CN108736063A - 锡基掺铋石榴石型固体电解质材料的制备方法 - Google Patents

锡基掺铋石榴石型固体电解质材料的制备方法 Download PDF

Info

Publication number
CN108736063A
CN108736063A CN201810563060.2A CN201810563060A CN108736063A CN 108736063 A CN108736063 A CN 108736063A CN 201810563060 A CN201810563060 A CN 201810563060A CN 108736063 A CN108736063 A CN 108736063A
Authority
CN
China
Prior art keywords
bismuth
lithium
lanthanum
compound
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810563060.2A
Other languages
English (en)
Inventor
李友芬
胡书乔
杨儒
徐杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute for Advanced Materials Beijing University of Chemical Technology
Original Assignee
Changzhou Institute for Advanced Materials Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Institute for Advanced Materials Beijing University of Chemical Technology filed Critical Changzhou Institute for Advanced Materials Beijing University of Chemical Technology
Priority to CN201810563060.2A priority Critical patent/CN108736063A/zh
Publication of CN108736063A publication Critical patent/CN108736063A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种掺杂Bi5+的锡基石榴石型固体电解质材料及其制备方法。材料的化学成分为Li7‑xLa3Sn2‑xBixO12,其中0<x<2。分别称取锂化合物、镧化合物、锡化合物和铋化合物,进行混合球磨;将球磨后的材料进行预烧;对预烧后的材料研磨成粉、过筛,并压片制样;将制得的样品再次烧结,得到高电导率立方相石榴石型结构的电解质材料。本发明工艺简单,合成温度低,具有较好的电化学稳定性,较宽的电化学窗口,低的电子电导,是一种理想的高电导的固体电解质材料。

Description

锡基掺铋石榴石型固体电解质材料的制备方法
技术领域
本发明涉及新能源材料制备技术,具体涉及锡基掺铋石榴石型固体电解质材料制备方法。
背景技术
近年来随着电动汽车的快速发展以及电网储能的发展,人们对于较宽使用温度范围、高能量密度和高安全性的二次电池的需求更加迫切。商业化的锂离子电池普遍采用有机液态电解液,但是有机液态电解液具有挥发性和易燃性。固态电解质可以避免液态电解液所带来的一系列安全问题而备受关注,采用固体电解质取代液态电解液的全固态电池具有以下优势:安全性能高、能量密度高、循环寿命长、工作温度范围宽、电化学窗口宽、具有柔性。
固体电解质根据材料的组成可以分为无机固体电解质和聚合物固体电解质材料。无机固体电解质较聚合物电解质具有更高的机械性能和热稳定性,确保了全固态电池具有更广泛的应用领域。无机固体电解质具有以下几个方面的优点:(1)无机固体电解质中不存在液态电解液,不存在电解液泄露引起的安全问题。(2)无机固态电解质具有宽的工作温度范围,可用于高温和低温等较恶劣的工作环境。(3)无机固体电解质具有较宽的电化学窗口,一般无机固体电解质的电化学窗口在5V以上,可以适用于更多的电极材料。(4)无机固体电解质具有高的电化学稳定性,电解质与电极材料的副反应较为缓慢,保证电池具有较好的循环稳定性。(5)无机固体电解质具有优异的机械加工性能,制作简单,可以制成任意需要的性状。
目前,常见的氧化物固体电解质主要包括:钠快离子导体型结构、锂快离子导体型结构、石榴石型结构和钙钛矿型结构。而石榴石结构由于制备温度低,离子电导率高为人们所关注。理想的石榴石型结构的通式为A3B2(XO)3,其结构主要有四方相和立方相,通过调节A和B阳离子的化合价获得立方相的石榴石,从而提高室温下离子电导率。不同的化学计量的石榴石型锂离子导体如文献:Thangadurai V,Narayanan S,Pinzaru D.ChemicalSociety Reviews,2014,43(13):4714报道,Li3Ln3Te2O12(Ln=Y,Pr,Nd,Sm),Li5La3M2O12(M=Nb,Ta,Sb),Li6ALa2M2O12(A=Mg,Ca,Sr,Ba;M=Nb,Ta)和Li7La3M2O12(M=Zr,Sn)。文献:Edmund J.Cussen,Thomas W.S.Yip,Gemma O’Neill,Michael P.O’Callaghan,Journal ofSolid State Chemistry,2011,184:470中提到,Li3Ln3Te2O12中的锂离子只存在四面体位置,因此其离子电导率较低。在石榴石型结构中,采用M5+得到Li5La3M2O12,并且可引入额外锂离子,增大离子电导率。因此,开发具有立方相的,晶体结构稳定,室温电导率高的石榴石结构固体电解质意义重大。
发明内容
本发明的目的在于提供了一种锡基掺铋固体电解质材料制备方法,本发明具体实施的技术方案如下:
1.所述方法以锂化合物、镧化合物、铋化合物、锡化合物为原料,采用高温固相法,两步烧制工艺过程。其特征在于:按配比称取锂化合物、镧化合物、锡化合物和铋化合物,进行混合球磨;将球磨后的材料进行预烧;对预烧后的材料研磨成粉,并压片制样;将制得的样品再次烧结,得到高电导率立方相石榴石型结构的锡基掺铋电解质Li7-xLa3Sn2-xBixO12材料。
2.上述1项中所述的锂化合物、镧化合物、锡化合物和铋化合物是指对应盐、氧化物及对应氢氧化物。锂化合物包括氧化锂、碳酸锂、草酸锂、醋酸镍、甲酸锂、柠檬酸锂和氢氧化锂中的一种或两种;镧化合物包括氧化镧、氯化镧、碳酸镧、草酸镧、醋酸镧和氢氧化镧中的一种或两种;锡化合物包括氧化锡、碳酸锡、草酸锡、醋酸锡、氯化亚锡和氢氧化锡中的一种或两种;铋化合物包括氧化铋、碳酸铋、硝酸铋、草酸铋、醋酸铋、柠檬酸铋和氢氧化铋中的一种或两种。
3.上述1项中所述的锡基掺铋石榴石型固体电解质材料,其化学成分为Li7- xLa3Sn2-xBixO12,其中,0<x<2.0。
4.上述1项和3项中所述的锡基掺铋石榴石型固体电解质材料中,以铋离子摩尔量为基,计算锂离子、镧离子、锡离子的摩尔比例。
5.上述1项和3项中所述的锡基掺铋石榴石型固体电解质材料中,铋离子摩尔量x为0.01-1.99。锂离子:铋离子摩尔比为(7-x):x;镧离子:铋离子摩尔比为3:x;锡离子:铋离子摩尔比为(2-x):x。
6.上述1项中所述球磨为高能机械球磨,所述的转速为300rpm-500rpm,球磨时间为5-40小时。优选转速为350rpm-450rpm,球磨时间为10-35小时,更优选转速为350rpm-400rpm,球磨时间为20-30小时。
7.上述1项中所述预烧气氛为空气,预烧温度为600-900℃,预烧时间为5-40小时。优选预烧温度为650-850℃,预烧时间为10-35小时。更优选预烧温度为700-800℃,预烧时间为10-20小时。
8.上述1项中所述研磨成粉后,选用150~500目的筛子筛选出粉末。优选用200~450目的筛子筛选出粉末。更优选用250-300目的筛子筛选出粉末。
9.上述1项所述的压片过程中,制样的压力为10-50Mpa,保压时间为1-30分钟。优选制样压力为15-40Mpa,保压时间为5-25分钟。更优选制样压力为20-30Mpa,保压时间为5-15分钟。
10.上述1项所述的再次烧结温度为700-950℃,所述的烧结时间为5-40小时。优选烧结温度为750-900℃,所述的烧结时间为10-30小时。更优选烧结温度为800-900℃,所述的烧结时间为15-20小时。
附图说明
图1为实施例1所制备的石榴石型固体电解质Li6.25La3Sn1.25Bi0.75O12的XRD图。
图2为实施例1所制备的石榴石型固体电解质Li6.25La3Sn1.25Bi0.75O12的SEM照片。
图3为实施例1所制备的石榴石型固体电解质Li6.25La3Sn1.25Bi0.75O12的交流阻抗图。
具体实施方式
实施例1
将Li2CO3、La2O3、SnO2、Bi2O5的按照如下比例进行混合,其中x=0.75,Li:Bi=6.25:0.75,La:Bi=3:0.75,Sn:Bi=1.25:0.75,采用高能球磨机球磨,转速为400rpm,时间为24小时,得到混合料。将混合料置于高温电炉中,在750℃下保温30小时进行预烧。将预烧料研磨后采用250目的筛子筛过。将所获得的粉料放置于直径为10mm的压片模具中,在30Mpa的压力下保持压力10分钟压制成片。后将其放入到高温电炉中,空气氛围,烧结温度为800℃,保温时间为24小时,即得到石榴石型电解质材料Li6.25La3Sn1.25Bi0.75O12
将实施例1中制备得到的固体电解质进行XRD分析,XRD图示于图1。图2为电解质材料Li6.25La3Sn1.25Bi0.75O12的断面SEM照片。对所制备的电解质材料Li6.25La3Sn1.25Bi0.75O12进行交流阻抗测试,测试结果示于图3,在20℃下的离子电导率为0.42×10-4S/cm,在60℃下电导率为2.25×10-4S/cm。
实施例2
将Li2O、La2(CO3)3、SnC2O4、Bi(NO3)3的按照如下比例进行混合,其中x=0.01,Li:Bi=6.99:0.01,La:Bi=3:0.01,Sn:Bi=1.99:0.01,采用高能球磨机球磨,转速为500rpm,时间为40小时,得到混合料。将混合料置于高温电炉中,在900℃下保温40小时进行预烧。将预烧料研磨后采用250目的筛子筛过。将所获得的粉料放置于直径为10mm的压片模具中,在50Mpa的压力下保持压力1分钟压制成片。后将其放入到高温电炉中,空气氛围,烧结温度为950℃,保温时间为40小时,即得到石榴石型电解质材料Li6.99La3Sn1.99Bi0.01O12
实施例3
将Li2C2O4、La(OH)3、SnCO3、(BiO)2CO3的按照如下比例进行混合,其中x=1.99,Li:Bi=5.01:1.99,La:Bi=3:1.99,Sn:Bi=0.01:1.99,采用高能球磨机球磨,转速为300rpm,时间为5小时,得到混合料。将混合料置于高温电炉中,在600℃下保温5小时进行预烧。将预烧料研磨后采用250目的筛子筛过。将所获得的粉料放置于直径为10mm的压片模具中,在10Mpa的压力下保持压力30分钟压制成片。后将其放入到高温电炉中,空气氛围,烧结温度为700℃,保温时间为5小时,即得到石榴石型电解质材料Li5.01La3Sn0.01Bi1.99O12
实施例4
将CH3COOLi、LaCl3、SnCl2、Bi2(C2O4)3.7H2O的按照如下比例进行混合,其中x=0.5,Li:Bi=6.5:0.5,La:Bi=3:0.5,Sn:Bi=1.5:0.5,采用高能球磨机球磨,转速为400rpm,时间为24小时,得到混合料。将混合料置于高温电炉中,在750℃下保温30小时进行预烧。将预烧料研磨后采用250目的筛子筛过。将所获得的粉料放置于直径为10mm的压片模具中,在30Mpa的压力下保持压力10分钟压制成片。后将其放入到高温电炉中,空气氛围,烧结温度为800℃,保温时间为36小时,即得到石榴石型电解质材料Li6La3SnBiO12
实施例5
将LiOH、La2(C2O4)3、Sn(CH3COO)2、C6H5BiO7的按照如下比例进行混合,其中x=1.45,Li:Bi=5.55:1.45,La:Bi=3:1.45,Sn:Bi=0.55:1.45,采用高能球磨机球磨,转速为400rpm,时间为24小时,得到混合料。将混合料置于高温电炉中,在750℃下保温30小时进行预烧。将预烧料研磨后采用250目的筛子筛过。将所获得的粉料放置于直径为10mm的压片模具中,在30Mpa的压力下保持压力10分钟压制成片。后将其放入到高温电炉中,空气氛围,烧结温度为800℃,保温时间为24小时,即得到石榴石型电解质材料Li5.55La3Sn0.55Bi1.45O12
实施例6
将CHLiO2·H2O、La(CH3COO)3、Sn(OH)2、Bi(CH3COO)3的按照如下比例进行混合,其中x=1.75,Li:Bi=5.25:1.75,La:Bi=3:1.75,Sn:Bi=0.25:1.75,采用高能球磨机球磨,转速为400rpm,时间为24小时,得到混合料。将混合料置于高温电炉中,在750℃下保温30小时进行预烧。将预烧料研磨后采用250目的筛子筛过。将所获得的粉料放置于直径为10mm的压片模具中,在30Mpa的压力下保持压力10分钟压制成片。后将其放入到高温电炉中,空气氛围,烧结温度为750℃,保温时间为36小时,即得到石榴石型电解质材料Li6.5La3Sn1.5Bi0.5O12
实施例7
将C6H5Li3O7、LaCl3、SnCl2、Bi(OH)3的按照如下比例进行混合,其中x=0.5,Li:Bi=6.5:0.5,La:Bi=3:0.5,Sn:Bi=1.5:0.5,采用高能球磨机球磨,转速为400rpm,时间为24小时,得到混合料。将混合料置于高温电炉中,在750℃下保温30小时进行预烧。将预烧料研磨后采用250目的筛子筛过。将所获得的粉料放置于直径为10mm的压片模具中,在30Mpa的压力下保持压力10分钟压制成片。后将其放入到高温电炉中,空气氛围,烧结温度为800℃,保温时间为36小时,即得到石榴石型电解质材料Li6La3SnBiO12
以上已对本发明的较佳实施例进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (5)

1.高离子电导率的石榴石型电解质材料的制备方法,其特征在于,包括以下步骤:将锂化合物、镧化合物、锡化合物和铋化合物进行混合球磨;将混合得到的混合料,在高温电炉进行预烧处理;得到的预烧料研磨,过筛,进行压片制样;之后再次烧结,得到高离子电导率的电解质材料。
2.根据权利要求1所述的高离子电导率石榴石型电解质材料,其特征在于,其化学成分为Li7-xLa3Sn2-xBixO12,其中0<x<2;上述1项中所述的锡基掺铋石榴石型固体电解质材料中,铋离子摩尔量x为0.01-1.99,锂离子:铋离子摩尔比为(7-x):x,镧离子:铋离子摩尔比为3:x,锡离子:铋离子摩尔比为(2-x):x。
3.根据权利要求1所述的制备方法,其特征在于,所述的锂化合物包括氧化锂、碳酸锂、草酸锂、醋酸镍、甲酸锂、柠檬酸锂和氢氧化锂中的一种或两种;镧化合物包括氧化镧、氯化镧、碳酸镧、草酸镧、醋酸镧和氢氧化镧中的一种或两种;锡化合物包括氧化锡、碳酸锡、草酸锡、醋酸锡、氯化亚锡和氢氧化锡中的一种或两种;铋化合物包括氧化铋、碳酸铋、硝酸铋、草酸铋、醋酸铋、柠檬酸铋和氢氧化铋中的一种或两种。
4.根据权利要求1所述的制备方法,其特征在于,所述的球磨为高能机械球磨,转速为300rpm~500rpm,所述的球磨时间为5~40小时,制样的压力为10~50Mpa,保压时间为1~30分钟,预烧温度为600-900℃,预烧时间为5~40小时,所述的再次烧结温度为700℃~950℃,烧结时间为5~40小时。
5.根据权利要求1所述的高离子电导率的石榴石型电解质材料在锂、钠、钾离子电池、超级电容器和电催化中作为电极材料的用途。
CN201810563060.2A 2018-06-04 2018-06-04 锡基掺铋石榴石型固体电解质材料的制备方法 Pending CN108736063A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810563060.2A CN108736063A (zh) 2018-06-04 2018-06-04 锡基掺铋石榴石型固体电解质材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810563060.2A CN108736063A (zh) 2018-06-04 2018-06-04 锡基掺铋石榴石型固体电解质材料的制备方法

Publications (1)

Publication Number Publication Date
CN108736063A true CN108736063A (zh) 2018-11-02

Family

ID=63931771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810563060.2A Pending CN108736063A (zh) 2018-06-04 2018-06-04 锡基掺铋石榴石型固体电解质材料的制备方法

Country Status (1)

Country Link
CN (1) CN108736063A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270641A (zh) * 2010-12-29 2013-08-28 罗伯特·博世有限公司 基于固体电解质的锂-硫-电池
WO2014038521A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 固体電解質セラミックス材料
CN104818518A (zh) * 2015-04-17 2015-08-05 电子科技大学 一种面内各向异性Bi代石榴石磁光单晶薄膜的制备方法
KR20150125810A (ko) * 2014-04-30 2015-11-10 한국전기연구원 리튬 이차전지용 리튬 산화물-고분자 복합 전해질 및 그를 포함하는 이차전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270641A (zh) * 2010-12-29 2013-08-28 罗伯特·博世有限公司 基于固体电解质的锂-硫-电池
WO2014038521A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 固体電解質セラミックス材料
KR20150125810A (ko) * 2014-04-30 2015-11-10 한국전기연구원 리튬 이차전지용 리튬 산화물-고분자 복합 전해질 및 그를 포함하는 이차전지
CN104818518A (zh) * 2015-04-17 2015-08-05 电子科技大学 一种面内各向异性Bi代石榴石磁光单晶薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K.SARANYA ET AL.: "Li7-xLa3Sn2-xNbxO12(X=0.25~1) cubic lithium garnet", 《MATERIALS LETTERS》 *
RAMASWAMY MURUGAN ET AL.: "Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2 Bi2O12", 《MATERIALS SCIENCE AND ENGINEERING B》 *

Similar Documents

Publication Publication Date Title
Song et al. Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries
Ricote et al. Conductivity study of dense BaCexZr (0.9− x) Y0. 1O (3− δ) prepared by solid state reactive sintering at 1500° C
CA2694259C (en) Ion conductor having a garnet structure
Matsuda et al. Sintering behavior and electrochemical properties of garnet-like lithium conductor Li6. 25M0. 25La3Zr2O12 (M: Al3+ and Ga3+)
CN101014540B (zh) 化学稳定固态锂离子导体
CN109888374A (zh) 一种多掺杂的石榴石型固体电解质材料及其制备方法
Zhang et al. Recent advances on rare earths in solid lithium ion conductors
KR20070014141A (ko) 화학적으로 안정한 고체 리튬 이온 전도체
CN1582508A (zh) 二次电池的正极活性材料及其制备方法
CN110885246A (zh) 一种溶胶凝胶法制备的高电导固体电解质
CN108793987B (zh) 一种锂离子传导氧化物固体电解质及其制备方法
Zhang et al. Characterization of Sr-doped lithium lanthanum titanate with improved transport properties
Leng et al. The effect of sintering aids on BaCe0· 7Zr0· 1Y0. 1Yb0. 1O3-δ as the electrolyte of proton-conducting solid oxide electrolysis cells
WO2021014905A1 (ja) セラミックス粉末材料、セラミックス粉末材料の製造方法、及び、電池
CN108649235A (zh) 一种a位层状钙钛矿型电极材料及其制备方法
CN114824303B (zh) 一种r-p型层状中熵钙钛矿结构阴极材料及其制备方法
Liu et al. Effect of calcium doping on Sm1–xCaxBaCo2O5+ δ cathode materials for intermediate-temperature solid oxide fuel cells
Liu et al. Nd3+-deficiency double perovskite Nd1− xBaCo2O5+ δ and performance optimization as cathode materials for intermediate-temperature solid oxide fuel cells
Thangadurai et al. Effect of B-site substitution of (Li, La) TiO 3 perovskites by di-, tri-, tetra-and hexavalent metal ions on the lithium ion conductivity
Samreen et al. Advancements in perovskite‐based cathode materials for solid oxide fuel cells: a comprehensive review
CN109659602A (zh) 一种水滑石改性锂镧锆氧固体电解质及其制备方法
Dunyushkina et al. Proton-conducting alkaline earth hafnates: A review of manufacturing technologies, physicochemical properties and electrochemical performance
Salimkhani et al. A glance at the influence of different dopant elements on Li 7 La 3 Zr 2 O 12 garnets
Tang et al. A highly conductive Ce0. 8Nd0. 2O1. 9 electrolyte with double sintering aids for intermediate-temperature solid oxide fuel cells
Paydar et al. Chemically stable Dy–Y double substituted barium zirconate with high proton conductivity and improved sinterability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181102

RJ01 Rejection of invention patent application after publication