CN108772085A - 一种宽禁带碳氮聚合物的制备方法 - Google Patents

一种宽禁带碳氮聚合物的制备方法 Download PDF

Info

Publication number
CN108772085A
CN108772085A CN201810203971.4A CN201810203971A CN108772085A CN 108772085 A CN108772085 A CN 108772085A CN 201810203971 A CN201810203971 A CN 201810203971A CN 108772085 A CN108772085 A CN 108772085A
Authority
CN
China
Prior art keywords
preparation
acid
broad stopband
carbon nitrogen
nitrogen polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810203971.4A
Other languages
English (en)
Other versions
CN108772085B (zh
Inventor
刘节华
刘晓倩
魏香凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201810203971.4A priority Critical patent/CN108772085B/zh
Publication of CN108772085A publication Critical patent/CN108772085A/zh
Application granted granted Critical
Publication of CN108772085B publication Critical patent/CN108772085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开提供一种宽禁带碳氮聚合物的制备方法,通过酸插层‑碱溶液剥离法,高浓度酸插入到二维石墨相氮化碳(g‑C3N4)层与层之间,使得g‑C3N4体积膨胀,加入过量碱溶液,酸碱反应使其快速剥离成g‑C3N4纳米片,通过控制反应条件,得到的g‑C3N4禁带宽度在2.7eV‑3.4eV范围内可调,本发明能够实现稳定的能带提升,提高光催化效率,应用到钙钛矿太阳能电池中,可以有效减少电子和空穴的复合率,提高太阳能电池的转化效率。

Description

一种宽禁带碳氮聚合物的制备方法
技术领域
本发明属于新型非金属光催化剂领域,具体涉及一种宽禁带碳氮聚合物的制备方法。
背景技术
近年来,随着社会的进步和经济快速的增长,能源短缺和环境污染问题日益严重,成为21世纪亟待解决的重大问题,寻找一种可持续、无污染的清洁能源迫在眉睫。太阳能作为绿色清洁能源的代表,越来越受到能源行业的青睐。半导体光催化技术是直接利用太阳能的一种新技术,具有经济和环保等优点,使其成为最热门的太阳能利用方法之一。光催化技术不仅可以解决水污染的问题,而且还可以用于解决大气污染、土壤污染、有机物降解和杀菌等多个方面的问题,具有广阔的市场应用空间和价值,而且光催化剂还可以用于光解水产生氢气来解决能源问题。近年来开发的g-C3N4作为一种二维纳米半导体材料,因其光催化活性较高、稳定性好、特殊的光学性能、无毒、易制备等优点尤其是不含金属这一突出优点,成为近几年研究的热点,广泛应用在光催化剂、有机反应合成、发光设备、CO2固定和化学传感器等方面。
传统热聚合制备g-C3N4的禁带宽度大都在2.7eV附近,而且比表面积都非常小,导致其本身的光催化活性较低。目前在制备g-C3N4的过程中,容器一般采用遮盖或半密闭的方式,g-C3N4的产率低。目前文献报道制备大比表面积的g-C3N4,其制备方法大都需要先使用模板剂,然后用强酸去除模板,过程繁琐,且用酸处理g-C3N4时,酸是插层在二维g-C3N4中,不利于剥离,剥离产率低,剥离后清洗过程中损失严重。提高禁带宽度,一方面,宽禁带在平面方向提高电子传输能力,而且由于量子限制效应增加光激载流子的寿命;另一方面,得到高比表面积的纳米级颗粒,粒径越小,电子与空穴复合几率越小,电荷分离效果越好,从而导致催化活性的提高。现有技术中,制备的g-C3N4的最高禁带宽度接近3eV有利用热氧化蚀刻工艺获得g-C3N4的纳米片,禁带宽度达到2.97eV,由于g-C3N4是通过氢键连接的层状结构,此方法主要是在空气中热破坏层与层之间的氢键来获得g-C3N4的纳米片,在空气中氧化过程不够稳定,不易控制。还有通过磷掺杂和热剥离获得g-C3N4的纳米片,禁带宽度达到2.98eV,实验先合成g-C3N4,再进行高温剥离,最后掺入磷。步骤繁琐,且掺杂过程中使用的材料价格昂贵。
发明内容
本发明提供一种宽禁带碳氮聚合物的制备方法,本发明能够在密闭玻璃器皿中通过热聚合提高g-C3N4产率,采用酸插层-碱溶液剥离法处理热聚合成的g-C3N4,能够使其快速剥落得到纳米颗粒,方法简单,产量高,可以获得2.7eV-3.4eV范围的不同禁带宽度g-C3N4纳米颗粒,本发明能够实现稳定的能带提升,提高光催化效率,应用到钙钛矿太阳能电池中,可以有效减少电子和空穴的复合率,提高太阳能电池的转化效率。
本发明是通过以下技术方案实现的:
一种宽禁带碳氮聚合物的制备方法,其特征在于,制备的二维石墨相氮化碳(g-C3N4)禁带宽度在2.7eV-3.4eV范围内可调。
作为对上述方案的进一步改进,所述的一种宽禁带碳氮聚合物的制备方法,其特征在于,通过富氮原材料在密闭玻璃器皿中,隔绝空气,通过热聚合合成g-C3N4,通过酸插层-碱溶液剥离法,高浓度酸插入到g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量碱溶液,酸碱反应使其快速剥离成g-C3N4纳米片。
作为对上述方案的进一步改进,所述的一种宽禁带碳氮聚合物的制备方法,其特征在于,具体步骤如下:
(1)通过富氮原材料在密闭玻璃器皿中,隔绝空气,通过热聚合合成g-C3N4
(2)取适量步骤(1)所得的g-C3N4分散在质量是其2-20倍的20-90℃的高浓度酸溶液中1-8h,反应完全后回复到室温,高浓度酸溶液插入到二维g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量的碱溶液,酸碱反应使其快速剥离,同时与酸碱反应产物沉淀下来,得到的粉末通过水洗得到白色的g-C3N4纳米颗粒。
作为对上述方案的进一步改进,所述的富氮原材料为三聚氰胺、三聚硫氰酸、双氰胺、二氰二胺、硫脲、尿素等,或几种混合。
作为对上述方案的进一步改进,所述的高浓度酸溶液为HF、HCl、HBr、HNO3、H3PO4、H2SO4中的一种或几种混合,碱溶液为LiOH、NaOH、KOH、NH3·H2O、KHCO3、NaHCO3一种或几种混合。
本发明还提供一种在钙钛矿太阳能电池使用宽禁带碳氮聚合物的方法,其特征在于:将获得的g-C3N4纳米颗粒按不同含量分散在抗溶剂中,然后将其按FTO|电子传输层|钙钛矿层|g-C3N4|空穴传输层|金电极顺序组装成电池,进行操作。
作为对上述方案的进一步改进,所述的抗溶剂为甲苯、氯苯、乙酸乙酯、无水乙醚、仲丁醇、异丙醇等或其混合溶液。
作为对上述方案的进一步改进,述的钙钛矿层选用PbI2(DMSO)为前驱液两步浸泡法制备甲胺铅碘(MAPbI3),此过程在氮气氛围的手套箱中进行,制备好MAPbI3后,在旋干表面残留溶剂的过程中,滴加分散在选用好的抗溶剂中的g-C3N4溶液,优选转速为3000-5000rpm,旋涂时间10-30s,再加热退火。
本发明的工作原理是:
通过酸插层-碱溶液剥离法处理g-C3N4,高浓度酸插入到二维g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量碱溶液,酸碱反应使其快速剥离,剥离下来的g-C3N4纳米片由于存在大量N-H、C-OH键,使其自卷曲成纳米颗粒。应用到钙钛矿太阳能电池中时,由于存在大量氢键,可以自发的与钙钛矿的晶界缺陷连接,填充钙钛矿表面晶界缺陷处,减少空穴传输材料的渗透。同时能带结构更匹配钙钛矿太阳能电池。
本发明的优点:1)方法简单易操作,重复性高;2)成本低廉;3)高稳定性、无毒以及易制备;4)剥离产量高,可达90-100%,可以规模化生产;5)有效降低复合。
附图说明
图1:a)剥离前g-C3N4的SEM照片;b)剥离后g-C3N4纳米颗粒的SEM图片。
图2:剥离前g-C3N4(黑色)和剥离后g-C3N4纳米颗粒(红色)的XRD对比图。
图3:剥离前g-C3N4(黑色)和剥离后g-C3N4纳米颗粒(红色)。a)紫外-可见吸收光谱。b)(αhν)2禁带宽度。
图4:剥离前g-C3N4(黑色)和剥离后g-C3N4纳米颗粒(红色)的N2吸附曲线和孔径分布曲线(里图)。
图5:g-C3N4(黑色)和剥离后g-C3N4纳米颗粒(红色)傅里叶红外光谱。
图6:剥离后g-C3N4纳米颗粒的XPS。a)全光谱;b)O1s谱;c)N1s谱。
图7:a)钙钛矿薄膜的SEM图;b)g-C3N4纳米颗粒作用在钙钛矿层的示意图;c)作用后钙钛矿层的SEM图。
图8:未处理的钙钛矿电池(黑色)和g-C3N4纳米颗粒处理后的钙钛矿电池(红色)I-V曲线。
图9:未处理的钙钛矿层(黑色)和g-C3N4纳米颗粒处理后的钙钛矿层(红色)的光致发光。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
(1)通过富氮原材料三聚氰胺,在管式炉中以10℃/min,从室温升温到500℃,保温5h,即得到黄色g-C3N4
(2)取适量的g-C3N4分散在质量是其10倍的50℃的H2SO4中5h,反应完全后回复到室温,H2SO4插入到二维g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量的氨水,酸碱反应使其快速剥离,得到的粉末通过水洗得到白色的g-C3N4纳米颗粒。
实施例2
(1)通过富氮原材料三聚硫氰酸,在管式炉中以5℃/min,从室温升温到550℃,保温5h,即得到黄色g-C3N4
(2)取适量的g-C3N4分散在质量是其5倍的80℃的浓硫酸中3h,反应完全后回复到室温,H2SO4插入到二维g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量的NaOH水溶液,酸碱反应使其快速剥离,得到的粉末通过水洗得到白色的g-C3N4纳米颗粒。
实施例3
(1)通过富氮原材料双氰胺,在管式炉中以10℃/min,从室温升温到500℃,保温3h,即得到黄色g-C3N4
(2)取适量的g-C3N4分散在质量是其10倍的50℃的浓盐酸中5h,反应完全后回复到室温,HCl插入到二维g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量的NaHCO3,酸碱反应使其快速剥离,得到的粉末通过水洗得到白色的g-C3N4纳米颗粒。
实施例4
(1)通过富氮原材料二氰二胺,在管式炉中以10℃/min,从室温升温到500℃,保温4h,即得到黄色g-C3N4
(2)取适量的g-C3N4分散在质量是其5倍的50℃的H3PO4中5h,反应完全后回复到室温,H3PO4插入到二维g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量的氨水,酸碱反应使其快速剥离,得到的粉末通过水洗得到白色的g-C3N4纳米颗粒。
实施例5
(1)通过富氮原材料硫脲,在管式炉中以5℃/min,从室温升温到550℃,保温5h,即得到黄色g-C3N4
(2)取适量的g-C3N4分散在质量是其10倍的50℃的高浓度HBr中5h,反应完全后回复到室温,HBr插入到二维g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量的KOH水溶液,酸碱反应使其快速剥离,得到的粉末通过水洗得到白色的g-C3N4纳米颗粒。
从图1的SEM图像看出,处理前g-C3N4是二维微米级的层状结构,处理后为纳米级颗粒。
从图2的剥离前g-C3N4(黑色)和剥离后g-C3N4纳米颗粒(红色)的XRD对比图可以看出,处理前后XRD特征峰未发生变化,说明物质未发生变化。
从图3的紫外-可见吸收光谱和禁带宽度看出,处理后,禁带宽度由2.7eV增大到3.4eV
图4的N2吸附曲线和孔径分布曲线(里图)经过数据处理后,发现比表面积由7.4m2/g增加到34.2m2/g,g-C3N4纳米颗粒存在5~35nm的中孔,主要由于处理后的g-C3N4自卷曲形成。
从图5的g-C3N4(黑色)和剥离后g-C3N4纳米颗粒(红色)傅里叶红外光谱看出,剥离后g-C3N4纳米颗粒中具有宽吸收从1200~1750cm-1拉伸CN杂环化合物,在~800cm-1峰归因于三均三嗪单元的振动峰,~900cm-1峰归因于均三嗪衍生物,如C-N(-C)-C或者C-NH–-C单元。说明它保留g-C3N4的基本结构单元。在g-C3N4纳米颗粒中,~1090cm-1出现C=O或C-O的单元有C-OH的拉伸引起的,在峰值约为1390cm-1存在C-OH的拉伸峰,它位于芳香C-N拉伸峰上。因此,我们得出的结论是,在O-H和N-H的强氢键作用下,剥离的g-C3N4纳米薄片自卷曲形成了超细纳米球。
从图6剥离后g-C3N4纳米颗粒的XPS分析可得,g-C3N4纳米颗粒的表层N、C、O的含量分别为46%、40%、13%,O1s可以分为532.9eV处H2O的吸收峰和531.6eV处N-C=O,N=C-OH峰,N1s可以分为400.9eV处C-N-H峰,399.5eV处C-N=C峰和398.4eV处C-N-C峰,与红外光谱保存一致,说明g-C3N4纳米颗粒存在大量的氢键。
从图7的图中看出,钙钛矿薄膜表面晶粒间裂纹,g-C3N4纳米颗粒主要是通过钙钛矿晶粒裂纹暴露出的缺陷自发连接,填充钙钛矿晶界空隙,图7c中,g-C3N4纳米颗粒集中在晶界处,证实了这一点。
从图8与对比表分析可得经过g-C3N4纳米颗粒处理后,器件在电压、电流及填充因子均有提高。由于g-C3N4纳米颗粒中存在的氢键与钙钛矿晶界处暴露的缺陷连接,填补了晶粒间的缝隙,载流子的收集效率提高,电子和空穴的复合减少。
从图9分析结果显示,g-C3N4纳米颗粒处理后的钙钛矿层的光致发光大大减小,说明电子和空穴的复合效率极大的降低,另外,其多孔的结构,也有利于空穴的收集传输。
表1:参比电池和g-C3N4纳米颗粒处理的钙钛矿电池各参数对比
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种宽禁带碳氮聚合物的制备方法,其特征在于,制备的二维石墨相氮化碳(g-C3N4)禁带宽度在2.7eV-3.4eV范围内可调。
2.根据权利要求1所述的一种宽禁带碳氮聚合物的制备方法,其特征在于,通过富氮原材料在密闭玻璃器皿中,隔绝空气,通过热聚合合成g-C3N4,通过酸插层-碱溶液剥离法,高浓度酸插入到g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量碱溶液,酸碱反应使其快速剥离成g-C3N4纳米片。
3.根据权利要求2所述的一种宽禁带碳氮聚合物的制备方法,其特征在于,具体步骤如下:
通过富氮原材料在密闭玻璃器皿中,隔绝空气,通过热聚合合成g-C3N4
取适量步骤(1)所得的g-C3N4分散在质量是其2-20倍的20-90 ℃的高浓度酸溶液中1-8h,反应完全后回复到室温,高浓度酸溶液插入到二维g-C3N4层与层之间,使得g-C3N4体积膨胀,加入过量的碱溶液,酸碱反应使其快速剥离,同时与酸碱反应产物沉淀下来,得到的粉末通过水洗得到白色的g-C3N4纳米颗粒。
4.根据权利要求2所述的一种宽禁带碳氮聚合物的制备方法,其特征在于,所述的富氮原材料为三聚氰胺、三聚硫氰酸、双氰胺、二氰二胺、硫脲、尿素等,或几种混合。
5.根据权利要求2所述的一种宽禁带碳氮聚合物的制备方法,其特征在于,所述的高浓度酸溶液为HF、HCl、HBr、HNO3、H3PO4、H2SO4中的一种或几种混合,碱溶液为LiOH、NaOH、KOH、NH3•H2O、KHCO3、NaHCO3一种或几种混合。
6.一种在钙钛矿太阳能电池使用宽禁带碳氮聚合物的方法,其特征在于:将获得的g-C3N4纳米颗粒按不同含量分散在抗溶剂中,然后将其按FTO|电子传输层|钙钛矿层|g-C3N4|空穴传输层|金电极顺序组装成电池,进行操作。
7.根据权利要求6所述的一种在钙钛矿太阳能电池使用宽禁带碳氮聚合物的方法,其特征在于,所述的抗溶剂为甲苯、氯苯、乙酸乙酯、无水乙醚、仲丁醇、异丙醇等或其混合溶液。
8.根据权利要求6所述的一种在钙钛矿太阳能电池使用宽禁带碳氮聚合物的方法,其特征在于,所述的钙钛矿层选用PbI2(DMSO)为前驱液两步浸泡法制备甲胺铅碘(MAPbI3),此过程在氮气氛围的手套箱中进行,制备好MAPbI3后,在旋干表面残留溶剂的过程中,滴加分散在选用好的抗溶剂中的g-C3N4溶液,优选转速为3000-5000 rpm,旋涂时间10-30 s,再加热退火。
CN201810203971.4A 2018-03-13 2018-03-13 一种宽禁带碳氮聚合物的制备方法 Active CN108772085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810203971.4A CN108772085B (zh) 2018-03-13 2018-03-13 一种宽禁带碳氮聚合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810203971.4A CN108772085B (zh) 2018-03-13 2018-03-13 一种宽禁带碳氮聚合物的制备方法

Publications (2)

Publication Number Publication Date
CN108772085A true CN108772085A (zh) 2018-11-09
CN108772085B CN108772085B (zh) 2021-02-23

Family

ID=64033627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810203971.4A Active CN108772085B (zh) 2018-03-13 2018-03-13 一种宽禁带碳氮聚合物的制备方法

Country Status (1)

Country Link
CN (1) CN108772085B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883663A (zh) * 2020-09-03 2020-11-03 湖北大学 一种基于石墨相氮化碳片层材料双界面修饰的钙钛矿太阳能电池及其制备方法
CN112010272A (zh) * 2019-05-31 2020-12-01 中国科学院大连化学物理研究所 一种剥层的氮化碳材料及其制备方法
CN112201756A (zh) * 2020-10-10 2021-01-08 湖北大学 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法
CN113540361A (zh) * 2021-06-23 2021-10-22 湖北大学 一种掺杂型材料修饰钙钛矿太阳能电池制备方法以及产品
CN115282996A (zh) * 2022-07-11 2022-11-04 华东理工大学 一种高效光解水产氢的p,s,b回填氮空位氮化碳材料的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737848A (zh) * 2011-04-15 2012-10-17 日东电工株式会社 染料敏化型太阳能电池及用于其的密封材料
CN103254200A (zh) * 2013-05-22 2013-08-21 福州大学 一种分子级厚度的c3n4纳米片及其制备方法和应用
CN105931846A (zh) * 2016-06-20 2016-09-07 辽宁科技大学 一种带氮化物保护层的石墨烯电极及其制备方法
US20170113934A1 (en) * 2009-08-17 2017-04-27 Carnegie Mellon University Heteroatom-enriched partially-graphitic nano-carbons
US20170240422A1 (en) * 2014-08-21 2017-08-24 The University Of Liverpool Two-dimensional carbon nitride material and method of preparation
WO2018020356A1 (en) * 2016-07-28 2018-02-01 Sabic Global Technologies B.V. Nitrogen rich carbon nitride materials with a three dimensional cubic mesoporosity from diaminotetrazine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170113934A1 (en) * 2009-08-17 2017-04-27 Carnegie Mellon University Heteroatom-enriched partially-graphitic nano-carbons
CN102737848A (zh) * 2011-04-15 2012-10-17 日东电工株式会社 染料敏化型太阳能电池及用于其的密封材料
CN103254200A (zh) * 2013-05-22 2013-08-21 福州大学 一种分子级厚度的c3n4纳米片及其制备方法和应用
US20170240422A1 (en) * 2014-08-21 2017-08-24 The University Of Liverpool Two-dimensional carbon nitride material and method of preparation
CN105931846A (zh) * 2016-06-20 2016-09-07 辽宁科技大学 一种带氮化物保护层的石墨烯电极及其制备方法
WO2018020356A1 (en) * 2016-07-28 2018-02-01 Sabic Global Technologies B.V. Nitrogen rich carbon nitride materials with a three dimensional cubic mesoporosity from diaminotetrazine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU-LU JIANG等: "Passivated Perovskite Crystallization via g-C3N4 for High-Performance Solar Cells", 《ADV. FUNCT. MATER.》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112010272A (zh) * 2019-05-31 2020-12-01 中国科学院大连化学物理研究所 一种剥层的氮化碳材料及其制备方法
CN112010272B (zh) * 2019-05-31 2022-02-01 中国科学院大连化学物理研究所 一种剥层的氮化碳材料及其制备方法
CN111883663A (zh) * 2020-09-03 2020-11-03 湖北大学 一种基于石墨相氮化碳片层材料双界面修饰的钙钛矿太阳能电池及其制备方法
CN112201756A (zh) * 2020-10-10 2021-01-08 湖北大学 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法
CN113540361A (zh) * 2021-06-23 2021-10-22 湖北大学 一种掺杂型材料修饰钙钛矿太阳能电池制备方法以及产品
CN115282996A (zh) * 2022-07-11 2022-11-04 华东理工大学 一种高效光解水产氢的p,s,b回填氮空位氮化碳材料的制备方法及应用

Also Published As

Publication number Publication date
CN108772085B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN108772085A (zh) 一种宽禁带碳氮聚合物的制备方法
Parveen et al. Manganese oxide as an effective electrode material for energy storage: A review
CN110342477B (zh) 一种氧掺杂多孔氮化碳纳米片及其制备方法
CN110026219B (zh) 一种过渡金属掺杂g-C3N4粉体及其制备方法
Wang et al. Synthesis of N-doped TiO2 mesosponge by solvothermal transformation of anodic TiO2 nanotubes and enhanced photoelectrochemical performance
CN107282070B (zh) 一种三维花片状硫铟锌微-纳米线阵列及其制备方法和应用
CN109192949A (zh) 由ZIF-67多面体衍生化得到绒壳空心多面体Co9S8@MoS2的方法
CN106145097B (zh) 一种亲疏水性可控的还原氧化石墨烯的制备方法
CN104174415B (zh) 一种Bi2O3/BiOX纳米异质结构空心球及其制备方法
CN105905908A (zh) 一种基于埃洛石原料制备纳米硅的方法
CN103449403A (zh) 氮掺杂多壁碳纳米管的制备方法
CN110104623B (zh) 一种不同形貌的富磷过渡金属磷化物四磷化钴的制备方法
CN109665525B (zh) 一种“哑铃型”铁氮双掺杂多孔碳的制备方法
CN107128902A (zh) 一种网络状石墨烯纳米材料及其制备方法和应用
CN107316987A (zh) 一种氧化物纳米线/ZIF系MOFs糖葫芦状复合材料及其制备方法
CN105731446A (zh) 一种超高比表面积硫氮共掺杂多孔石墨烯的制备方法及产品
CN107159289A (zh) 一种原位制备g‑C3N4‑TiO2纳米异质结光催化薄膜的方法
Cheng et al. Lollipop-shaped Co9S8/CdS nanocomposite derived from zeolitic imidazolate framework-67 for the photocatalytic hydrogen production
CN104607227A (zh) 一种α-Fe2O3介孔纳米片/氮掺杂石墨烯复合材料的制备方法
CN109126852A (zh) 有序分级多孔石墨相氮化碳光催化材料的制备方法
CN105731443B (zh) 无模板一步法制备高比例石墨型氮掺杂石墨烯管的方法
CN107876074A (zh) g‑C3N4纳米颗粒/花状BiOI复合材料的制备方法
CN113501552A (zh) MOFs衍生的中空多面体Co3S4及制备方法和应用
CN104071785A (zh) 一种制备具有三维宏观多孔结构的石墨烯的方法
CN114156467B (zh) 一种多孔层状结构的NC@CoS2复合材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant