CN108767047B - 具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法 - Google Patents

具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法 Download PDF

Info

Publication number
CN108767047B
CN108767047B CN201810380972.6A CN201810380972A CN108767047B CN 108767047 B CN108767047 B CN 108767047B CN 201810380972 A CN201810380972 A CN 201810380972A CN 108767047 B CN108767047 B CN 108767047B
Authority
CN
China
Prior art keywords
ingap
ingaas
nano
layer
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810380972.6A
Other languages
English (en)
Other versions
CN108767047A (zh
Inventor
毕臻
苏爱雪
张春福
陈大正
张进成
张金凤
许晟瑞
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Nazhi Optical Research Technology Co ltd
Original Assignee
Xian University of Electronic Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Electronic Science and Technology filed Critical Xian University of Electronic Science and Technology
Priority to CN201810380972.6A priority Critical patent/CN108767047B/zh
Publication of CN108767047A publication Critical patent/CN108767047A/zh
Application granted granted Critical
Publication of CN108767047B publication Critical patent/CN108767047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法,包括InGaP/InGaAs/Ge三结电池以及顶部表面的微纳结构,表面是六方周期性排布的复合微纳减反结构,本发明主要利用纳米软压印技术,制备出具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池器件,包括微纳条栅结构和复合微纳凸起(凹陷)结构。该结构具有极低的表面反射率,通过调节复合微纳结构的高度及填充因子,使光从空气进入到太阳电池时实现介质折射率缓慢变化,这种等效的折射率缓变结构,减缓了传统电池表面和界面处折射率变化的剧烈程度,极大地降低反射率,同时增加光程,提高有效光吸收,从而实现太阳电池的高转换效率。

Description

具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作 方法
技术领域
本发明属于半导体光伏器件领域,涉及一种具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池。利用纳米软压印技术,制备出具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池器件,包括微纳条栅结构和复合微纳凸起(凹陷)结构,实现表面高减反特性,增加光吸收功率,提高光电流和转换效率。
背景技术
随着全球经济的飞速发展,人类正面临着资源短缺和生态环境恶化的现状,因此改变现有能源结构、发展可持续发展的绿色能源已成为世界各国极为关注的课题。太阳能作为一种“取之不尽、用之不竭”的清洁能源越来越受到人们的青睐。1839年,法国物理学家Becquerel意外地发现电解质溶液的“光生伏特效应”。1883年,美国Fritts研制出第一个Au/Se/Metal结构的太阳电池雏形。1930年,Schottky提出固态Cu2O电池的“光生伏特效应”。1954年,美国贝尔实验室的Pearson发现了单晶硅pn结上的光伏现象。1999年,澳大利亚新南威尔士大学的马丁·格林创造出单晶硅电池效率达25%的最高纪录。至此,光伏事业的帷幕被拉开。
为了节省材料、降低成本,太阳电池的研究开始追求微型化。因此减薄单晶硅电池厚度、创新高效率电池结构、开发新型薄膜光伏材料,成为20世纪后半叶以来科学界关注的重点。1975年,英国科学家Spear等利用硅烷(SiH4)辉光放电的方法,制作出氢化非晶硅薄膜,实现了掺杂,并制作出了pn结。1976年,美国RCA实验室的Carlson等成功地制成了p-i-n结型非晶硅薄膜太阳电池,光电转换效率为2.4%。1980年,美国RCA实验室的电池效率达到8%。2008年,美国NREL制作出薄膜CnInSe太阳电池,效率高达19.9%。同年,美国MicroLinkDevices公司在直径为100mm的ELO GaAs晶片上制备了GaAs单结薄膜太阳电池,在AM0光谱下效率为21%。2009年,MicroLink Devices公司研制出GaInP/GaAs双结薄膜太阳电池,AM0光谱下效率为25%。2010年,MicroLink Devices公司又研制出GaInP/GaAs/InGaAs三结薄膜太阳电池,在AM1.5光谱下效率为30%。2011年7月,美国United Solar报道三结非晶硅/非晶锗硅/微晶硅电池效率达16.3%。2012年7月,日本Panasonic公司报道厚度100μm的HIT电池效率达23.9%。2014年,日本Sharp公司报道最新三结薄膜GaAs太阳电池效率高达30.5%。这些历程见证光伏事业的蒸蒸日上。
Ⅲ-Ⅴ族化合物半导体具有较高的转换效率等优越特性。以GaAs为例,其能隙与太阳光谱的匹配较合适,且能耐高温,在250℃的条件下,光电转换性能仍然很好。用GaAs系材料制备的太阳电池,除了转换效率高、温度特性好,还具有光谱响应特性好、抗辐射能力强等优点。
GaAs太阳电池以其高效率、高可靠性和长寿命的特点已日益成为许多研究机构的关注热点。然而不容忽视的是,尽管其转换效率较硅太阳电池有显著提高,但由于GaAs材料密度大、质量大,严重制约了电池功率重量比的提高。
由于以上种种原因,导致目前实验制备出的GaAs太阳电池的转换频率依然偏低。因此,必须减薄电池的厚度以提高功率重量比。但是,有效光吸收层厚度太薄时,就会限制对入射光的充分吸收,严重制约了光电转换效率的提高。因此,还必须着重从光学管理方面,通过利用微纳减反结构、不同组分材料构成的多层结构等方法提高GaAs电池的有效光吸收。
发明内容
为解决现有技术中存在的上述缺陷,本发明的目的在于提供一种利用纳米软压印技术,制备具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池器件,提高GaAs太阳电池的光电流和转换效率。本发明从太阳电池的光学设计角度考虑,提出通过纳米软压印技术,制备具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池,包括微纳条栅结构和复合微纳凸起(凹陷)结构,以实现表面高减反特性,增加光吸收功率,提高GaAs太阳电池的光电流和转换效率。
为达到上述目的,本发明是通过下述方案来实现的。
本发明的包括InGaP/InGaAs/Ge三结电池以及顶部表面的微纳减反结构,所述InGaP/InGaAs/Ge三结电池中包括Ge底电池、InGaAs中电池和InGaP顶电池,Ge底电池有p-Ge衬底和其上方的n-Ge薄膜共同构成;在Ge底电池和InGaAs中电池之间由下至上依次分布的InGaP第一异质层、n-InGaAs缓冲层和p-GaAs/n-GaAs隧道结;在InGaAs中电池和InGaP顶电池之间设有p-AlGaAs/n-InGaP隧道结;InGaP顶电池上方设有GaAs层,GaAs层通过GaAs接触层上表面引出Ni/Cr/Au金属电极,在GaAs接触层周边GaAs层上表面设有复合微纳减反结构。
对于上述技术方案,本发明还有进一步优选的方案:
进一步,所述复合微纳结构为周期性排布六方结构,每一个重复单元由凸起或凹陷的椭圆柱与其上的圆锥共同构成;周期宽度为200~1200nm,长度为宽度的倍。
进一步,所述椭圆柱短轴长度与圆锥底面直径相等,短轴长度与周期宽度的比例为0.1~0.7;所述椭圆柱长轴长度与周期长度的比例为0.1~0.7;所述椭圆柱高度为100~500nm;所述圆锥顶角为30°~150°。
进一步,所述InGaP顶电池包括由上至下依次分布的n-AlInP窗口、n-InGaP发射极、p-InGaP基极和p-AlInP BSF层。
进一步,所述InGaAs中电池包括由上至下依次分布的n-InGaP窗口、n-InGaAs发射极、p-InGaAs基极和p-InGaP BSF层。
进一步,所述n-Ge薄膜带隙宽度为0.65eV;Ge底电池的pn结是在p型Ge衬底上生长的第一层外延层的过程时,V族原子扩散到Ge衬底中自动形成的。
进一步,所述n-InGaAs缓冲层和中电池n-InGaP窗口的上表面均为条栅结构,宽度为100~1000nm,长度为5~15mm,深度80~100nm,栅间距为200~2000nm。
本发明进一步给出了所述具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池的制作方法,包括如下步骤:
1)选择p型Ge衬底,抛光,清洗,采用MOVPE金属有机化合物气相外延的方法在Ge表面淀积P原子,Ge衬底加热到580℃~750℃,将含有P的气体引入到Ge衬底表面,淀积在表面的P原子逐渐扩散到Ge衬底内部,形成n-Ge薄膜,时间持续1h小时;
2)采用MOVPE的方法在Ge表面继续引入含有In元素和Ga元素的气体,同含有P元素的气体一起,生长InGaP第一异质层;
3)采用MOVPE的方法生长n-InGaAs缓冲层;
4)采用纳米软压印法,在n-InGaAs缓冲层表面制备条栅结构;
5)采用MOVPE的方法按顺序生长p-GaAs/n-GaAs隧道结、p-InGaP BSF层、p-InGaAs基极、n-InGaAs发射极和n-InGaP窗口;
6)采用纳米软压印法,在n-InGaP窗口表面制备条栅结构;
7)采用MOVPE的方法按顺序生长p-AlGaAs/n-InGaP隧道结、p-AlInP BSF、p-InGaP基极、n-InGaP发射极、n-AlInP窗口和GaAs层;
8)采用纳米软压印法,在GaAs层表面制备复合微纳减反结构;
9)采用电子束蒸发法在GaAs层和p-Ge层上制备出Ni/Cr/Au金属电极,并在大气500~600℃退火8~12min,即完成具有微纳结构的InGaP/InGaAs/Ge三结太阳电池的制作。
进一步,制备条栅结构和复合微纳减反结构的工艺流程如下:
1)SU-8甩胶在500~600rpm转速下25~35s,再2500~3500rpm转速下5~10min;后50~70℃下烘10~20min,再85~100℃下烘干20~30min;UV光固化30~40s;PDMS软印章压印30~40min;
2)揭下印章,用体积比为36-38%HCl:H2O=1:2盐酸溶液刻蚀1~2min,O2流量20~30sccm,气压120~160torr,功率为180~220W;
3)用上述步骤2)的盐酸溶液刻蚀5~10min,其中,Cl2流量为40~60sccm,气压为180~250torr,功率为220~270W;
4)去Su-8余胶,即完成条栅结构和复合微纳减反结构的制作。
进一步,所述InGaAs缓冲层中In的含量为1%,使Ge与GaAs的晶格失配由0.08%降至更低,这时InGaAs与Ge精确晶格匹配,不产生失配位错。
与现有技术相比,本发明的有益效果为:
本发明主要利用纳米软压印技术,制备出具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池器件,包括微纳条栅结构和复合微纳凸起(凹陷)结构,实现高减反特性;由于采用了纳米陷光结构,有利于增加入射光程,增加光程和有效光吸收,产生更多的光生载流子,提高电池的光电流和转换效率。
附图说明
图1是本发明太阳电池的结构示意图;
图2(a)-(f)是本发明制作太阳电池的工艺流程图;
图3(a)-(e)是表面微纳减反结构的示意图,其中,图3(a)为复合结构俯视图,(b)为复合凸起结构沿虚线的竖直截面图,图3(c)为复合凹陷结构沿虚线的竖直截面图,图3(d)为条栅结构俯视图,图3(e)为条栅结构侧视图。
图4(a)-(b)是反射率曲线,图4(a)为平坦结构的反射率曲线,图4(b)为复合微纳减反结构的反射率曲线。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
如图1所示,本发明的具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池,包括InGaP/InGaAs/Ge三结电池以及顶部表面的微纳减反结构。其中,InGaP/InGaAs/Ge三结电池中包括Ge底电池、InGaAs中电池和InGaP顶电池,在Ge底电池和InGaAs中电池之间由下至上依次分布的InGaP第一异质层、n-InGaAs缓冲层和p-GaAs/n-GaAs隧道结;在InGaAs中电池和InGaP顶电池之间设有p-AlGaAs/n-InGaP隧道结;InGaP顶电池上方设有GaAs层,GaAs层通过GaAs接触层上表面引出Ni/Cr/Au金属电极,在GaAs接触层周边GaAs层上表面设有复合微纳减反结构。
其中,复合微纳减反结构为周期性排布六方结构,每一个重复单元由凸起或凹陷的椭圆柱与其上圆锥共同构成,见图3(b)和图3(c)所示;周期宽度为200~1200nm,长度为宽度的倍。椭圆柱短轴长度与圆锥底面直径相等,短轴长度与周期宽度的比例为0.1~0.7;椭圆柱长轴长度与周期长度的比例为0.1~0.7;椭圆柱高度为100~500nm;圆锥顶角为30°~150°。见图3(a)-(e)所示。
其中,InGaP顶电池包括由上至下依次分布的n-AlInP窗口、n-InGaP发射极、p-InGaP基极和p-AlInP BSF(Back Surface Field)层。InGaP顶电池中的n-AlInP窗口厚度约为200nm,n-InGaP发射极厚度约为200nm,p-InGaP基极厚度约为3um,p-AlInP BSF层厚度约为100nm,
InGaAs中电池包括由上至下依次分布的n-InGaP窗口、n-InGaAs发射极、p-InGaAs基极和p-InGaP BSF层。InGaAs中电池中的n-InGaP窗口厚度约为200nm,n-InGaAs发射极厚度约为200nm,p-InGaAs基极厚度约为3μm,p-InGaPBSF厚度约为100nm。
Ge底电池包括p-Ge层和n-Ge层,Ge底电池的厚度约为180μm,背景掺杂为p型,杂质为Ga,浓度约为1×1018cm-3。n-Ge层杂质为P,厚度约为400nm,杂质呈梯度分布,在上表面浓度最高,靠近与p-Ge层的交界面上浓度最低,平均杂质浓度约为8×1018cm-3
InGaAs中电池和Ge底电池之间包括p-GaAs/n-GaAs隧道结、n-InGaAs缓冲层和InGaP第一异质层,InGaAs中电池和Ge底电池之间需要生长缓冲层,包括InGaP层和n-InGaAs层。其中InGaP层的厚度约为50nm,In/Ga的组分大体相等,当InGaP层与Ge衬底晶格不匹配时,可以适当调节In/Ga的比例。n-InGaAs缓冲层中的厚度约为500nm,杂质为Si,浓度约为2×1018cm-3
InGaAs中电池和Ge底电池之间的p-GaAs/n-GaAs隧道结,n-GaAs层位于下方,p-GaAs层位于上方,厚度均为50nm左右,n-GaAs层掺杂浓度约为5×1019cm-3,p-GaAs层掺杂浓度约为3×1020cm-3
InGaP顶电池和InGaAs中电池之间为p-AlGaAs/n-InGaP隧道结,p-AlGaAs/n-InGaP隧道结中,n-InGaP层位于下方,p-AlGaAs层位于上方,厚度均为50nm左右,n-InGaP层掺杂浓度约为5×1019cm-3,p-AlGaAs层掺杂浓度约为3×1020cm-3
n-InGaAs缓冲层和InGaAs中电池n-InGaP窗口的上表面均为条栅结构,宽度为100~1000nm,长度为5~15mm,深度80~100nm,栅间距为200~2000nm。
如图2(a)-(f)所示,本发明给出了具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池的制作方法,包括如下步骤:
1)选择p型Ge衬底,抛光,清洗,采用MOVPE(金属有机化合物气相外延)的方法在Ge表面淀积P原子,此时Ge衬底加热到580℃~750℃,含有P的气体引入到Ge衬底表面,淀积在表面的P原子就会逐渐扩散到Ge衬底内部,形成n-Ge层,见图2(a)、图2(b)。为了形成足够厚的n-Ge层,该过程需要持续一个小时左右的时间;
2)采用MOVPE的方法在Ge表面继续引入含有In元素和Ga元素的气体,同含有P元素的气体一起,生长InGaP第一异质层;
3)采用MOVPE的方法生长n-InGaAs缓冲层;
其中,InGaAs缓冲层中In的含量为1%,使Ge与GaAs的晶格失配由0.08%降至更低,这时InGaAs与Ge精确晶格匹配,不产生失配位错。
4)采用纳米软压印法,在n-InGaAs缓冲层表面制备条栅结构,见图2(c);
5)采用MOVPE的方法按顺序生长p-GaAs/n-GaAs隧道结、p-InGaP BSF层、p-InGaAs基极、n-InGaAs发射极和n-InGaP窗口,见图2(d);
6)采用纳米软压印法,在n-InGaP窗口表面制备条栅结构;
7)采用MOVPE的方法按顺序生长p-AlGaAs/n-InGaP隧道结、p-AlInP BSF层、p-InGaP基极、n-InGaP发射极、n-AlInP窗口和GaAs层;
8)采用纳米软压印法,在GaAs表面制备复合微纳结构,见图2(e);
制备复合微纳结构的工艺流程如下:
8a)SU-8甩胶在500~600rpm转速下25~35s,再2500~3500rpm转速下5~10min;后50~70℃下烘10~20min,再85~100℃下烘干20~30min;UV光固化30~40s;PDMS软印章压印30~40min;
8b)揭下印章,用盐酸溶液(体积比36%-38%HCl:H2O=1:2)刻蚀1~2min,O2流量20~30sccm,气压120~160torr,功率为180~220W;
8c)盐酸溶液(体积比36%-38%HCl:H2O=1:2)刻蚀5~10min,Cl2流量40~60sccm,气压180~250torr,功率220~270W;
8d)去Su-8余胶。
9)采用电子束蒸发法在GaAs层和p-Ge层上制备出Ni/Cr/Au金属电极,并在大气中500~600℃退火8~12min,即完成具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池的制作,见图2(f)。
下面给出具体实施例来进一步说明。
实施例1
1)选择p型Ge衬底,抛光,清洗,在Ge表面淀积P原子,Ge衬底加热到700℃,形成n-Ge层。
2)在Ge表面继续引入含In元素和Ga元素的气体与含P元素气体一起生长InGaP第一异质层;
3)采用MOVPE的方法生长n-InGaAs缓冲层;
4)采用纳米软压印法,在n-InGaAs缓冲层表面制备条栅结构;
5)采用MOVPE的方法按顺序生长p-GaAs/n-GaAs隧道结、p-InGaP BSF层、p-InGaAs基极、n-InGaAs发射极和n-InGaP窗口;
6)采用纳米软压印法,在n-InGaP窗口表面制备条栅结构;
7)采用MOVPE的方法按顺序生长p-AlGaAs/n-InGaP隧道结、p-AlInP BSF层、p-InGaP基极、n-InGaP发射极、n-AlInP窗口和GaAs层;
8)采用纳米软压印法,在GaAs表面制备复合微纳结构;
制备复合微纳结构的工艺流程如下:
8a)SU-8甩胶在500rpm转速下30s,再3000rpm转速下5min;后65℃下烘10min,再95℃下烘干20min;UV光固化30s;PDMS软印章压印30min;
8b)揭下印章,用盐酸溶液(体积比36%HCl:H2O=1:2)刻蚀1min,O2流量20sccm,气压150torr,功率为200W;
8c)盐酸溶液(体积比36%HCl:H2O=1:2)刻蚀5min,Cl2流量50sccm,气压200torr,功率250W;
8d)去Su-8余胶。
9)采用电子束蒸发法在GaAs层和p-Ge层上制备出Ni/Cr/Au金属电极,并在大气中550℃退火10min,即完成具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池的制作。
实施例2
1)选择p型Ge衬底,抛光,清洗,在Ge表面淀积P原子,Ge衬底加热到750℃,形成n-Ge层。
2)在Ge表面继续引入含In元素和Ga元素的气体与含P元素气体一起生长InGaP第一异质层;
3)采用MOVPE的方法生长n-InGaAs缓冲层;
4)采用纳米软压印法,在n-InGaAs缓冲层表面制备条栅结构;
5)采用MOVPE的方法按顺序生长p-GaAs/n-GaAs隧道结、p-InGaP BSF层、p-InGaAs基极、n-InGaAs发射极和n-InGaP窗口;
6)采用纳米软压印法,在n-InGaP窗口表面制备条栅结构;
7)采用MOVPE的方法按顺序生长p-AlGaAs/n-InGaP隧道结、p-AlInP BSF层、p-InGaP基极、n-InGaP发射极、n-AlInP窗口和GaAs层;
8)采用纳米软压印法,在GaAs表面制备复合微纳结构;
制备复合微纳结构的工艺流程如下:
8a)SU-8甩胶在600rpm转速下25s,再2500rpm转速下8min;后70℃下烘15min,再100℃下烘干25min;UV光固化35s;PDMS软印章压印35min;
8b)揭下印章,用盐酸溶液(体积比37%HCl:H2O=1:2)刻蚀1min,O2流量30sccm,气压120torr,功率为220W;
8c)盐酸溶液(体积比37%HCl:H2O=1:2)刻蚀10min,Cl2流量60sccm,气压180torr,功率270W;
8d)去Su-8余胶。
9)采用电子束蒸发法在GaAs层和p-Ge层上制备出Ni/Cr/Au金属电极,并在大气中550℃退火10min,即完成具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池的制作。
实施例3
1)选择p型Ge衬底,抛光,清洗,在Ge表面淀积P原子,Ge衬底加热到580℃,形成n-Ge层。
2)在Ge表面继续引入含In元素和Ga元素的气体与含P元素气体一起生长InGaP第一异质层;
3)采用MOVPE的方法生长n-InGaAs缓冲层;
4)采用纳米软压印法,在n-InGaAs缓冲层表面制备条栅结构;
5)采用MOVPE的方法按顺序生长p-GaAs/n-GaAs隧道结、p-InGaP BSF层、p-InGaAs基极、n-InGaAs发射极和n-InGaP窗口;
6)采用纳米软压印法,在n-InGaP窗口表面制备条栅结构;
7)采用MOVPE的方法按顺序生长p-AlGaAs/n-InGaP隧道结、p-AlInP BSF层、p-InGaP基极、n-InGaP发射极、n-AlInP窗口和GaAs层;
8)采用纳米软压印法,在GaAs表面制备复合微纳结构;
制备复合微纳结构的工艺流程如下:
8a)SU-8甩胶在550rpm转速下35s,再3500rpm转速下10min;后50℃下烘20min,再85℃下烘干20min;UV光固化40s;PDMS软印章压印40min;
8b)揭下印章,用盐酸溶液(体积比38%HCl:H2O=1:2)刻蚀1min,O2流量20sccm,气压160torr,功率为180W;
8c)盐酸溶液(体积比38%HCl:H2O=1:2)刻蚀10min,Cl2流量40sccm,气压250torr,功率220W;
8d)去Su-8余胶。
9)采用电子束蒸发法在GaAs层和p-Ge层上制备出Ni/Cr/Au金属电极,并在大气中550℃退火10min,即完成具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池的制作。
图4(a)-(b)给出了反射率曲线,图4(a)为平坦结构的反射率曲线,图4(b)为复合微纳减反结构的反射率曲线。
从曲线图可以看出,相对于平坦结构的反射率,复合微纳减反结构的反射率的降低幅度大于20倍。在350-1500nm波段,复合微纳减反结构的反射率全部低于0.014。在350-650nm波段和1000-1500nm波段,复合微纳减反结构的反射率更低,几乎全部低于0.01。在650-1000nm波段,复合微纳减反结构的反射率相对较高,几乎全部介于0.008和0.014之间。总之,在太阳电池表面制备复合微纳减反结构,可以非常有效地降低其表面的反射率,从而减少光学损失,增加太阳电池对太阳光的利用率。
本发明从太阳电池的光学设计角度考虑,提出纳米软压印技术,制备出具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池器件,包括微纳条栅结构和复合微纳凸起(凹陷)结构,该结构能够实现表面高减反特性,增加光吸收功率,提高光电流和转换效率。

Claims (7)

1.一种具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池,其特征在于,包括InGaP/InGaAs/Ge三结电池以及顶部表面的微纳减反结构,所述InGaP/InGaAs/Ge三结电池中包括Ge底电池、InGaAs中电池和InGaP顶电池,Ge底电池由p-Ge衬底和其上方的n-Ge薄膜共同构成;在Ge底电池和InGaAs中电池之间由下至上依次分布的InGaP第一异质层、n-InGaAs缓冲层和p-GaAs/n-GaAs隧道结;在InGaAs中电池和InGaP顶电池之间设有p-AlGaAs/n-InGaP隧道结;InGaP顶电池上方设有GaAs层,GaAs层通过GaAs接触层上表面引出Ni/Cr/Au金属电极,在GaAs接触层周边GaAs层上表面设有复合微纳减反结构;
所述复合微纳减反结构为周期性排布六方结构,每一个重复单元由凸起或凹陷的椭圆柱与其上的圆锥共同构成;周期宽度为200~1200nm,长度为宽度的倍;
所述椭圆柱短轴长度与圆锥底面直径相等,短轴长度与周期宽度的比例为0.1~0.7;所述椭圆柱长轴长度与周期长度的比例为0.1~0.7;所述椭圆柱高度为100~500nm;所述圆锥顶角为30°~150°;
复合微纳减反结构的反射率降低幅度大于20倍。
2.根据权利要求1所述的一种具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池,其特征在于,所述InGaP顶电池包括由上至下依次分布的n-AlInP窗口、n-InGaP发射极、p-InGaP基极和p-AlInP BSF层。
3.根据权利要求1所述的一种具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池,其特征在于,所述InGaAs中电池包括由上至下依次分布的n-InGaP窗口、n-InGaAs发射极、p-InGaAs基极和p-InGaP BSF层。
4.根据权利要求1所述的一种具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池,其特征在于,所述n-Ge薄膜带隙宽度为0.65eV;Ge底电池的pn结是在p型Ge衬底上生长的第一层外延层的过程时,V族原子扩散到Ge衬底中自动形成的。
5.根据权利要求4所述的一种具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池,其特征在于,所述n-InGaAs缓冲层和InGaAs中电池n-InGaP窗口的上表面均为条栅结构,宽度为100~1000nm,长度为5~15mm,深度80~100nm,栅间距为200~2000nm。
6.一种权利要求1-5任一项所述的具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池的制作方法,其特征在于,包括如下步骤:
1)选择p型Ge衬底,抛光,清洗,采用MOVPE金属有机化合物气相外延的方法在Ge表面淀积P原子,Ge衬底加热到580℃~750℃,将含有P的气体引入到Ge衬底表面,淀积在表面的P原子逐渐扩散到Ge衬底内部,形成n-Ge薄膜,时间持续1h小时;
2)采用MOVPE的方法在Ge表面继续引入含有In元素和Ga元素的气体,同含有P元素的气体一起,生长InGaP第一异质层;
3)采用MOVPE的方法生长n-InGaAs缓冲层;
4)采用纳米软压印法,在n-InGaAs缓冲层表面制备条栅结构;
5)采用MOVPE的方法按顺序生长p-GaAs/n-GaAs隧道结、p-InGaP BSF层、p-InGaAs基极、n-InGaAs发射极和n-InGaP窗口;
6)采用纳米软压印法,在n-InGaP窗口表面制备条栅结构;
7)采用MOVPE的方法按顺序生长p-AlGaAs/n-InGaP隧道结、p-AlInP BSF、p-InGaP基极、n-InGaP发射极、n-AlInP窗口和GaAs层;
8)采用纳米软压印法,在GaAs层表面制备复合微纳减反结构;
9)采用电子束蒸发法在GaAs层和p-Ge层上制备出Ni/Cr/Au金属电极,并在大气中500~600℃退火8~12min,即完成具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池的制作;
制备条栅结构和复合微纳减反结构的工艺流程如下:
1)SU-8甩胶在500~600rpm转速下25~35s,再2500~3500rpm转速下5~10min;后50~70℃下烘10~20min,再85~100℃下烘干20~30min;UV光固化30~40s;PDMS软印章压印30~40min;
2)揭下印章,用体积比为36-38%HCl:H2O=1:2盐酸溶液刻蚀1min;
3)用上述步骤2)的盐酸溶液刻蚀5~10min;
4)去Su-8余胶,即完成条栅结构和复合微纳减反结构的制作。
7.根据权利要求6所述的具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池的制作方法,其特征在于,所述InGaAs缓冲层中In的含量为1%,使Ge与GaAs的晶格失配由0.08%降至更低,这时InGaAs与Ge精确晶格匹配,不产生失配位错。
CN201810380972.6A 2018-04-25 2018-04-25 具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法 Active CN108767047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810380972.6A CN108767047B (zh) 2018-04-25 2018-04-25 具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810380972.6A CN108767047B (zh) 2018-04-25 2018-04-25 具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法

Publications (2)

Publication Number Publication Date
CN108767047A CN108767047A (zh) 2018-11-06
CN108767047B true CN108767047B (zh) 2019-12-31

Family

ID=64011810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810380972.6A Active CN108767047B (zh) 2018-04-25 2018-04-25 具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法

Country Status (1)

Country Link
CN (1) CN108767047B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388419A (zh) * 2008-10-27 2009-03-18 厦门乾照光电有限公司 具有反射层的三结太阳电池及其制造方法
CN101680969A (zh) * 2008-02-27 2010-03-24 索尼株式会社 防反射用光学元件以及原盘的制造方法
CN102222734A (zh) * 2011-07-07 2011-10-19 厦门市三安光电科技有限公司 一种倒置太阳能电池制作方法
CN102315291A (zh) * 2011-09-29 2012-01-11 西安电子科技大学 含有超晶格结构的p-i-n型InGaN太阳电池
CN107302033A (zh) * 2017-06-20 2017-10-27 西安电子科技大学 一种表面陷光结构InGaN/GaN太阳电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101680969A (zh) * 2008-02-27 2010-03-24 索尼株式会社 防反射用光学元件以及原盘的制造方法
CN101388419A (zh) * 2008-10-27 2009-03-18 厦门乾照光电有限公司 具有反射层的三结太阳电池及其制造方法
CN102222734A (zh) * 2011-07-07 2011-10-19 厦门市三安光电科技有限公司 一种倒置太阳能电池制作方法
CN102315291A (zh) * 2011-09-29 2012-01-11 西安电子科技大学 含有超晶格结构的p-i-n型InGaN太阳电池
CN107302033A (zh) * 2017-06-20 2017-10-27 西安电子科技大学 一种表面陷光结构InGaN/GaN太阳电池

Also Published As

Publication number Publication date
CN108767047A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
US6300557B1 (en) Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
Bett et al. GaSb photovoltaic cells for applications in TPV generators
AU2007254673B2 (en) Nanowall solar cells and optoelectronic devices
US7893348B2 (en) Nanowires in thin-film silicon solar cells
US20080135089A1 (en) Graded hybrid amorphous silicon nanowire solar cells
EP1892769A2 (en) Single conformal junction nanowire photovoltaic devices
US20100132774A1 (en) Thin Film Silicon Solar Cell Device With Amorphous Window Layer
CN102334194A (zh) 在冶金级Si衬底上基于外延晶体硅薄膜的太阳能异质结电池设计
TWI455338B (zh) 超晶格結構的太陽能電池
CN101950774A (zh) 四结GaInP/GaAs/InGaAsP/InGaAs太阳电池的制作方法
US8679892B2 (en) Method for manufacturing silicon thin-film solar cells
US20140196773A1 (en) Multi-junction iii-v solar cell
CN101271930A (zh) 光电动势装置及其制造方法
CN108767047B (zh) 具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法
KR101182424B1 (ko) 태양 전지 및 태양전지 제조방법
TW201244144A (en) Improved a-Si:H absorber layer for a-Si single-and multijunction thin film silicon solar cell
CN216213500U (zh) 一种新型异质结晶硅电池
CN202977495U (zh) 非晶硅薄膜太阳能电池
CN203055965U (zh) 单晶硅太阳能电池
CN110556448A (zh) 一种叠层串联太阳能电池
CN209981236U (zh) 一种硅基氮化铟太阳能电池
CN103107227B (zh) 非晶硅薄膜太阳能电池及其制作方法
CN110137298B (zh) GaAs基多结太阳电池的Ge/Si异质结底电池制备方法
Lee et al. New Generation Multijunction Solar Cells for Achieving High Efficiencies
JPS62188381A (ja) アモルフアスシリコン太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221028

Address after: Room 004, Room F2001, 20th Floor, Block 4-A, Xixian Financial Port, Fengxin Road, Fengxin Road, Fengjing Avenue, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province 710000

Patentee after: Xi'an Nazhi Optical Research Technology Co.,Ltd.

Address before: 710065 No. 2 Taibai South Road, Yanta District, Xi'an, Shaanxi

Patentee before: XIDIAN University

TR01 Transfer of patent right