物组织有相似之处,而在药物传递、生物传感器与制动器、仿生智能材料等领域具有重要的应用前景。
导电水凝胶结合了水凝胶和导电物质的双重特性,在保持尺寸稳定性的前提下,可以具有不同的电导率区间,因此可以应用于生物医药、组织工程材料和生物传感器等领域。不同于固体电极,导电聚合物水凝胶电极因含有大量水和离子,可以使导电聚合物与电解质实现分子层次的直接接触,这会使得电化学反应过程更加高效。此外,水凝胶特有的柔软特性,会赋予电极优越的柔性特点,有利于制备高柔性电子器件。水凝胶本身所具有的相互连接的三维网状结构能够为电子传输提供通道。而且水凝胶的溶胀特性能为聚合物链和溶液提供额外的界面,从而使其应用于能量存储和转换等方面。具有电化学活性的水凝胶有望成为柔性储能材料,在柔性电子器件领域有广泛的应用前景。
导电水凝胶作为功能凝胶的一种,有望在传感器、人造肌肉、智能机械等领域得到实际的应用。但现有的导电水凝胶的力学性能和电化学性能均较差,从而限制了它的实际应用。当前研究者多采用共混、双网络和三网络的方法制备导电聚合物复合水凝胶。但共混过程制备的水凝胶的机械强度仍有待改善;而使用双网络或三网络方法制备复合水凝胶时,首先需要将制备导电高分子所需原料混合在一起,在光或热的引发作用下,进行自由基聚合,得到导电高分子,然后利用化学法来进行导电高分子与水凝胶的复合,将水凝胶浸没在水溶性引发性氧化剂(如三氯化铁、过硫酸铵等)的水溶液中,使氧化剂渗透到水凝胶内部,再将其浸泡在导电高分子中。
虽然这类制备方法包含了硬、脆的第一网络,还结合了柔、韧的第二或第三网络,机械性能得到了显著提高,但由于需要多步法制备,过程相对繁琐,而且易浪费原料,制备的产品多不均匀,同时制备的水凝胶的形态大都仅限于块状或者膜状,对导电水凝胶的制备和应用造成了一些限制。而且由于绝缘聚合物链的阻碍,制备的水凝胶作为电子传感器时,导电性能仍然不太理想。
发明内容
针对现有技术存在的上述不足,本发明的目的是提供一种导电水凝胶的制备方法,解决现有导电水凝胶力学性能和电化学性能差的问题。
为实现上述目的,本发明采用如下技术方案:一种导电水凝胶的制备方法,包括如下步骤:
(1)将亲水性单体或亲水性聚合物均匀分散于盐酸水溶液中,得到稳定的分散液,再加入导电单体和金属醇盐,搅拌均匀,其中,导电单体的质量为盐酸水溶液质量的1~20%,导电单体的质量为金属醇盐质量的20~100%,导电单体质量为亲水性单体或亲水性聚合物的质量为的0.2~85%;
(2)在步骤(1)的混合液中加入引发剂和催化剂,混匀后于-20oC~50oC反应24~72小时,其中,引发剂的质量为导电单体质量的0.5~5%,催化剂的质量为亲水性单体质量的0.01~5%,反应完成后即得到所述的导电水凝胶。
在上述步骤(1)中,可将亲水性单体或亲水性聚合物均匀分散于70~90℃的盐酸水溶液中以便于溶解。其中使用盐酸水溶液一方面是为更好的溶解导电单体,另一方面还作为水解催化剂,促进金属醇盐水解,通过上述两方面的作用提高制备的水凝胶的导电能力和力学性能。盐酸水溶液的浓度以能够溶解导电单体为准,可为0.5 mol/L、1 mol/L、1.5mol/L、2 mol/L等不同浓度。当为亲水性单体时,导电单体的质量可优选为亲水性单体质量的0.2~20%;当为亲水性聚合物时,导电单体的质量可优选为亲水性聚合物质量的20~85%。
在上述步骤(2)中,当为亲水性单体时,反应温度可优选为0~50℃,这样有利于亲水性单体进行自由基聚合,可进一步优选为5~50℃;当为亲水性聚合物时,反应温度可优选为-20~0℃,因为低温有利于亲水性聚合物和无机纳米粒子间的相互作用,使其物理交联点增多,力学性能增加,其中无机纳米粒子是通过金属醇盐溶胶-凝胶化后得到的金属氧化物纳米粒子。本发明中只有使用亲水性单体才需要加入催化剂,用于加快亲水性单体进行自由基聚合的速度。
本发明金属醇盐为金属氧化物纳米粒子的前驱体,导电单体为导电聚合物前驱体,通过原位溶胶-凝胶法、氧化聚合和自由基聚合相结合的方法,一步制得金属氧化物/导电聚合物杂化水凝胶,利用金属氧化物和导电聚合物与亲水性聚合物间的相互作用,实现三维网络结构的构建,制备的水凝胶具有优良的力学性能和电化学性能。
作为优选,所述导电单体为吡咯、苯胺或3,4-乙烯二氧噻吩。本发明中导电单体的用量太少,制备的水凝胶电化学性能不好,太多体系粘度会变大,聚合反应难以进行。
作为优选,所述亲水性单体为丙烯酰胺、N,N-二甲基丙烯酰胺、丙烯酸或甲基丙烯酸中的一种或多种,所述亲水性聚合物为聚乙烯醇或聚乙二醇中的一种或两种。亲水单体或聚合物用量太少,制备的水凝胶导电性能和力学性能都不好,太多体系粘度变大,不利于聚合反应的进行。
作为优选,所述引发剂为过硫酸铵或过硫酸钾。引发剂用于引发导电单体的氧化聚合以及亲水性单体的自由基聚合,引发剂太少,不利于聚合反应的进行,太高则会发生爆聚。
作为优选,所述催化剂为N,N,N´N´-四甲基乙二胺。催化剂用于催化亲水性单体的自由基聚合,使用亲水性聚合物时,则无需添加催化剂。
作为优选,所述金属醇盐为钛酸四丁酯、钛酸异丙酯或四氯化钛中的一种或两种。金属醇盐是金属氧化物的前驱体,通过原位溶胶凝胶法得到金属氧化物纳米粒子,可提升水凝胶的力学性能和电化学性能,如果用量太少,制备的水凝胶导电性能和力学性能都不好,太多体系粘度会增加,不利于聚合反应的进行。钛酸异丁酯和四氯化钛同亲水性聚合物及导电聚合物的作用力差,交联点少,会影响水凝胶的力学性能,本发明金属醇盐优选为钛酸四丁酯。
相比现有技术,本发明具有如下有益效果:
(1)本发明以金属氧化物纳米粒子为交联点,通过原位溶胶-凝胶技术、氧化聚合和自由基聚合实现金属氧化物和导电聚合物杂化水凝胶的制备,而且只需一步即可制备得到水凝胶,相较于现有方法制备工艺更简单、原料用量更少。
(2)本发明所制备的水凝胶具有优异的力学性能和电化学性能,压缩强度可以达到10.3 MPa左右,比电容达408 F/g左右,其中还可通过改变金属醇盐和导电单体的用量调节所制备的水凝胶的力学性能,可通过改变导电单体的用量调节水凝胶的导电性能。
(3)本发明采用原位溶胶-凝胶技术、氧化聚合和自由基聚合一步制备导电水凝胶,可使原位溶胶-凝胶生成的金属氧化物纳米粒子与凝胶体系的兼容性更好,所制备的凝胶的力学性能明显高于现有技术。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
本发明实施例中,制备的水凝胶压缩强度的测试方法采用Nie等Applied ClayScience, 2014, 97: 132-137文献公开方法测定凝胶的机械性能,比电容的测试方法采用Li等Angewandte Chemie International Edition, 2016, 55(32): 9196-9201文献公开方法测定凝胶电化学性能。
实施例1:
将0.6 g聚乙烯醇加入10 mL 1 mol/L(10.1 g)盐酸水溶液中,在85oC下搅拌30分钟得到均匀稳定的分散液;再分别加入200 μL(0.2 g)苯胺和500 μL(0.483 g)钛酸四丁酯,搅拌至分散均匀;之后加入引发剂5 wt%过硫酸铵水溶液100 μL(0.005 g),搅拌均匀后置于-18oC冰箱中反应48小时,即得到所述的具有高力学和导电性能的杂化水凝胶。凝胶压缩强度为10.3 MPa,比电容为408 F/g。
实施例2:
将实施例1中的钛酸四丁酯替换为钛酸异丙酯(0.397 g),其他条件相同,制备的水凝胶的压缩强度为0.03 MPa,比电容为408 F/g。
实施例3:
将实施例1中的钛酸四丁酯替换为四氯化钛(0.266 g),其他条件相同,制备的水凝胶的压缩强度为0.05 MPa,比电容为114 F/g。
实施例4:
将实施例1中的钛酸四丁酯替换为钛酸四丁酯(0.241 g)和钛酸异丙酯(0.2 g),制备的水凝胶的压缩强度为0.8 MPa,比电容为698 F/g。
实施例5:
将实施例1中的聚乙烯醇替换为聚乙二醇(0.6 g),其他条件相同,制备的水凝胶的压缩强度为1.9 MPa,比电容为88 F/g。
实施例6:
将实施例1中的苯胺替换为吡咯(0.148 g),其他条件相同,制备的水凝胶的压缩强度为8.7 MPa,比电容为96 F/g。
实施例7:
将实施例1中的苯胺替换为3,4-乙烯二氧噻吩(0.3 g),其他条件相同,制备的水凝胶的压缩强度为12.9 MPa,比电容为156 F/g。
实施例8:
将7.2 g单体丙烯酰胺加入10 mL 1 mol/L(10.1 g)盐酸水溶液中,在85oC下搅拌30分钟得到均匀稳定的分散液;再分别加入0.2 g苯胺和0.483 g钛酸四丁酯,搅拌至分散均匀;之后加入引发剂5 wt%过硫酸铵水溶液100 μL(0.005 g)和催化剂N,N,N´N´-四甲基乙二胺(0.004 g),搅拌均匀后置于50oC水浴中反应48小时,即得到所述的具有高力学和导电性能的杂化水凝胶。凝胶压缩强度为2.4MPa,比电容为106F/g。
实施例9:
将实施例8中丙烯酰胺替换为丙烯酰胺(1.4 g)和甲基丙烯酸(6.8 g),其他条件不变,制备的水凝胶的压缩强度为3.7 MPa,比电容为69 F/g。
实施例10:
将实施例8中丙烯酰胺替换为N,N-二甲基丙烯酰胺(1.9 g)和丙烯酸(5.3 g),其他条件不变,制备的水凝胶的压缩强度为2.0 MPa,比电容为74 F/g。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种导电水凝胶的制备方法,其特征在于,包括如下步骤:
(1)将亲水性单体或亲水性聚合物均匀分散于盐酸水溶液中,得到稳定的分散液,再加入导电单体和金属醇盐,搅拌均匀,其中,导电单体的质量为盐酸水溶液质量的1~20%,导电单体的质量为金属醇盐质量的20~100%,导电单体质量为亲水性单体或亲水性聚合物的质量为的0.2~85%;其中,所述导电单体为吡咯、苯胺或3,4-乙烯二氧噻吩;所述亲水性单体为丙烯酰胺、N,N-二甲基丙烯酰胺、丙烯酸或甲基丙烯酸中的一种或多种,所述亲水性聚合物为聚乙烯醇或聚乙二醇中一种或两种;所述金属醇盐为钛酸四丁酯;
(2)在步骤(1)的混合液中加入引发剂和催化剂,混匀后于-20℃ ~50℃ 反应24~72小时,其中,当为亲水性单体时,反应温度为0~50℃;当为亲水性聚合物时,反应温度为-20~0℃;引发剂的质量为导电单体质量的0.5~5%,催化剂的质量为亲水性单体质量的0.01~5%,反应完成后即得到所述的导电水凝胶。
2.根据权利要求1所述的导电水凝胶的制备方法,其特征在于,所述引发剂为过硫酸铵或过硫酸钾。
3.根据权利要求1所述的导电水凝胶的制备方法,其特征在于,所述催化剂为N,N,N´N´-四甲基乙二胺。
CN201810713932.9A 2018-06-29 2018-06-29 一种导电水凝胶的制备方法 Active CN108794773B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810713932.9A CN108794773B (zh) 2018-06-29 2018-06-29 一种导电水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810713932.9A CN108794773B (zh) 2018-06-29 2018-06-29 一种导电水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN108794773A CN108794773A (zh) 2018-11-13
CN108794773B true CN108794773B (zh) 2021-03-23

Family

ID=64073992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810713932.9A Active CN108794773B (zh) 2018-06-29 2018-06-29 一种导电水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN108794773B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762210B (zh) * 2018-12-24 2021-11-16 西南交通大学 一种作电极用的自粘性导电水凝胶的制备方法
CN111367007B (zh) * 2018-12-26 2021-07-06 深圳Tcl新技术有限公司 背光模组、导光板及其导电水凝胶的制备方法
CN110016148B (zh) * 2019-03-27 2022-05-17 澳门大学 高分子导电水凝胶材料及其制备方法
CN110124735B (zh) * 2019-06-04 2021-11-12 中钢集团鞍山热能研究院有限公司 一种亲水导电性水凝胶阴极催化膜及其制备方法和应用
CN110407975B (zh) * 2019-09-10 2021-06-22 四川轻化工大学 一种二氧化硅和二氧化钛杂化水凝胶的制备方法
CN110819183B (zh) * 2019-12-02 2021-12-07 苏州凝智新材料发展有限公司 一种医疗器材用亲水润滑涂层及其制备方法
CN112279947B (zh) * 2020-11-09 2021-12-14 中国科学技术大学 一种利用过渡金属和维生素c双催化体系合成的凝胶及其制备方法
CN112979998B (zh) * 2021-02-24 2023-09-05 中科南京绿色制造产业创新研究院 一种各向异性导电水凝胶及其制备方法和应用
CN113563610A (zh) * 2021-08-16 2021-10-29 上海理工大学 一种新型互穿网络聚苯胺基柔性复合导电水凝胶的制备方法
CN114805848A (zh) * 2022-03-25 2022-07-29 太原理工大学 有修复性和抗氧化性MXene基导电水凝胶的制备方法
CN114569135B (zh) * 2022-05-05 2022-08-26 暨南大学 蜂窝电极贴片的制备方法以及蜂窝电极贴片和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410474A (zh) * 2001-10-08 2003-04-16 东华大学 聚苯胺-聚丙烯酸水凝胶的制备方法
CN104530294A (zh) * 2014-12-22 2015-04-22 新疆大学 一种高强度二氧化硅和粘土双重纳米复合水凝胶及其制备方法
CN104987475A (zh) * 2015-07-18 2015-10-21 哈尔滨工业大学 一种制备纳米二氧化钛凝胶的方法
CN108110234A (zh) * 2017-12-13 2018-06-01 沈阳化工大学 一种导电聚合物水凝胶及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918645B1 (ko) * 2007-12-14 2009-09-25 포항공과대학교 산학협력단 하이드로겔의 상변화 원격 제어 방법 및 이를 이용한 약물전달 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410474A (zh) * 2001-10-08 2003-04-16 东华大学 聚苯胺-聚丙烯酸水凝胶的制备方法
CN104530294A (zh) * 2014-12-22 2015-04-22 新疆大学 一种高强度二氧化硅和粘土双重纳米复合水凝胶及其制备方法
CN104987475A (zh) * 2015-07-18 2015-10-21 哈尔滨工业大学 一种制备纳米二氧化钛凝胶的方法
CN108110234A (zh) * 2017-12-13 2018-06-01 沈阳化工大学 一种导电聚合物水凝胶及其制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Nanocomposite hydrogels with high strength crosslinked by titania";Bo Xu等;《RSC Adv.》;20160626;第3卷;7233-7236 *
"Strengthening Network of Polyacrylic Acid/Silica Nanocomposite Hydrogels";Zilu Liu等;《POLYMER COMPOSITES》;20170528;第39卷(第11期);3969-3976 *
"Synthesis of SiO2-polyacrylic acid hybrid hydrogel with high mechanical properties and salt tolerance using sodium silicate precursor through sol–gel process";Xiaomei Shi等;《Materials Letters》;20081121;第63卷;527-529 *
"丙烯酸树脂/TiO2有机-无机杂化材料的力学、热学和光学性能研究";熊明娜等;《材料科学与工程学报》;20050430;第23卷(第2期);191-195 *
"溶胶-凝胶法制备丙烯酸树脂/TiO2有机-无机杂化材料及其结构表征";熊明娜等;《高分子学报》;20050630(第3期);417-422 *

Also Published As

Publication number Publication date
CN108794773A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN108794773B (zh) 一种导电水凝胶的制备方法
Pyarasani et al. Polyaniline-based conducting hydrogels
Zhang et al. Electrically conductive hydrogels for flexible energy storage systems
Stejskal Conducting polymer hydrogels
Stejskal et al. Polyaniline cryogels supported with poly (vinyl alcohol): soft and conducting
WO2018036025A1 (zh) 一种基于木聚糖的双网络纳米复合水凝胶及其制备与应用
CN102206342B (zh) 导电聚合物及其合成方法、表面覆盖有所述导电聚合物的电活性电极
CN110358137B (zh) 一种多孔网络结构石墨烯/聚苯胺复合干凝胶制备方法
CN110256694A (zh) 一种可拉伸透明导电水凝胶及其制备方法
CN108395547B (zh) 一种基于石墨烯/纤维素基的微型聚丙烯酰胺水凝胶及其制备方法
WO2018218970A1 (zh) 医用导电水凝胶及其制备方法与应用
WO2012129805A1 (zh) 导电聚合物及其合成方法、表面覆盖有所述导电聚合物的电活性电极
CN110563968B (zh) 一种高强高拉伸的离子导电水凝胶的制备方法
CN105355450A (zh) 一种氮掺杂碳纤维/氮掺杂石墨烯/细菌纤维素膜材料的制备方法及其应用
CN110265232A (zh) 一种可自愈水凝胶电解质薄膜及其制备方法和应用
CN109880127A (zh) 一种高强度的三重网络聚吡咯基导电复合水凝胶材料的制备方法
Yu et al. Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review
Zhao et al. Natural glycyrrhizic acid-tailored homogeneous conductive polyaniline hydrogel as a flexible strain sensor
EP3397656B1 (en) Electrically active hydrophilic bio-polymers
CN109912816B (zh) 一种聚吡咯/聚氨酯复合导电水凝胶的制备方法
Pahnavar et al. Self-extinguished and flexible cation exchange membranes based on modified K-Carrageenan/PVA double network hydrogels for electrochemical applications
CN113105654B (zh) 一种高含量聚苯胺基导电水凝胶材料及其应用
Tang et al. A self-healing hydrogel derived flexible all-solid-state supercapacitors based on dynamic borate bonds
CN114672042A (zh) 一种金属配位的导电水凝胶的制备方法及其应用
Zhang et al. Hybrid double-network hydrogels of poly (acrylic acid) and κ-carrageenan for detachable solid Al-air batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant