CN1087884A - 含稀土添加剂,稳定的卤化镉玻璃 - Google Patents

含稀土添加剂,稳定的卤化镉玻璃 Download PDF

Info

Publication number
CN1087884A
CN1087884A CN93117821A CN93117821A CN1087884A CN 1087884 A CN1087884 A CN 1087884A CN 93117821 A CN93117821 A CN 93117821A CN 93117821 A CN93117821 A CN 93117821A CN 1087884 A CN1087884 A CN 1087884A
Authority
CN
China
Prior art keywords
glass
add
bacl
kcl
baf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN93117821A
Other languages
English (en)
Inventor
B·G·艾特肯
F·A·安农齐亚塔
R·F·马塞洛缪
M·A·纽豪斯
M·L·波利
A·L·萨德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/947,446 external-priority patent/US5240885A/en
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN1087884A publication Critical patent/CN1087884A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/904Infrared transmitting or absorbing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Glass Compositions (AREA)

Abstract

本发明揭示了具有透射辐射光谱红外区性能的 透明玻璃的制备,此玻璃主要包含(以mol%表示): 42—55%CdF2和/或CdCl2,30—40%NaF和/或 NaCl,总计达2—20%的BaF2和/或BaCl2+KF和 /或KCl,其中0—15%为BaF2和/或BaCl2和0 —7%KF和/或KCl,总计达1—12%至少一种选 自LiX,BeX2,MgX2,MnX2,PbX2,TIX,CoX2和 ZnX2的起稳定作用的金属卤化物,和0.005—0.5% 的ReX3,其中Re为至少一种选自镧系的稀土金属, X为至少一种选自氟,氯和溴的卤素。更好的玻璃 含BaF2和/或BaCl和KF和/或KCl至少各为 2%。

Description

本申请是申请号No.07/947,446,申请日1992,9,21的申请的部分延续。
本发明涉及稳定的,添加稀土金属的卤化镉玻璃的制备,该玻璃显示出优异的远至电磁辐射光谱红外区的透射性能。
作为超低损耗光学纤维的潜在候选材料,很久以来感兴趣的是那些透射辐射光谱红外区的玻璃。近来认识到,当添加稀土金属时,这些相似的材料显示出使它们特别适于制造高效激光器,放大器和上转换器的性能。
具有透过辐射的红外区能力的一种材料的独特性能是使此材料在上述三种应用中成为稀土金属的好基质。此独特性能包括一种低振动基频(声子能量),该频率典型地与材料基体的最强化学键相联系。例如,氟化物材料中离子性强的金属氟键弱于氧化物材料中共价性强的金属氧键,从而导致氟化物材料显示出优良的红外透射性。而且,在给定的材料中,当组分离子是重的和/或低化合价时,如果键弱,红外透射性就被改进。这样,在特定的卤化物玻璃中,与众所周知的基于BeF2或ZrF4的玻璃相比,镉基玻璃具有更宽的红外辐射透射性。
添加稀土金属的材料的辐射发射是基于类原子的4f能级间的电子跃迁,这些能级局域化于稀土金属离子上。从一个特定能级,辐射发射与非辐射发射相竞争。通常,主导的非辐射过程是一个或多个声子的发射。这种非辐射过程的概率已知随跨越跃迁能隙所需的声子数目呈指数地下降。因此,具有低声子能量的材料将需要更多的声子以跨越跃迁能隙,因而,将会有更少竞争的非辐射发射过程和更高的辐射效率,由而增强基于稀土金属能级间萤光的任何过程。
三种基础装置,即激光器,放大器和上转换器,可由添加稀土金属的材料制得,激光器要求有高的辐射效率用于激光跃迁。类似地,放大器的效率直接被辐射效率所限制。事实上,只有那些由基质材料的大于两倍声子能量所分隔的跃迁能产生激光或放大。因此,材料的声子能量越低,能产生激光或放大的跃迁数目就大。在上转换器装置中,光从较长波长,即红外光,转变成短波长,即可见光。这个过程可用于检测长波长光和作为短波长光源。最简单的上转换过程通常为二步过程,首先,包括吸收长波长光子,伴随着激励一个电子进入一个中间能级,从此中间能级,该电子可通过吸收第二个光子(所谓的激发态吸收)或与其它激发稀土金属离子交换能量(所谓的能量传递上转换),进一步激励进入一个更高能级。清楚地,从终态的发射效率确实与从较高态跃迁的辐射效率有关。另外,发射效率确实也与中间态电子的寿命有关。寿命越长(在电子衰退回到基态前),可用于激发态吸收能量传递上转换的给定电子就越多,因而,这种激励的概率就越大。相应地,在具有较低声子能量的材料中,当非辐射过程的概率减少时,激发态的寿命较长,由此显示出多步上转换过程更有效。
含卤化镉的玻璃包括具有很低声子能量的一类玻璃。这些玻璃中的阳离子为一价和/或二价。而且,最稳定的卤化镉玻璃含有轻的(氟)和重的(氯)阴离子的混合物。结果,这些玻璃比其它以氟化锆、铪、铀、铟和/或铝为基的卤化物玻璃有更宽的红外透射。
然而,不象重金属氟化物玻璃,随着加入三价阳离子,如稀土金属,卤化镉玻璃变得不稳定。例如,加入少量的,如0.1mol%的卤化镨,将足以使其它稳定透明的含氯化镉的玻璃变成不透明的,特别是反玻化的材料。这种行为已被Jha和Parker在“透红外CdF2基的混合卤化物玻璃的制备”,玻璃的物理和化学性能,23No.1991.2.1,第1-12页中评述。而且,在第7页上作者指出:
我们的结果表明三价氟化物能掺入重金属氟化物玻璃中,然而,三价氟化物不能加入混合卤化物玻璃中。当AlF3溶解至有限程度时,LaF3和YF3引起结晶化,但在损害红外截止边(infrared cutoff edge)(见下一章)的情况下,且甚至在此情况下,也仅能加入2mol%。而没有显著的结晶化。类似地,不能在这些玻璃中加入BiCl3,这似乎暗示这些三价卤化物的化学本质或尺寸决定它们的溶解度。
本发明的主要目的是揭示制备稳定、透明的含三价稀土金属阳离子的卤化镉玻璃的方法,此玻璃显示出优异的远至辐射光谱的红外区透射性,由此它们可用于制造高效激光器,放大器和上转换器。
我们发现上述目的能按下述来实现:加入少量的比较轻的一价和二价阳离子,如Li+,Be+2、Mg+2、Mn+2、Co+2和Zn+2的卤化物,通常如氟化物,氯化物,和/或溴化物,以抑制含三价稀土金属添加剂的卤化镉(CdX)玻璃组份结晶化和/或变成乳白色的倾向。这样,如上所见,在含卤化镉的玻璃中只加入0.1mol%的PrCl3,便引起大范围的反玻化的发展,这里晶体初步鉴定为CdCl2。3mol%LiF的内含物产生透明均匀的玻璃。实验室研究表明添加稀土金属的,含CdX的玻璃通过加入大约1-5mol%的一种起稳定作用的卤化物后,能稳定地显示出优异的辐射光谱可见和红外区的透明度。可加入更多量的一种起稳定作用卤化物,如达10mol%,但无明显的实质性优点,这些研究使人了解到,虽然效果不是特别受限制的,但下述阳离子显示出优良的作用,这里是Li+,Be+2、Mg+2、Mn+2、Co+2和Zn+2
我们发现加入达12mol%,更好为10mol%量的卤化铅,和达7%,更好达5mol%量的卤化铊,虽然不大显著,但对添加稀土金属的含CdX的玻璃有类似的稳定作用。在基质玻璃组份中加入卤化铅和/或铊可进一步地提高玻璃的折射率。例如,在含卤化镉玻璃组份中加入约10mol%的卤化铅,使折射率达1.668。相反,同样基质组份的无铅玻璃,其折射率约为1.613。含卤化锂能降低玻璃的折射率。这些情况强烈推荐本发明的玻璃用作光波导结构的透明玻璃芯部分。
因而,在技术中已众所周知,一种光波导是由透明玻璃芯部分被包在透明的相容玻璃包覆层中组成的,此包覆层的折射率比芯玻璃低,术语“相容”是指在芯和包覆玻璃间的界面上基本上不发生任何有害的反作用。因此,本发明的添加稀土金属的玻璃能构成芯玻璃,与构成包覆玻璃的较低折射率的相容玻璃在一起。为确保一个高的折射率,在组合物中将加入卤化铅和/或卤化铊。通常,芯玻璃含总计达10%的PbX2和TIX,其中1-10%PbX2和/或1-5%TIX,例如,添加镨的含铅和/或铊的玻璃显示出高折射率,特别有希望作为一种不添加,无铅、铊包覆玻璃的波导结构的芯组合物。
我们发现,以mol%来表达,当用达12mol%,,更好为1-5mol%起稳定作用的卤化物和添加至少0.005mol%,更好为0.05-0.5mol%至少一种选自镧系稀土金属卤化物(ReX3)时,下述的基质玻璃组合物显示出使它们大大适用于激光器,放大器和上转换器的性能。
基质玻璃组合物主要含(以mol%来表达):42-55%CdF2和/或CdCl2,30-40%NaF和/或NaCl,总计为2-20%的BaF2和/或BaCl2+KF和/或KCl,其中0-15%BaF2和/或BaCl2,和0-7%KF和/或KCl,其中总计约达10mol%的至少一种金属,选自Cd,Ba,Na和K并能以溴化物形成加入。在更好的组合物中,含至少各2%的BaF2和/或BaCl2和KF和/或KCl。稀土金属卤化物添加物的含量超过0.5mol%是可行的,但并无实质性优点。镧系稀土金属包括La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb和Lu。
我们发现,总计达2.5mol%的非必须的但是有用的金属卤化物如AlX3,GaX3,和InX3,其中X为选自氟,氯和溴,可加入以改进基质玻璃的性能,最通常地为调节其折射率。每个加入物都含达1.5%AlX3,达1.5%GaX3和达2%InX3。在更好的玻璃中,AlX3的浓度不超过1%,GaX3的浓度不超过1%,InX3的浓度不超过1.5%,所有这些加入物总计不超过2%。
除了上面简述的Jha和Parker期刊文章外,下述文献参考也感兴趣:
J.L.Mouric    et    al.,在卤化镉玻璃的进展,材料科学论坛,5卷PP.135-144(1985)中描述了他们的制备玻璃的实验工作,按下述四种体系:
CdCl2-CdF2-NaCl或NaF
CdF2-NaCl-BaCl2或BaF2
BaCl2-NaF-CdCl2或CdF2
BaF2-NaF-CdCl2或CdF2
其中并未提及那些含稀土金属添加剂的玻璃,作者并未意识到由本发明提出的玻璃稳定性问题。
M.Matecki    et    al.在碱金属卤化镉玻璃,卤化物玻璃的第四届国际讨论会,1月,26-29日,1987,第470-476页中,评述了他们的玻璃形成组份的研究,按下述三元系:
CdCl2-CdF2-KF
CdCl2-CdF2-KCl
CdCl2-CdF2-KBr
CdCl2-CdF2-KI
CdCl2-NaF-KF
CdCl2-NaF-KCl
CdCl2-NaF-KBr
CdCl2-NaF-KI
未述及用稀土金属添加这些玻璃。
M.Matecki et al.在氟氯化镉玻璃的组份调节,非晶固体学报,140,第82-86页(1992)中,揭示了评估在含Na和Ba的氟氯化镉玻璃中加入SrF2,InF3或KF的效果的实验工作,并未述及用稀土金属添加含卤化镉的玻璃。
美国专利No.4,647,545(Lucas    et    al.)揭示了以非常普通和广泛的条件制备至少含卤化镉,卤化镁和卤化锌的一种玻璃。同时,专利权人述及了按非常宽的条件可能的玻璃形成的组份范围,包括在这些组份中加入稀土金属的可能性,但并未明显指出当稀土金属包含于组合物中时玻璃缺乏稳定性问题,更少提出解决这个问题的方法。这样,本发明的中心是在于发现金属的氯化物,溴化物和氟化物,当将它们加入含卤化镉的基质组合物中,将稳定玻璃,以致稀土金属的添加物将不会引起玻璃的反玻化。Lucas等人未述及此问题,且未提供含在本发明范围内组合物的工作实施例,如此来形成一种偶然的公开。
表Ⅰ记录了一组玻璃组份(用mol%来表达),表示了本发明的玻璃。这些玻璃按下述制备:混合一炉组份,充分地将这些组份混合在一起,以形成均质熔体,然后将一炉混合物装入玻璃碳坩埚中,将此坩埚放入氮氛干燥箱中。将坩埚加热至800℃,30分钟后,温度降至700℃,坩埚在此温度下保持15分钟,以保证在所得玻璃中最低的水含量。将熔体倒入钢模具中制成直径为4mm,长为50mm的圆柱形棒条,然后立即转入退火炉,在约125℃下退火。
表Ⅰ
1    2    3    4    5    6    7
CdF216.5 16.5 17.0 17.0 17.0 17.0 16.0
CdCl230.1 30.1 33.0 33.0 33.0 33.0 33.5
BaF25.8 5.8 10.0 10.0 10.0 10.0 2.5
NaF    32.0    32.0    34.0    34.0    34.0    34.0    29.0
KF    2.9    2.9    3.0    3.0    3.0    3.0    6.0
LiF    -    -    3.0    -    -    -    -
MnCl22.9 - - - - - -
ZnCl2- 2.9 - 3.0 3.0 3.0 3.0
PbF23.9 3.9 - - - - 7.0
PbCl23.9 3.9 - - - - -
PbBr21.9 1.9 - - - - 3.0
PrCl30.05 0.05 0.05 0.05 0.1 0.15 0.05
8    9    10    11    12    13    14
CdF245.5 17.0 17.0 17.0 50.0 17.0 45.5
CdCl24.3 33.0 28.0 33.0 - 33.0 4.5
BaF27.0 12.0 13.0 10.0 - 10.0 -
BaCl2- - - - 10.0 - 10.0
NaF    33.8    34.0    34.0    34.0    -    34.0    -
NaCl    -    -    -    -    34.0    -    34.0
KF    2.4    3.0    3.0    3.0    -    3.0    -
KCl    -    -    -    -    3.0    -    3.0
BeF2- 0.50 5.0 - - - -
MgF2- 0.5 - - - - -
ZnCl23.0 - - - 3.0 3.0 3.0
CoCl2- - - 3.0 - - -
PrCl30.05 0.1 0.1 0.1 0.05 - -
NbF3- - - - - 0.05 -
ErF3- - - - - - 0.10
TlCl    4.0    -    -    -    -    -    -
表I(续)
15    16    17    18    19    20
CdF245.5 45.5 48.5 48.5 48.5 17.0
CdCl24.5 4.5 1.5 1.5 1.5 33.0
BaCl29.6 8.5 11.0 11.0 13.0 -
NaF    -    -    -    -    -    34.0
NaCl    34.0    34.0    34.0    34.0    35.0    -
KF    -    -    -    -    -    3.0
KCl    3.0    3.0    -    -    -    -
ZnCl23.0 3.0 2.0 2.0 2.0 -
LiF    -    -    -    -    -    3.0
TlCl    -    -    3.0    -    -    -
PbCl2- - - 3.0 - 10.0
PrCl30.05 0.05 0.05 0.05 0.05 0.10
InF30.4 1.5 - - - -
已证实有可能对本发明的玻璃作为稀土金属添加物基质的合适性进行光学评估。为说明起见,在本发明的玻璃添加镨的情况下,特别感光趣的是该玻璃用于在1.3μm下运行的单模光纤放大器,通过测定1.3μm萤光的衰减来表征该玻璃。这些测量结果以微秒为单位列于表Ⅱ中。表Ⅱ指出本发明的玻璃的萤光寿命能长至约300μsec,因而,表明比寿命的目前水准(即ZBLAN玻璃,其寿命约110μsec)有了显著的改进。
表Ⅱ
1    2    3    4    5    6    8
μsec    246    276    200    268    240    212    230
10    15    16    17    18    19
μsec    262    270    262    264    272    290
在含铒添加剂玻璃的情况下,如实施例14所示,玻璃显示出很强的绿光发射,当用800nm光激励时,峰值约在523nm,542nm和551nm,表明它们作为上转换源的潜在应用。
本发明更好的组合物主要包含(以mol%计):44~52%CdF2和/或CdCl2,4-11%BaF2和/或BaCl2,30-35%NaF和/或NaCl,和2-6%KF和/或KCl,其中总计达7%的至少一种金属,选自Cd,Ba,Na和K且以溴化物形式加入,及总计1-5%为至少一种选自LiX,BaX2,MgX2,MnX2,CoX2和ZnX2的起稳定作用的金属卤化物,其中X为至少一种选自氟,氯和溴的卤素,任意地,达10%的一种卤化铅,选自PbF2,PbCl2和PbBr2,任意地,达5%的TIF,TICl和TIBr,和0.025-0.25%的ReX3,其中Re为至少一种稀土金属,选自镧系稀土金属,X为选自氟,氯和溴的卤素。也可包括不超过1.5%总量的非主要金属卤化物。
实施例2是最好的组合物。

Claims (5)

1、一种透明玻璃,它显示出优异的远至电磁辐射光谱的红外区的透射性能,它主要包含(以mol%来表示):42-55%CdF2和/或CdCl2,30-40%NaF和/或NaCl,总计为2-20%的BaF2和/或BaCl2+KF和/或KCl,其中0-15%为BaF2和/或BaCl2,和0-7%为KF和/或KCl,总计1-12%至少一种起稳定作用的金属卤化物,按指明的比例,选自:0-10%LiX,0-10%BeX2,0-10%MgX2,0-10%MnX2,0-12%PbX2,0-10%CoX2,0-7%TlX,和0-10%ZnX2,(其中X为至少一种选自氟,氯和溴的卤素),和0.005-0.5%ReX3,其中Re为至少一种选自镧系的稀土金属,X为至少一种选自氟,氯和溴的卤素,这里总计达10%的至少一种金属选自Cd,Ba,Na和K且能以溴化物形式加入。
2、如权利要求1的透明玻璃,其特征在于,它包含BaF2和/或BaCl2和KF和/或KCl至少各为2%。
3、如权利要求1的透明玻璃,其特征在于,它同样也包含总计达2.5%的至少一种金属卤化物,按指明的比例,选自:0-1.5%AlX3,0-1.5%GaX3,和0-2%InX3,其中X为至少一种选自氟,氯和溴的卤素。
4、如权利要求1的透明玻璃,其特征在于,它主要包含44-52%CdF2和/或CdCl2,4-11%BaF2和/或BaCl2,30-35%NaF和/或NaCl,2-6%KF和/或KCl,总计达1-5%的至少一种选自LiX,BeX2,MgX2,MnX2,CoX2和ZnX2的起稳定作用的金属卤化物,其中X为至少一种选自氟,氯和溴的卤素,和总计达10%的选自PbF2,PbCl2和PbBr2的一种卤化铅,和总计达5%的选自TIF,TICl和TIBr的一种卤化铊,及总计达7%的至少一种选自Ca,Ba,Na和K的金属且能以溴化物形式加入。
5、如权利要求4的透明玻璃,其特征在于,它也包含总计达2%的至少一种金属卤化物,按指明的比例,选自:0-1%AlX3,0-1%GaX3和0-1.5%InX3,其中X为选自氟,氯和溴的卤素。
CN93117821A 1992-09-21 1993-09-21 含稀土添加剂,稳定的卤化镉玻璃 Pending CN1087884A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US07/947,446 1992-09-21
US07/947,446 US5240885A (en) 1992-09-21 1992-09-21 Rare earth-doped, stabilized cadmium halide glasses
US08/086,048 1993-07-06
US08/086,048 US5346865A (en) 1992-09-21 1993-07-06 Rare earth-doped, stabilized cadmium halide glasses

Publications (1)

Publication Number Publication Date
CN1087884A true CN1087884A (zh) 1994-06-15

Family

ID=26774312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93117821A Pending CN1087884A (zh) 1992-09-21 1993-09-21 含稀土添加剂,稳定的卤化镉玻璃

Country Status (10)

Country Link
US (1) US5346865A (zh)
EP (1) EP0589198B1 (zh)
JP (1) JPH06191882A (zh)
KR (1) KR940006947A (zh)
CN (1) CN1087884A (zh)
AU (1) AU659339B2 (zh)
CA (1) CA2105906A1 (zh)
DE (1) DE69301515T2 (zh)
HK (1) HK104096A (zh)
TW (1) TW226009B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650590A (zh) * 2022-09-26 2023-01-31 中国科学院上海光学精密机械研究所 含yf3晶相的氟化物微晶玻璃及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026320A1 (en) * 1994-03-25 1995-10-05 British Telecommunications Public Limited Company Glass compositions
GB2290150B (en) * 1994-04-22 1998-08-26 Univ Southampton Doped optical waveguide amplifier
GB2302442B (en) * 1995-06-02 1999-09-22 Central Glass Co Ltd Upconversion laser material
WO1997007068A1 (en) * 1995-08-15 1997-02-27 British Technology Group Ltd. Infrared transmitting optical fibre materials
US6194334B1 (en) 1999-06-18 2001-02-27 Corning Incorporated Tellurite glasses and optical components
US6652972B1 (en) * 1999-11-01 2003-11-25 Schott Glass Technologies Inc. Low temperature joining of phosphate glass
JP2003535807A (ja) 2000-06-20 2003-12-02 ショット、グラス、テクノロジーズ、インコーポレイテッド ガラスセラミック複合材
US6882782B2 (en) * 2000-11-01 2005-04-19 Schott Glas Photonic devices for optical and optoelectronic information processing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2521546A1 (fr) * 1982-02-18 1983-08-19 Centre Nat Rech Scient Nouveaux verres halogenes, leur preparation et leur application
US5240885A (en) * 1992-09-21 1993-08-31 Corning Incorporated Rare earth-doped, stabilized cadmium halide glasses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650590A (zh) * 2022-09-26 2023-01-31 中国科学院上海光学精密机械研究所 含yf3晶相的氟化物微晶玻璃及其制备方法
CN115650590B (zh) * 2022-09-26 2023-09-01 中国科学院上海光学精密机械研究所 含yf3晶相的氟化物微晶玻璃及其制备方法

Also Published As

Publication number Publication date
DE69301515T2 (de) 1996-09-19
JPH06191882A (ja) 1994-07-12
US5346865A (en) 1994-09-13
TW226009B (zh) 1994-07-01
KR940006947A (ko) 1994-04-26
AU659339B2 (en) 1995-05-11
EP0589198B1 (en) 1996-02-07
AU4628893A (en) 1994-03-31
DE69301515D1 (de) 1996-03-21
CA2105906A1 (en) 1994-03-22
HK104096A (en) 1996-06-21
EP0589198A1 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US5955388A (en) Transparent oxyflouride glass-ceramic composition and process of making
US5240885A (en) Rare earth-doped, stabilized cadmium halide glasses
CN1079783C (zh) 透明玻璃陶瓷和含有该玻璃陶瓷的光学纤维波导管
US5858891A (en) Glass-ceramic materials especially for lasers and optical amplifiers, doped with rare earths
CN103666475A (zh) 一种稀土掺杂玻璃频率转换发光材料及制备方法
CN111377609B (zh) 一种室温下具有中红外3.9 μm发光特性的透明玻璃的制备方法
CN1291173A (zh) 具有光学活性的氧化锑玻璃
CN1087884A (zh) 含稀土添加剂,稳定的卤化镉玻璃
CN106946462A (zh) 一种透明的稀土离子掺杂六方氟化钇钠氟氧微晶玻璃及其制备方法
Xusheng et al. Local vibration around rare earth ions in alkaline earth fluorosilicate transparent glass and glass ceramics using Eu3+ probe
Brekhovskikh et al. Glasses on the basis of heavy metal fluorides
Kanth et al. Optical absorption, fluorescence and thermoluminescence properties of ZnF2–MO–TeO2 (MO= ZnO, CdO and PbO) glasses doped with Er3+ ions
Hong-Tao et al. Frequency upconversion emission of Er3+-doped strontium–lead–bismuth glasses
CN1926073A (zh) 用于光学放大器纤维的玻璃
Zhang et al. Effect of Yb 3+ on the upconversion luminescence of Tm 3+/Yb 3+ co-doped La 2 O 3-TiO 2-ZrO 2 glasses
CN1280551A (zh) 卤氧化物玻璃中稀土卤化物的环境
CN1559946A (zh) 卤氧碲酸盐上转换发光玻璃
Masai et al. Luminescence in Glass‐Based Materials by Ionizing Radiation
CN1148326C (zh) 透红外光的含氟化物锗酸盐玻璃
Inoue et al. Effect of Introduction of Chloride on the Upconversion Emission Intensity in Er‐and Yb‐Codoped ZBLAN Fluoride Glasses
de Pablos-Martín et al. Transparent glass-ceramics: crystallization mechanisms and optical properties
Sun et al. Infrared-to-visible upconversion fluorescence of Er3+-doped novel lithium–barium–lead–bismuth glass
Videau et al. Fluoride glasses
Sun et al. Effect of oxygen substitution by halide ions on structure, thermal stability and upconversion fluorescence in Er3+/Yb3+-codoped germanium–bismuth glasses
CN1087066A (zh) 高密度、耐辐照的快速闪烁无机玻璃

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication