CN108735662B - 电可编程熔丝的编程方法 - Google Patents

电可编程熔丝的编程方法 Download PDF

Info

Publication number
CN108735662B
CN108735662B CN201810497511.7A CN201810497511A CN108735662B CN 108735662 B CN108735662 B CN 108735662B CN 201810497511 A CN201810497511 A CN 201810497511A CN 108735662 B CN108735662 B CN 108735662B
Authority
CN
China
Prior art keywords
programming
state
programmable fuse
physical state
electrically programmable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810497511.7A
Other languages
English (en)
Other versions
CN108735662A (zh
Inventor
于奎龙
韩坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Xinxin Semiconductor Manufacturing Co Ltd
Original Assignee
Wuhan Xinxin Semiconductor Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Xinxin Semiconductor Manufacturing Co Ltd filed Critical Wuhan Xinxin Semiconductor Manufacturing Co Ltd
Priority to CN201810497511.7A priority Critical patent/CN108735662B/zh
Publication of CN108735662A publication Critical patent/CN108735662A/zh
Priority to US16/200,146 priority patent/US10714200B2/en
Application granted granted Critical
Publication of CN108735662B publication Critical patent/CN108735662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5692Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency read-only digital stores using storage elements with more than two stable states
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive

Abstract

本发明提供一种电可编程熔丝的编程方法,利用电可编程熔丝的导电介质在不同条件下会呈现不同的物理变化的特点,采用第一编程条件将所述导电介质从初始物理状态变化到熔化扩散等第一物理状态,以把电可编程熔丝从低阻态编程到中间阻态,采用第二编程条件将所述导电介质从所述初始物理状态或所述第一物理状态变化到第二物理状态,以把电可编程熔丝从低阻态或中间阻态编程到高阻态,即通过两种不同的编程条件实现三种信息存储状态的转换,可以显著提高电可编程熔丝器件的信息存储密度和芯片面积利用率,有利于芯片尺寸缩减。

Description

电可编程熔丝的编程方法
技术领域
本发明涉及集成电路制造技术领域,尤其涉及一种电可编程熔丝的编程方法。
背景技术
电可编程熔丝(Electrically Programmable Fuse,以下简称EFUSE)是集成电路中一种能与CMOS逻辑器件兼容的一次性编程器件,具有信息存储或电路修复等应用。典型的EFUSE的结构包括阳极和阴极,以及位于阳极和阴极之间且与两者相连接的熔丝(FuseLink),EFUSE的信息存储及电路修复功能是通过熔丝的电阻值状态变化实现的,对EFUSE编程过程中,熔丝中发生电迁移或热熔断,从而使熔丝的电阻从低阻态转变为高阻态,低阻态和高阻态这两种状态构成“0”和“1”两种数字状态。
目前EFUSE的编程,只选用单一编程条件,进行一次性编程,基于EFUSE形成的信息位元只有低阻态和高阻态两种状态,与MLC(Multi-level cell)信息存储器件相比,信息存储密度低,芯片占用面积大。
发明内容
本发明的目的在于提供一种电可编程熔丝的编程方法,可以显著提高信息存储密度和芯片面积利用率,有利于芯片尺寸缩减。
为了实现上述目的,本发明提供一种电可编程熔丝的编程方法,所述电可编程熔丝中具有导电介质,所述导电介质具有初始物理状态、第一物理状态以及第二物理状态,所述编程方法包括以下步骤:
采用第一编程条件对所述电可编程熔丝进行编程,使所述导电介质从初始物理状态变化到第一物理状态,以将所述电可编程熔丝从低阻态编程到中间阻态;
采用不同于所述第一编程条件的第二编程条件对所述电可编程熔丝进行编程,使所述导电介质从初始物理状态或所述第一物理状态变化到第二物理状态,以将所述电可编程熔丝从所述低阻态或所述中间阻态编程到高阻态。
可选的,所述电可编程熔丝为多晶硅熔丝,所述导电介质为金属硅化物,所述电可编程熔丝还具有承载所述金属硅化物的多晶硅基体。
可选的,所述导电介质的初始物理状态是沉积在所述多晶硅基体上的状态,所述导电介质的第一物理状态为所述导电介质扩散到熔化的所述多晶硅基体中的状态;所述导电介质的第二物理状态为所述导电介质发生电迁移的状态。
可选的,所述金属硅化物包含镍、钨、钴、锰、钛和钽中的至少一种金属。
可选的,所述第一编程条件和所述第二编程条件的编程时间不同,且所述第一编程条件的编程时间短于所述第二编程条件的编程时间。
可选的,所述第一编程条件和所述第二编程条件均包括编程脉冲,所述第一编程条件的编程脉冲时间宽度小于所述第二编程条件的编程脉冲时间宽度。
可选的,所述第二编程条件的编程脉冲时间宽度为所述第一编程条件的编程脉冲时间宽度的两倍以上。
可选的,所述低阻态的电阻为100欧姆量级,所述中间阻态的电阻为1e4欧姆量级,所述高阻态的电阻为1e6欧姆量级。
可选的,所述电可编程熔丝包括阳极、阴极以及连接所述阳极和阴极的连接线,在对所述电可编程熔丝进行编程时,所述电可编程熔丝的阴极电连接一MOS管的开关通路的一端,所述电可编程熔丝的阳极接入一恒定的电压信号,所述MOS管的开关通路的另一端接地,所述MOS管的栅端接入所述编程脉冲。
可选的,所述电可编程熔丝还包括分别与所述阳极、阴极向电连接的接触插塞以及与相应的接触插塞电连接的金属互连线。
与现有技术相比,本发明的电可编程熔丝的编程方法,利用电可编程熔丝的导电介质在不同电力条件下会呈现不同的物理变化的特点,采用第一编程条件将所述导电介质从初始物理状态变化到熔化扩散等第一物理状态,以把电可编程熔丝从低阻态编程到中间阻态,采用第二编程条件将所述导电介质从所述初始物理状态或所述第一物理状态变化到第二物理状态,以把电可编程熔丝从低阻态或中间阻态编程到高阻态,即通过两种不同的编程条件实现三种信息存储状态的转换,可以显著提高电可编程熔丝器件的信息存储密度和芯片面积利用率,有利于芯片尺寸缩减。
附图说明
图1是本发明具体实施例的电可编程熔丝的剖面结构示意图;
图2是本发明具体实施例的电可编程熔丝的编程时的电路连接示意图;
图3是本发明具体实施例的电可编程熔丝的编程方法流程图;
图4是本发明具体实施例的第一编程条件中的编程时间和编程电压关系图;
图5是本发明具体实施例的电可编程熔丝被编程到中间阻态的透射电镜截面图;
图6是本发明具体实施例的第二编程条件中的编程时间和编程电压关系图;
图7是本发明具体实施例的电可编程熔丝被编程到高阻态的透射电镜截面图。
具体实施方式
多晶硅EFUSE是目前广泛应用的一次性编程器件,申请人通过对多晶硅EFUSE的编程机制研究发现,多晶硅EFUSE编程过程中存在中间态,在中间态的基础上可以进一步编程,从而使利用多晶硅EFUSE制造的信息位元有了低阻态、中间阻态和高阻态三种状态。在此基础上设计EFUSE存储器件,可以显著提高EFUSE存储器件的信息存储密度和芯片面积利用率,对芯片尺寸缩减具有重要意义。
基于此,本发明的电可编程熔丝的编程方法,可以实现一种Mulit-level(多层次存储)EFSUE器件设计,其利用电可编程熔丝的导电介质在不同电力条件下会呈现不同的物理变化的特点,采用不同的编程条件对电可编程熔丝进行编程,以使电可编程熔丝的导电介质的物理状态发生相应的变化,从而把电可编程熔丝从低阻态编程到中间阻态或者从低阻态或中间阻态编程到高阻态,以实现三种信息存储状态的转换,由此可以显著提高电可编程熔丝存储器件的信息存储密度和芯片面积利用率,有利于芯片尺寸缩减。
为使本发明的目的、特征更明显易懂,下面以多晶硅EFUSE为例,并结合附图对本发明的技术方案作详细的说明,然而,本发明可以用不同的形式实现,不应只是局限在所述的实施例。
请参考图1,多晶硅EFUSE是目前广泛应用的一次性编程器件,其采用多晶硅(Poly-silicon)基体100a加金属硅化物(Silicide,即导电介质)100b双层薄膜结构,即所述多晶硅基体承载所述金属硅化物。按照功能划分,所述多晶硅EFUSE的结构可以分为阳极101、阴极102以及与所述阳极101和阴极102之间的连接线(Fuse Link)103,且所述阳极101和阴极102分别通过其上方的导电插塞105连接到相应的金属互连线104上。所述多晶硅EFUSE可以采用65nm CMOS集成电路制造工艺来制造,所述金属硅化物可以包含镍(Ni)、钨(W)、钴(Co)、锰(Mn)、钛(Ti)和钽(Ta)中的至少一种金属,例如所述金属硅化物为镍硅化物(Ni-Silicide)。所述金属硅化物在不同条件下具有不同的物理状态,本实施例中,将所述金属硅化物100b在所述多晶硅基体100a上沉积形成时的状态定义为所述金属硅化物的初始物理状态,将所述多晶硅基体100a熔化、所述金属硅化物100b扩散进入所述多晶硅基体的状态定义所述金属硅化物100b的第一物理状态,将金属硅化物100b在电迁移作用下从阴极102迁移到阳极101的状态定义所述金属硅化物100b的第二物理状态。
请参考图2,在对图1所示的多晶硅EFUSE进行编程之前,先将所述多晶硅EFUSE的阴极102通过金属互连线104连接到一MOS管的开关通路(即源漏导通的通路)的一端(即源极或漏极),所述MOS管的开关通路的另一端(即漏极或源极)接地。
请参考图3,本实施例提供一种多晶硅EFUSE的编程方法,包括以下步骤:
S1,采用第一编程条件对所述多晶硅EFUSE进行编程,使所述导电介质从初始物理状态变化到第一物理状态,以将所述电可编程熔丝从低阻态编程到中间阻态。具体地,请参考图1、图2和图4,将所述多晶硅EFUSE的阳极101接入一电压信号Vprog(恒定电压信号),所述MOS管的栅端接入一编程脉冲(即一脉冲电压信号),其脉冲电压为Vgs(绝对值可以小于Vprog的绝对值),且所述编程脉冲的时间宽度为t1,即,第一编程条件包括恒定的电压信号Vprog、编程脉冲(脉冲电压值为Vgs)以及编程时间为t1(即编程脉冲时间宽度),多晶硅EFUSE在此编程过程中,如图5所示,其多晶硅基体100a会随着第一编程条件的施加而熔化,金属硅化物100b中的金属会扩散进入多晶硅基体100a中,金属硅化物100b中金属浓度降低,进而导致多晶硅EFUSE的连接线103的电阻升高,达到中间阻态,多晶硅EFUSE在低阻态下的电阻值例如是100欧姆量级,在所述中间态下的电阻值例如在1e4欧姆量级。
S2,采用不同于所述第一编程条件的第二编程条件对所述电可编程熔丝进行编程,使所述导电介质从初始物理状态或所述第一物理状态变化到第二物理状态,以将所述电可编程熔丝从所述低阻态或所述中间阻态编程到高阻态。具体地,请参考图1、图2和图6,将所述多晶硅EFUSE的阳极101接入一电压信号Vprog(恒定电压信号),所述MOS管的栅端接入另一编程脉冲(即另一脉冲电压信号),其脉冲电压为Vgs(绝对值可以小于Vprog的绝对值),且所述编程脉冲的时间宽度为t2,且t2大于t1,例如t2大于两倍的t1,即,第二编程条件包括恒定的电压信号Vprog、编程脉冲(脉冲电压值为Vgs)以及编程时间为t2(即编程脉冲时间宽度),多晶硅EFUSE在此编程过程中,随着第二编程条件的施加,金属硅化物100b中的金属在连接线103处的分布会因电迁移作用而中断,如图7所示,多晶硅电阻导致多晶硅EFUSE的电阻值升高,达到高阻态,电阻在1e6欧姆量级。
由此可见,多晶硅EFUSE的低阻态、中间阻态和高阻态分别对应多晶硅EFUSE中的金属硅化物100b的三种不同的物理状态,从而使多晶硅EFUSE具有宽的编程窗口。且具有低阻态、中间阻态和高阻态三种状态的多晶硅EFUSE器件比普通EFUSE器件的信息存储密度高50%,可以显著提高芯片面积利用率,对芯片尺寸缩减具有重要意义。
需要说明的是,首先,多晶硅EFUSE的电阻值会随连接线103的尺寸设计及工艺而变化,因此本发明的多晶硅EFUSE的电阻值不限于上述的电阻量级;其次,上述实施例中,主要是通过编程时间不同的两种编程条件实现多晶硅EFUSE三种信息存储状态的转换,但实际应用中的编程条件可以调节和优化,不限于通过编程时间实现;此外,上述实施例以多晶硅EFUSE为例,但本发明的编程方法不仅仅限于多晶硅EFUSE,还可以是其他种类EFUSE或器件,只要这些EFUSE中具有类金属硅化物的导电性能的高导电介质,且所述高导电介质在不同条件下(尤其是不同的电力条件下)能够具有不同的物理状态变化即可实现信息存储状态的区别,所述物理状态变化包括导电介质熔化的扩散和迁移。
综上所述,本发明的电可编程熔丝的编程方法,利用电可编程熔丝的导电介质在不同电力条件下会呈现不同的物理变化的特点,采用第一编程条件将所述导电介质从初始物理状态变化到熔化扩散等第一物理状态,以把电可编程熔丝从低阻态编程到中间阻态,采用第二编程条件将所述导电介质从所述初始物理状态或所述第一物理状态变化到第二物理状态,以把电可编程熔丝从低阻态或中间阻态编程到高阻态,即通过两种不同的编程条件实现三种信息存储状态的转换,可以显著提高电可编程熔丝器件的信息存储密度和芯片面积利用率,有利于芯片尺寸缩减。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (6)

1.一种电可编程熔丝的编程方法,其特征在于,所述电可编程熔丝为多晶硅熔丝,具有金属硅化物以及承载所述金属硅化物的多晶硅基体,所述金属硅化物具有初始物理状态、第一物理状态以及第二物理状态,所述初始物理状态是所述金属硅化物沉积在所述多晶硅基体上的状态,所述第一物理状态为所述金属硅化物的部分金属扩散到所述多晶硅基体中的状态,所述第二物理状态为所述金属硅化物发生电迁移且分布中断的状态;所述电可编程熔丝在所述初始物理状态为低阻态,在所述第一物理状态下为中间阻态,在所述第二物理状态下为高阻态;所述电可编程熔丝包括阳极、阴极以及连接所述阳极和阴极的连接线;
所述编程方法包括以下步骤:
采用第一编程条件对所述电可编程熔丝进行编程,使所述金属硅化物从所述初始物理状态变化到所述第一物理状态,且所述金属硅化物中的金属浓度降低,使得所述连接线处的电阻升高,以将所述电可编程熔丝从低阻态编程到中间阻态;
采用不同于所述第一编程条件的第二编程条件对所述电可编程熔丝进行编程,使所述金属硅化物从所述初始物理状态或所述第一物理状态变化到所述第二物理状态,且所述金属硅化物的金属在所述连接线处的分布因电迁移作用而中断,以将所述电可编程熔丝从所述低阻态或所述中间阻态编程到高阻态;
其中,所述第一编程条件和所述第二编程条件均在所述多晶硅熔丝的阳极上接入同一恒定的电压信号,且所述第一编程条件和所述第二编程条件采用脉冲电压相同的不同编程脉冲,所述第一编程条件的编程脉冲的时间宽度小于所述第二编程条件的编程脉冲的时间宽度,以使得所述第一编程条件的编程时间短于所述第二编程条件的编程时间。
2.如权利要求1所述的编程方法,其特征在于,所述金属硅化物包含镍、钨、钴、锰、钛和钽中的至少一种金属。
3.如权利要求1所述的编程方法,其特征在于,所述第二编程条件的编程脉冲时间宽度为所述第一编程条件的编程脉冲时间宽度的两倍以上。
4.如权利要求1所述的编程方法,其特征在于,所述低阻态的电阻为100欧姆量级,所述中间阻态的电阻为1e4欧姆量级,所述高阻态的电阻为1e6欧姆量级。
5.如权利要求1所述的编程方法,其特征在于,在对所述电可编程熔丝进行编程时,所述电可编程熔丝的阴极电连接一MOS管的开关通路的一端,所述电可编程熔丝的阳极接入所述恒定的电压信号,所述MOS管的开关通路的另一端接地,所述MOS管的栅端接入所述编程脉冲。
6.如权利要求1所述的编程方法,其特征在于,所述电可编程熔丝还包括分别与所述阳极、阴极电连接的接触插塞以及与相应的接触插塞电连接的金属互连线。
CN201810497511.7A 2018-05-22 2018-05-22 电可编程熔丝的编程方法 Active CN108735662B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810497511.7A CN108735662B (zh) 2018-05-22 2018-05-22 电可编程熔丝的编程方法
US16/200,146 US10714200B2 (en) 2018-05-22 2018-11-26 Method for programming electrically programmable fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810497511.7A CN108735662B (zh) 2018-05-22 2018-05-22 电可编程熔丝的编程方法

Publications (2)

Publication Number Publication Date
CN108735662A CN108735662A (zh) 2018-11-02
CN108735662B true CN108735662B (zh) 2021-04-16

Family

ID=63934965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810497511.7A Active CN108735662B (zh) 2018-05-22 2018-05-22 电可编程熔丝的编程方法

Country Status (2)

Country Link
US (1) US10714200B2 (zh)
CN (1) CN108735662B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060102982A1 (en) * 2004-11-12 2006-05-18 International Business Machines Corporation Antifuse structure having an integrated heating element
US7851885B2 (en) * 2007-03-07 2010-12-14 International Business Machines Corporation Methods and systems involving electrically programmable fuses
US20120314473A1 (en) * 2010-08-20 2012-12-13 Chung Shine C Multiple-State One-Time Programmable (OTP) Memory to Function as Multi-Time Programmable (MTP) Memory
CN104538056A (zh) * 2015-01-05 2015-04-22 武汉新芯集成电路制造有限公司 一种电熔丝感应放大器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483736B2 (en) * 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6242790B1 (en) * 1999-08-30 2001-06-05 Advanced Micro Devices, Inc. Using polysilicon fuse for IC programming
US6584029B2 (en) * 2001-08-09 2003-06-24 Hewlett-Packard Development Company, L.P. One-time programmable memory using fuse/anti-fuse and vertically oriented fuse unit memory cells
US6853049B2 (en) * 2002-03-13 2005-02-08 Matrix Semiconductor, Inc. Silicide-silicon oxide-semiconductor antifuse device and method of making
US6798684B2 (en) * 2002-04-04 2004-09-28 Broadcom Corporation Methods and systems for programmable memory using silicided poly-silicon fuses
US6750530B1 (en) * 2003-06-03 2004-06-15 International Business Machines Corporation Semiconductor antifuse with heating element
JP4127678B2 (ja) * 2004-02-27 2008-07-30 株式会社東芝 半導体装置及びそのプログラミング方法
US7646630B2 (en) * 2004-11-08 2010-01-12 Ovonyx, Inc. Programmable matrix array with chalcogenide material
US7110313B2 (en) * 2005-01-04 2006-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple-time electrical fuse programming circuit
US7723820B2 (en) * 2006-12-28 2010-05-25 International Business Machines Corporation Transistor based antifuse with integrated heating element
US8223575B2 (en) * 2007-03-08 2012-07-17 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-level electrical fuse using one programming device
US20090135640A1 (en) * 2007-11-28 2009-05-28 International Business Machines Corporation Electromigration-programmable semiconductor device with bidirectional resistance change
US8520425B2 (en) * 2010-06-18 2013-08-27 Sandisk 3D Llc Resistive random access memory with low current operation
US8693233B2 (en) * 2010-06-18 2014-04-08 Sandisk 3D Llc Re-writable resistance-switching memory with balanced series stack
US9042153B2 (en) * 2010-08-20 2015-05-26 Shine C. Chung Programmable resistive memory unit with multiple cells to improve yield and reliability
US10229746B2 (en) * 2010-08-20 2019-03-12 Attopsemi Technology Co., Ltd OTP memory with high data security
JP2012212852A (ja) * 2011-03-24 2012-11-01 Sony Corp 電気ヒューズ、半導体装置、及び、電気ヒューズの情報書き込み方法
JP6556435B2 (ja) * 2014-09-17 2019-08-07 東芝メモリ株式会社 半導体集積回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060102982A1 (en) * 2004-11-12 2006-05-18 International Business Machines Corporation Antifuse structure having an integrated heating element
US7851885B2 (en) * 2007-03-07 2010-12-14 International Business Machines Corporation Methods and systems involving electrically programmable fuses
US20120314473A1 (en) * 2010-08-20 2012-12-13 Chung Shine C Multiple-State One-Time Programmable (OTP) Memory to Function as Multi-Time Programmable (MTP) Memory
CN104538056A (zh) * 2015-01-05 2015-04-22 武汉新芯集成电路制造有限公司 一种电熔丝感应放大器

Also Published As

Publication number Publication date
US10714200B2 (en) 2020-07-14
US20190362801A1 (en) 2019-11-28
CN108735662A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
US7402847B2 (en) Programmable logic circuit and method of using same
US11404479B2 (en) Memory including a selector switch on a variable resistance memory cell
CN100573896C (zh) 具有串联的电阻节点的存储器件
CN1983615B (zh) 相变存储器件及其制造方法
US7646630B2 (en) Programmable matrix array with chalcogenide material
US20030156447A1 (en) Programming circuit for a programmable microelectronic device, system including the circuit, and method of forming the same
US20080006812A1 (en) Programmable metallization cell structures including an oxide electrolyte, devices including the structure and method of forming same
US20060034116A1 (en) Cross point array cell with series connected semiconductor diode and phase change storage media
CN104396014A (zh) 以反熔丝为特征的集成电路器件及其制造方法
US7286388B1 (en) Resistive memory device with improved data retention
JP2020013970A (ja) セレクタデバイスのためのテルル不含有のヒ素、セレン、及びゲルマニウムカルコゲン化物並びにそれを用いたメモリデバイス
US20230209816A1 (en) One-time-programmable memory device including an antifuse structure and methods of forming the same
US20170271406A1 (en) Superlinear selectors
TW201312704A (zh) 包含具有反熔絲組件之非揮發性記憶體結構之電子器件及其形成方法
CN104464816B (zh) 单次可编程记忆体及其操作方法和编程方法以及电子系统
CN108735662B (zh) 电可编程熔丝的编程方法
US9070858B2 (en) Method, system, and device for storage cell, such as for memory
US11942150B2 (en) RRAM circuit
US11978509B2 (en) Semiconductor memory devices with differential threshold voltages
WO2003058638A1 (en) Programming circuit for a programmable microelectronic device, system including the circuit, and method of forming the same
US20050258505A1 (en) Mixed implantation on polysilicon fuse for CMOS technology
JPS6249651A (ja) アンチヒユ−ズ、その製法、電気的にプログラム可能なメモリ・セル、メモリ・セルをプログラムする方法
CN111029363A (zh) 一种电阻式存储器及其制备方法
Tada et al. Three-terminal nonvolatile resistive-change device integrated in Cu-BEOL
US7782662B2 (en) Storage device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant