CN108751977A - 一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备方法 - Google Patents

一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN108751977A
CN108751977A CN201810710417.5A CN201810710417A CN108751977A CN 108751977 A CN108751977 A CN 108751977A CN 201810710417 A CN201810710417 A CN 201810710417A CN 108751977 A CN108751977 A CN 108751977A
Authority
CN
China
Prior art keywords
solution
samarium
ceramic material
low
dielectric loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810710417.5A
Other languages
English (en)
Inventor
刘展晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weinan Normal University
Original Assignee
Weinan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weinan Normal University filed Critical Weinan Normal University
Priority to CN201810710417.5A priority Critical patent/CN108751977A/zh
Publication of CN108751977A publication Critical patent/CN108751977A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备方法。本发明通过将Sm(NO3)3·6H2O、Cu(NO3)2·3H2O依次溶解在无水乙醇中,得到溶液1;将C16H36O4Ti溶解在无水乙醇中,得到溶液2;将NaNO3和LiNO3溶于乙醇水溶液中,得到溶液3;将溶液1、溶液2、溶液3混匀得到Ti4+浓度为0.50mol/L、pH为0.5~0.8的溶液4,反应形成溶胶后继续陈化8小时形成凝胶;将凝胶干燥24h、在850℃预烧10h后,得到Lix/ 2Na(1‑x)/2Sm1/2Cu3Ti4O12前驱粉体,0.05≤X≤0.20;将前驱粉体球磨、造粒、压片后,在1050℃烧结8小时后得到低介电损耗的Lix/2Na(1‑x)/ 2Sm1/2Cu3Ti4O12巨介电陶瓷材料。当=0.015时,本发明钛酸铜钐锂钠巨介电陶瓷材料在10kHz下的介电常数达到了11292,介电损耗达到了0.027,制备方法更优。

Description

一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备 方法
技术领域
本发明属于介电陶瓷材料技术领域,尤其涉及一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备方法。
背景技术
随着电子信息技术的高速发展,电子元器件的小型化、集成化及高性能化等已成为现代信息领域的研究热点。在这其中,具有高介电常数的材料凭借其具有的高储能密度,在大容量电容器及器件小型化方面的潜在应用而受到了广泛的关注。同时高介电常数介质材料已被列为国家新材料发展中的关键材料。 2000年,CaCu3Ti4O12这种材料被发现不仅具有极高的介电常数,并且在相当宽的温度范围内介电常数可保持不变,这就使得该材料有望在高密度信息存储、薄膜器件、高介电电容器等器件上获得广泛的应用,促使器件小型化。然而这种材料在具有高介电常数的同时,也表现出较高介电损耗,这使得这种材料难以获得实际应用。近几年,采用不同离子取代CaCu3Ti4O12陶瓷的A位Ca2+来获得与CaCu3Ti4O12结构相似的CaCu3Ti4O12材料,来改善CaCu3Ti4O12的性能,仍然但大部分材料却不能同时满足高介电常数、低介电损耗的要求。
发明内容
本发明的首要目的在于提供一种高介电常数(104)、低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料。
本发明的再一目的在于提供上述低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料的制备方法,该方法可以获得高纯度、颗粒均一、活性较高的粉体结构优越的Lix/2Na(1-x)/ 2Sm1/2Cu3Ti4O12前驱粉体,且粉体的煅烧温度降低于固相法100℃左右,陶瓷的烧结温度降低30℃左右。
本发明是这样实现的,一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料,该陶瓷材料通过前驱粉体烧结而成,所述前驱粉体的化学成分为Lix/2Na(1-x) /2Sm1/2Cu3Ti4O12;其中,0.05≤X≤0.20。
优选地,所述x为0.1或0.15。
本发明进一步公开了上述低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料的制备方法,该方法包括以下步骤:
(1)将Sm(NO3)3·6H2O、Cu(NO3)2·3H2O依次溶解在无水乙醇中,得到溶液1;将C16H36O4Ti溶解在无水乙醇中,得到溶液2;将NaNO3和LiNO3溶于乙醇水溶液中,得到溶液3;将溶液1、溶液2、溶液3按体积比5:4:1 混匀得到溶液4,通过乙醇水溶液调节溶液4中的Ti4+浓度为0.50mol/L,将溶液4的pH值调节至0.5~0.8,反应形成溶胶后继续陈化8小时形成凝胶;
(2)将凝胶在100℃温度下干燥24小时,在800~900℃温度下预烧10 小时,得到Lix/2Na(1-x)/2Sm1/2Cu3Ti4O12前驱粉体,0.05≤X≤0.20;
(3)将上述前驱粉体经球磨、造粒、压片、排胶后,升温至1040~1060℃烧结5~8小时后降温,得到低频低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料。
优选地,在步骤(1)中,所述溶液1中Sm(NO3)3·6H2O和Cu(NO3) 2·3H2O的浓度分别为0.125mol/L、0.75mol/L;所述溶液2中C16H36O4Ti的浓度为1.25mol/L;所述溶液3中NaNO3和LiNO3物质量浓度范围分别为 0.031~0.125mol/L、0.594~0.500mol/L。
优选地,在步骤(2)中,在850℃温度下预烧10小时得到Lix/2Na(1-x)/2Sm1/2Cu3Ti4O12前驱粉体。
优选地,在步骤(3)中,将球磨后的前驱粉体与5wt%的PVA粘合剂混合进行造粒,用干压法将粉体颗粒压制成圆片。
优选地,在步骤(3)中,所述烧结温度为1050℃,烧结时间为8小时。
优选地,在步骤(3)中,所述升温过程为:用300分钟升温至500℃,保温1小时,以2℃/分钟升温速率升温至烧结温度;所述降温过程为:以2℃/分钟降温速率降温至800℃,随炉自然冷却至常温。
相比于现有技术的缺点和不足,本发明具有以下有益效果:
(1)本方法可以获得高纯度、颗粒均一、活性较高的粉体结构优越的Lix/2Na (1-x)/ 2Sm1/2Cu3Ti4O12前驱粉体,且粉体的煅烧温度降低于固相法100℃左右,陶瓷的烧结温度降低30℃左右;
(2)本发明利用Li和Na离子共同掺杂参杂Sm2/3Cu3Ti4O12,当=0.1及0.15 时,制备的Lix/2Na(1-x)/2Sm1/2Cu3Ti4O12陶瓷的在常温下介电常数达到了104(介电常数分别为10150,11292,在10kHz,图1和2所示),高于Sm2/3Cu3Ti4O12报道的103,当x=0.15时,最低介电损耗为0.027(介电损耗为0.0271,在10kHz,图1和2所示),低于Sm2/3Cu3Ti4O12介电损耗0.68,也低于目前绝大多数这一类材料。
附图说明
图1是室温下Lix/2Na(1-x)/2Sm1/2Cu3Ti4O12陶瓷的介电常数与频率的关系图;
图2是室温下Lix/2Na(1-x)/2Sm1/2Cu3Ti4O12陶瓷的介电损耗与频率的关系图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
(1)将Sm(NO3)3·6H2O和Cu(NO3)2·3H2O分别溶解在20毫升无水乙醇中,得到溶液1(Sm(NO3)3·6H2O和Cu(NO3)2·3H2O的浓度为分别 0.125mol/L、0.75mol/L);
将C16H36O4Ti溶解在16毫升无水乙醇中,得到溶液2(C16H36O4Ti的浓度为1.25mol/L);
将不同含量的NaNO3和LiNO3溶于4毫升乙醇水溶液中,得到溶液3(由于LiNO3和NaNO3是变量,NaNO3和LiNO3物质量浓度范围分别为 0.031~0.125mol/L,0.594~0.500mol/L);
将溶液1、溶液2、溶液3按体积比5:4:1混合得到溶液4,通过乙醇水溶液调节溶液4中的Ti4+浓度为0.50mol/L,将溶液4的pH值调节至0.5~0.8,反应形成溶胶后继续陈化8小时形成凝胶;
(2)将凝胶在100℃温度下干燥24小时,在850℃温度下预烧10小时,得到Lix/ 2Na(1-x)/2Sm1/2Cu3Ti4O12前驱粉体,0.05≤X≤0.20;对溶液3中LiNO3和NaNO3的浓度进行控制,以获得不同x取值;
(3)将上述前驱粉体经球磨,将球磨后的前驱粉体与5wt%的PVA粘合剂混合进行造粒,用干压法将粉体颗粒压制成圆片,排胶后,用300分钟升温至500℃,保温1小时,以2℃/分钟升温速率升温至烧结温度1050℃烧结8小时,以2℃/分钟降温速率降温至800℃,随炉自然冷却至常温,得到低频低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料。
实施例2
本实施例与上述实施例1相同,不同之处在于,在步骤(2)中,在800℃温度下预烧10小时,在步骤(3)中,在1040℃烧结8小时。
实施例3
本实施例与上述实施例1相同,不同之处在于,在步骤(2)中,在900℃温度下预烧10小时,在步骤(3)中,在1050℃烧结5小时。
效果实施例
介电常数是衡量电介质储存电荷能力的参数,通常情况下所要获得的是陶瓷材料的相对介电常数(ε)。
具体操作过程是:用细纱纸将圆片试样打磨抛光后再用乙醇擦洗,待干燥后,在样品两面涂覆银浆,于840℃烧渗银电极,保温30min。测出式样直径 D和厚度T后,采用美国Agilent公司的4294A型阻抗分析仪测试样品的不同频率的电容C和介电损耗tanδ,根据以下公式可计算出材料的相对介电常数ε。
式中:C—电容值,ε—陶瓷的相对介电常数,T—陶瓷片的厚度,A—陶瓷面积,ε0—真空中介电常数(8.85×10-12F/m)。
以实施例1中所记载的方法,对溶液3中LiNO3和NaNO3的浓度进行控制,以获得x分别为0.05、0.10、0.15、0.20时的前驱粉体,并由该前驱粉体得到相应的钛酸铜钐锂钠巨介电陶瓷材料。
在室温下,对各钛酸铜钐锂钠巨介电陶瓷材料的介电常数与频率的关系进行测定,结果如图1所示。对各钛酸铜钐锂钠巨介电陶瓷材料的介电损耗与频率的关系进行测定,结果如图2所示。
从图1、图2中可以看出,本发明利用Li和Na离子共同掺杂Sm2/3Cu3Ti4O12,当=0.1及0.15时,制备的Lix/2Na(1-x)/2Sm1/2Cu3Ti4O12陶瓷的在常温下介电常数达到了104(介电常数分别为10150,11292,在10kHz,图1和2所示),高于Sm2/3Cu3Ti4O12报道的103,当x=0.15时,最低介电损耗为0.027(介电损耗为0.0271,在10kHz,图1和2所示),低于Sm2/3Cu3Ti4O12介电损耗0.68,也低于目前这一类材料的绝大多数。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料,其特征在于,该陶瓷材料通过前驱粉体烧结而成,所述前驱粉体的化学成分为Lix/2Na(1-x)/2Sm1/2Cu3Ti4O12;其中,0.05≤X≤0.20。
2.如权利要求1所述的低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料,其特征在于,所述x为0.1或0.15。
3.权利要求1所述的低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料的制备方法,其特征在于,该方法包括以下步骤:
(1)将Sm(NO3)3·6H2O、Cu(NO3)2·3H2O依次溶解在无水乙醇中,得到溶液1;将C16H36O4Ti溶解在无水乙醇中,得到溶液2;将NaNO3和LiNO3溶于乙醇水溶液中,得到溶液3;将溶液1、溶液2、溶液3按体积比5:4:1混匀得到溶液4,通过乙醇水溶液调节溶液4中的Ti4+浓度为0.50mol/L,将溶液4的pH值调节至0.5~0.8,反应形成溶胶后继续陈化8小时形成凝胶;
(2)将凝胶在100℃温度下干燥24小时,在800~900℃温度下预烧10小时,得到Lix/ 2Na(1-x)/2Sm1/2Cu3Ti4O12前驱粉体,0.05≤X≤0.20;
(3)将上述前驱粉体经球磨、造粒、压片、排胶后,升温至1040~1060℃烧结5~8小时后降温,得到低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料。
4.如权利要求3所述的低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料的制备方法,其特征在于,在步骤(1)中,所述溶液1中Sm(NO3)3·6H2O和Cu(NO3)2·3H2O的浓度分别为0.125mol/L、0.75mol/L;所述溶液2中C16H36O4Ti的浓度为1.25mol/L;所述溶液3中NaNO3和LiNO3物质量浓度范围分别为0.031~0.125mol/L、0.594~0.500mol/L。
5.如权利要求3所述的低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料的制备方法,其特征在于,在步骤(2)中,在850℃温度下预烧10小时得到Lix/2Na(1-x)/2Sm1/2Cu3Ti4O12前驱粉体。
6.如权利要求3所述的低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料的制备方法,其特征在于,在步骤(3)中,将球磨后的前驱粉体与5wt%的PVA粘合剂混合进行造粒,用干压法将粉体颗粒压制成圆片。
7.如权利要求6所述的低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料的制备方法,其特征在于,在步骤(3)中,所述烧结温度为1050℃,烧结时间为8小时。
8.如权利要求7所述的低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料的制备方法,其特征在于,在步骤(3)中,所述升温过程为:用300分钟升温至500℃,保温1小时,以2℃/分钟升温速率升温至烧结温度;所述降温过程为:以2℃/分钟降温速率降温至800℃,随炉自然冷却至常温。
CN201810710417.5A 2018-07-02 2018-07-02 一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备方法 Pending CN108751977A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810710417.5A CN108751977A (zh) 2018-07-02 2018-07-02 一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810710417.5A CN108751977A (zh) 2018-07-02 2018-07-02 一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN108751977A true CN108751977A (zh) 2018-11-06

Family

ID=63975451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810710417.5A Pending CN108751977A (zh) 2018-07-02 2018-07-02 一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108751977A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121068A (ja) * 2000-09-15 2002-04-23 Korea Inst Of Science & Technology 超微粒チタン酸バリウム誘電体セラミックスの製造方法
CN1568295A (zh) * 2001-10-12 2005-01-19 纳幕尔杜邦公司 含有稀土、钇或铋元素的钛酸铜钠组合物
CN103992102A (zh) * 2014-05-13 2014-08-20 陕西师范大学 一种采用溶胶凝胶法制备钛酸铜钇巨介电陶瓷材料的方法
CN106699166A (zh) * 2016-12-07 2017-05-24 西安理工大学 锂‑钠共掺杂的巨介电陶瓷及其制备方法
CN107573058A (zh) * 2017-09-28 2018-01-12 天津大学 一种基于溶胶凝胶法制备钛酸铜镧铋钠介电材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121068A (ja) * 2000-09-15 2002-04-23 Korea Inst Of Science & Technology 超微粒チタン酸バリウム誘電体セラミックスの製造方法
CN1568295A (zh) * 2001-10-12 2005-01-19 纳幕尔杜邦公司 含有稀土、钇或铋元素的钛酸铜钠组合物
CN103992102A (zh) * 2014-05-13 2014-08-20 陕西师范大学 一种采用溶胶凝胶法制备钛酸铜钇巨介电陶瓷材料的方法
CN106699166A (zh) * 2016-12-07 2017-05-24 西安理工大学 锂‑钠共掺杂的巨介电陶瓷及其制备方法
CN107573058A (zh) * 2017-09-28 2018-01-12 天津大学 一种基于溶胶凝胶法制备钛酸铜镧铋钠介电材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘展晴: "制备技术及A位调控对LCTO基巨介电陶瓷电学行为影响的研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Yao et al. Nb‐Doped 0.9 BaTiO 3–0.1 (Bi 0.5 Na 0.5) TiO 3 Ceramics with Stable Dielectric Properties at High Temperature
CN106699170B (zh) 一种钛酸锶基无铅高储能密度高储能效率陶瓷材料及其制备方法
CN105801112A (zh) Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法
CN108558399A (zh) 一种低温烧结高介电性能y5v型陶瓷电容器介质材料及其制备方法
CN109553411A (zh) 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法
CN109265162A (zh) 一种高性能巨介电常数介质材料
CN109456054A (zh) 一种低介电损耗bnt基无铅热释电陶瓷材料及其制备方法
CN107827452A (zh) 一种利用空气淬火降低钛酸铜钙陶瓷损耗的方法
Ding et al. Electrical properties of Y-and Mn-doped BaTiO3-based PTC ceramics
CN103992102B (zh) 一种采用溶胶凝胶法制备钛酸铜钇巨介电陶瓷材料的方法
CN113045307B (zh) 一种高介电低损耗钛酸钡基陶瓷及其制备方法
CN104098330B (zh) 采用后退火工艺制备高性能钛酸锶钡热释电陶瓷的方法
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN107827451A (zh) 一种利用水淬火降低钛酸铜钙陶瓷损耗的方法
CN107285760A (zh) 一种低损耗巨介电常数陶瓷材料的制备方法
CN106495688B (zh) 一种兼具场致增强热释电性能和宽温区电卡效应新型陶瓷材料及其制备方法
Yang et al. Dielectric properties and high-temperature dielectric relaxation of tungsten-bronze structure ceramics Ba 2 GdFeNbTa 3 O 15
CN108751977A (zh) 一种低介电损耗的钛酸铜钐锂钠巨介电陶瓷材料及其制备方法
CN104710171B (zh) 一种高储能密度钛酸锶铋基复相陶瓷及其制备方法
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN103708826A (zh) 低介电损耗钛酸锶钡热释电陶瓷及其制备方法
CN103992103B (zh) 二元系钛酸铜钇-钛酸锶巨介电陶瓷材料及其制备方法
CN102219506A (zh) 稀土Nd和SiO2掺杂SrTiO3基介质陶瓷及其制备方法
CN104725036B (zh) 一种高温低损耗钛酸锶钡基储能陶瓷及其制备方法
CN108178628A (zh) 一种制备低损耗巨介电常数介质陶瓷材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106

RJ01 Rejection of invention patent application after publication