CN108722456A - 一种球形钒磷氧催化剂的制备方法 - Google Patents

一种球形钒磷氧催化剂的制备方法 Download PDF

Info

Publication number
CN108722456A
CN108722456A CN201710262155.6A CN201710262155A CN108722456A CN 108722456 A CN108722456 A CN 108722456A CN 201710262155 A CN201710262155 A CN 201710262155A CN 108722456 A CN108722456 A CN 108722456A
Authority
CN
China
Prior art keywords
vanadium
catalyst
reaction
mixed solution
method described
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710262155.6A
Other languages
English (en)
Other versions
CN108722456B (zh
Inventor
薛冬
吕振辉
白富栋
李政
张通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Dalian Petrochemical Research Institute Co ltd
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Dalian Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201710262155.6A priority Critical patent/CN108722456B/zh
Publication of CN108722456A publication Critical patent/CN108722456A/zh
Application granted granted Critical
Publication of CN108722456B publication Critical patent/CN108722456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/60Two oxygen atoms, e.g. succinic anhydride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)

Abstract

本发明公开了一种球形钒磷氧催化剂的制备方法,该方法在制备钒磷氧化物粉末过程中采用了两种离子液体,并在粉末成型过程中将金属助剂以梯度分布方式加入,得到具有双重孔道分布和金属助剂梯度分布的球形钒磷氧催化剂。本发明的方法得到的钒磷氧催化剂具有双重孔道分布,梯度增加分布,可以有效改善催化剂表面酸性、提高活性金属利用率,减缓了正丁烷氧化制顺酐反应过程中催化剂的失活速度,从而提高催化剂的整体性能。

Description

一种球形钒磷氧催化剂的制备方法
技术领域
本发明涉及一种球形钒磷氧催化剂的制备方法,该钒磷氧催化剂适合用作正丁烷氧化制顺酐反应的催化剂。
背景技术
顺丁烯二酸酐简称顺酐,又名马来酸酐,是一种重要的有机化工原料和精细化工产品,是目前世界上仅次于苯酐和醋酐的第三大酸酐,开发利用前景十分广阔。
顺酐生产的三种基本路线有:苯氧化法、丁烷氧化法、丁烯(C4馏分)氧化法。用正丁烷为原料生产顺酐技术由于具有原料价廉,环境污染小,顺酐制造成本低的优点,目前已经成为顺酐生产的主要路线。正丁烷选择氧化制顺酐是目前唯一实现工业应用化的低碳烷烃选择氧化反应,催化剂是工艺的关键,钒磷氧(VPO)催化剂是该反应最有效的催化剂。
VPO催化剂是一种具有复杂微观结构的复合氧化物催化剂,其各物相都是由前驱体VOHPO4·0.5H2O经活化转化而来的,前驱体的晶貌和晶粒尺寸直接影响催化剂的晶貌和物相组成。催化剂的催化活性与前驱体制备方法有很大关系,其制备过程对催化性能有非常大的影响。为了提高钒磷氧催化剂的活性和选择性、提高现有装置的经济效益,人们对其制备方法进行了深入研究。
USP4,632,915提出了一种钒磷氧催化剂制备方法,在带有回流冷却器的搅拌反应釜中,冷却下加入异丁醇、磷酸(100%)、五氧化二钒、氯化锂及铁粉,再通入氯化氢气体,然后在102℃的条件下回流大于2.5小时,得到催化剂前驱体,然后经过干燥,焙烧,成型,活化后制备出钒磷氧催化剂。该催化剂的催化活性高,丁烷转化率>78.1%,顺酐摩尔收率为54.5%。
CN1090224A提出了一种提高钒磷氧催化剂性能的制备方法,将五氧化二钒和硫酸锌置于一个带搅拌器和球形回流冷凝器的三口瓶中,加入适量浓硫酸和醇类溶剂进行混合,加热回流2小时,然后滴加磷酸溶液,继续回流8小时;再向瓶中滴加第四组分或其他稀土金属化合物或过渡金属化合物,回流5 小时,过滤后得到湖兰色的催化剂前驱体。成型后采用固定床管式反应器进行催化剂活化和评价试验:丁烷转化率>90%,顺酐摩尔收率为62%。
【“添加助剂Mo对VPO催化剂制顺酐催化性能的影响”,蒋大林等,内蒙古石油化工,2006,9:25~27】中描述了一种VPO催化剂的制备方法。将一定量的V2O5加入到苯甲醇溶剂中,按一定原子比加入Mo、Zr、Cr、Co等金属元素,用异丁醇作还原剂,在回流温度下反应6h,再按原子比V:P=1:1.2的比例滴加一定量的85%的H3PO4,继续加热反应6h,得到墨绿色溶液。再将该溶液过滤、洗涤,然后将蒸发后的溶液放入到烘箱中,在110℃的温度下干燥,可得到墨绿色的催化剂前驱体。前驱体粉末经成型后,在体积分数为1.5%正丁烷与空气的混合气,活化空速为1500h-1,反应温度为400℃下反应活化24小时后,测得顺酐的收率在60%以上。
上述方法中,在合成过程中都引入了有机溶剂,不可避免的在催化剂中引入了不利的杂质,并且使用的溶剂和还原剂热稳定性低,具有易挥发的缺点,容易产生大量有毒有害的废液、废气,造成环境污染。
发明内容
针对现有技术中钒磷氧催化剂的制备中使用过多的有机溶剂,不仅引入杂质,还造成环境污染的不足,本发明提供了一种球形钒磷氧催化剂的制备方法。该方法采用离子液体作为溶剂和还原剂,有效地降低了溶剂和还原剂的用量,减少了环境污染,并对引入的助剂采用梯度分布,提高活性金属利用率,减缓了催化反应过程中催化剂的失活速度。
本发明提供所述的球形钒磷氧催化剂的制备方法,包括以下步骤:
(1)将M1和M2加入水中,搅拌,加热,恒温反应,反应结束后,冷却,离心,过滤,得到离子液体I;
所述M1为四氟硼酸铵、四氟硼酸钠、四氟硼酸钾、六氟磷酸铵、六氟磷酸钠或六氟磷酸钾中的至少一种;
所述M2具有通式为(R1R2R3R4)N+Z-的结构,其中R1、R2、R3和R4分别独立地选自H或C1~C4的烷基,且R1、R2、R3和R4的C原子之和≤4,Z为卤素,为F、Cl或Br中的一种;
将M3和M4混合,恒温反应,得到中间产物,将其冷却、洗涤、干燥后加入到丙酮中,再加入M1,室温搅拌反应,抽滤,洗涤,洗涤液与滤液合并,用干燥剂干燥后,旋转蒸发出丙酮和水分,得到离子液体Ⅱ;
所述M3为咪唑、烷基咪唑、吡啶、烷基吡啶中的至少一种;
所述M4为卤代烷基醇,具有通式为Z(CH2)nCH2OH、Z(CH2)nCHOHCH2OH或Z(CH2)nCHOHCH2CH2OH的结构,其中n为0~9的整数,Z为卤素,为F、Cl或Br中的一种;
(2)离子液体I和五氧化二钒混合,升温到95~130℃回流反应2~4h;通入浓磷酸,继续反应4~6h,通入离子液体II继续反应4~8h,经过滤、干燥和焙烧,得到钒磷氧化物粉末;
(3)配制金属助剂的可溶性盐溶液,按其中的金属元素计浓度分别为1.0~3.0mol/L、4.0~10.0mol/L、15.0~20.0mol/L,所述金属助剂选自Co、Ni、Zn、Bi、Zr、Cu、Li、K、Ca、Mg、Ti、La、Mo、Nb、B、Fe、Cr和Ce中的至少一种,将离子液体I分别与上述三种浓度的可溶性盐溶液按(2~12)g:(10~30)mL的比例混合得到混合溶液I、混合溶液II、混合溶液III;
(4)将步骤(2)得到的钒磷氧化物粉末置于转盘成型机内,在其成型过程中分别将混合溶液I、混合溶液II、混合溶液III喷洒到转盘内的粉末上,其中按照预设的球形催化剂颗粒半径为R,在形成平均半径为1/4R的颗粒前喷洒混合溶液I,在形成平均半径为1/2R的颗粒前喷洒混合溶液II,在最后阶段喷洒混合溶液III,最后经干燥、焙烧、活化得到球形钒磷氧催化剂。
进一步的,所述M1优选为六氟磷酸铵和/或四氟硼酸铵。
进一步的,所述M2的通式中,R1、R2、R3和R4分别独立地选自H、甲基或乙基,Z优选为氯,更为优选地,所述M2选自二甲基氯化铵和/或二乙基氯化铵。
进一步的,所述M4最优选为氯乙醇。
本发明方法中,步骤(1)中M1与M2的摩尔比为1:1~1:2,反应温度为60~150℃,优选70~100℃,恒温反应时间为1~4h,优选1~2h。
本发明方法中,步骤(1)中M3与M4的摩尔比为1:1~1:2,反应温度为70~100℃,优选70~90℃,恒温反应时间为20~30h,优选20~24h。
本发明方法中,步骤(1)中M3和M4混合得到的中间产物干燥温度为60℃~100℃,优选70℃~90℃;干燥时间为24~50h,优选30~48h。
本发明方法中,步骤(1)中所述中间产物与M1的重量比为0.5:1~3:1,优选1:1~2:1;所述中间产物与丙酮的重量比为0.1:1~1:1,优选0.2:1~0.5:1。
本发明方法中,步骤(2)中所述的离子液体I与五氧化二钒的重量比为5:1~15:1;离子液体II与五氧化二钒的重量比为1:1~10:1。
本发明方法中,步骤(2)所述的浓磷酸的质量百分浓度为85%~100%;浓磷酸的加入量以体系内磷与钒的摩尔比计为0.85:1~1.35:1。
本发明方法中,步骤(2)所述的干燥条件为:在95~170℃温度下干燥8~12h;所述的焙烧条件为:在200~280℃温度下焙烧4~8h。
本发明方法中,步骤(3)中三种金属助剂的可溶性盐溶液的浓度分别进一步优选为:1.0~2.0mol/L、4~6mol/L、16~20mol/L。
本发明方法中,步骤(4)中转盘成型机的操作条件为:转盘的倾角为40~70º,优选40~60º;转盘的转速为10~20rpm;物料在转盘内的三个阶段的成型时间为每阶段10~30min。
本发明方法中,步骤(4)中所述的活化在氮气/空气的混合气、水蒸气/空气的混合气或丁烷/空气的混合气的一种或几种组合的氛围下进行,活化温度为350~450℃,优选375~425℃;活化时间为5~40 h,优选12~20h。
本发明方法中,步骤(4)中所述的干燥方式采用离心式喷雾干燥,转速为10000~15000r/min,电加热最大功率为10~100kW,加料速度为4~10L/h,干燥温度为90~150℃,优选100~120℃;干燥时间为1~5h,优选2~4h;所述的焙烧温度为200~280℃,优选220~250℃,焙烧时间为2~6h,优选2~4h。
本发明方法中,步骤(3)中所述活化的方法为:将球形前驱体置于一个带有活化气氛的管式焙烧炉中。活化气氛为丁烷/空气的混合气(丁烷体积浓度为0.5%~1.5%,最好是0.8%~1.2%),或是空气/水蒸气混合气(水蒸气体积浓度为25%~75%,最好是35%~55%)、或是氮气/水蒸气混合气(水蒸气体积浓度为25%~75%,最好是35%~55%)。将活化温度从室温升温到350~450℃,优选375~425℃;保持活化时间一般为5~40h,优选为12~20h。活化过程结束,即得到所述球形钒磷氧催化剂。
采用本发明的上述方法制备的球形钒磷氧催化剂中(VO)2P2O7以体积计其含量为80%~95%。所述球形钒磷氧催化剂中助剂浓度(以金属助剂元素计)从催化剂颗粒中心到外表面逐渐增加,其中中心到1/4R处助剂金属原子为V原子的0~0.04倍,1/4R到1/2R处助剂金属原子为V原子的0.06~0.10倍,1/2R到表面处助剂金属原子为V原子的0.12~0.16倍,其中R为球形钒磷氧催化剂颗粒的半径。作为优选,本发明制备的球形钒磷氧催化剂的总直径为1.0~1.5mm,其比表面积为50~70m2/g,孔容为0.05~0.1mL/g。
另外,本发明在制备过程中采用两种离子液体,得到的球形钒磷氧催化剂具有孔径为10~20nm和20~35nm的双重孔道分布,其中10~20nm的孔道占总孔容29%~36%,20~35nm的孔道占总孔容的34%~45%。
本发明所述的球形钒磷氧催化剂可用于正丁烷氧化制顺酐的反应中作为催化剂,正丁烷转化率高,顺酐选择性好。其中所述正丁烷氧化制顺酐的反应可以采取固定床、流化床或移动床反应方式;所述正丁烷氧化制顺酐的反应条件一般为:反应温度380~450℃,压力为常压~0.5MPa,正丁烷混合气空速为1000~3500h-1,正丁烷浓度为1.0%~1.8%(体积百分比)。
与现有技术相比较,本发明的钒磷氧催化剂及其制备方法具有以下的特点:
1、本发明球形钒磷氧催化剂含有双重孔结构,孔道更加丰富,比表面积有所增加,反应分子在孔道中的扩散加快,而且可接触的活性位点也增多,因此孔道利用率提高。同时由于丰富的双重孔道,分子扩散路径缩短,积炭失活速率也会减缓,而且大分子也易扩散。该钒磷氧催化剂合用作正丁烷氧化制顺酐反应中的催化剂,这样可有效延长催化剂寿命,提高催化剂的综合性能。
2、本发明方法中,通过在合成过程中加入两种离子液体,不同的离子液体具有不同的空间大小,使得所制备的催化剂前具有不同大小的双重孔道结构。同时采用羟基离子液体直接还原制备钒磷氧催化剂,与普通方法相比,有效地降低了还原剂的用量。常规的制备方法需要使用大量的溶剂和还原剂,其热稳定性低,易挥发,容易产生大量有毒有害的废液、废气,从而导致环境污染。本方法避免了对催化剂不利的杂质引入,并且室温离子液体具有不挥发、热稳定性好的优点,反应中不使用及排放大量有毒有害的的废液、废气。
3、本发明钒磷氧催化剂中的助剂元素浓度在球形催化剂中呈梯度增加分布,可以有效改善催化剂表面酸性、提高活性金属利用率,减缓了正丁烷氧化制顺酐反应过程中催化剂的失活速度。同时,该催化剂能够使孔结构和助剂分布有机地相互配合,从而提高催化剂的整体性能,能有效调变催化剂的助剂含量、孔结构理化性质,进而更有效地改善活性相与助剂间的相互作用,有效增加催化剂稳定运行周期和活性。
4、本发明方法成型得到的球形钒磷氧催化剂颗粒大小均匀,可以有效抵抗在运输、装填和使用过程中产生的冲击以及流体流动造成的磨损,有利于延长催化剂的使用寿命。且本发明的方法具有制备工艺简单、操作可控性强、连续性好、均匀性高且效率高等优势。
5、本发明方法中,反应结束后离子液体容易与产物进行分离,可以循环利用,从而降低了生产成本。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步的详细说明。以下实施例并不是对本发明保护范围的限制,本领域的技术人员结合本发明说明书及全文可以做适当的扩展,这些扩展都应是本发明技术方案的保护范围。
实施例及比较例中所用试剂,四氟硼酸铵,四氟硼酸钠,武汉海德化工发展有限公司;二甲基氯化铵,甲基氯化铵,二乙基氯化铵,青岛金马化工有限公司;氯乙醇,宜兴市威之信化工有限公司;氯丁醇,江苏永华精细化学品有限公司;氯己醇,淄博圣诺化工有限公司;咪唑,甲基咪唑,雅邦化工(上海)有限公司;异丁醇,天津市光复精细化工研究所;苯甲醇,天津市光复精细化工研究所;五氧化二钒,天津市福晨化学试剂厂;磷酸,沈阳天罡化学试剂厂。本发明所述钒磷氧化物的比表面积、孔容和孔径的测定是采用美国Quantachrome公司的Autosorb3b型全自动比表面积和孔径分布仪测定。钒磷氧催化剂中(VO)2P2O7晶相体积含量根据XRD谱图中的峰面积进行拟合。
实施例1
(1)二甲基氯化铵300g,四氟硼酸铵190g,纯水450g,混合,在搅拌下加热到80℃,恒温1h后,澄清,自然冷却至30℃左右,离心过滤出固体得离子液体I 300g,含水约3.5wt%,收率73wt%。
取1.92 mol氯乙醇与1.28mol甲基咪唑在微波加热的条件下80℃回流24h,反应后得到粘稠无色透明液体,冷却至室温,用乙醚洗涤四次,得到无色晶体1-羟乙基-3-甲基咪唑氯离子液体,真空干燥箱中80℃干燥48h。取干燥后的1-羟乙基-3-甲基咪唑氯离子液体100g(0.6mol)加入600ml丙酮中,再加入72g(0.68mol)四氟硼酸钠,室温搅拌24h,抽滤,滤渣为蜡状固体,用丙酮洗涤两次,洗涤液与滤液合并,用无水MgSO4干燥过夜,40℃旋转蒸发出丙酮,然后100℃油浴旋转蒸发水分2h,得到纯净的1-羟乙基-3-甲基咪唑氟硼酸盐离子液体Ⅱ。
(2)将300g离子液体I加入到带有搅拌器的四口烧瓶中,加入五氧化二钒30.0g,将该反应体系加热至反应温度为98℃,回流反应时间3h;向反应体系中滴加浓度为85%的浓磷酸38.0g,磷/钒摩尔比为1.0,继续回流4h;然后加入100g的离子液体Ⅱ,继续反应5h,反应结束后,反应液冷却到室温,进行过滤,将滤饼在室温下自然风干,然后在120℃烘箱中干燥8h,最后在马弗炉中250℃下,焙烧6h,得到钒磷氧化物粉末。
(3)混合溶液I:5g离子液体I和10mL含硝酸锆和硝酸镍的盐溶液(其中的金属浓度为1.6mol/L)混合得到;
混合溶液II:10g离子液体I和10mL含硝酸锆和硝酸镍的盐溶液(其中的金属浓度为4mol/L)混合得到;
混合溶液III:15g离子液体I和10mL含硝酸锆和硝酸镍的盐溶液(其中的金属浓度为16mol/L)混合得到;
(4)将120g钒磷氧化物粉末置于转盘成型机内,调节转盘的倾角为40º,转盘的转速为10rpm,经喷雾器将混合溶液I喷洒到转盘内的粉末上,经混合接触后,在滚球成型的条件下,成型15min,得到直径0.1~0.5mm的球形前驱体I;
将球形前驱体I和120g钒磷氧化物粉末在转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为20rpm,经喷雾器将混合溶液II喷洒到转盘内球形前驱体I和粉末上,经混合接触后,在滚球成型条件下,成型30min,使得前驱体成型长大,得到直径0.6~0.9mm的球形前驱体II;
然后将球形前驱体II和120g钒磷氧化物粉末在转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为20rpm,经喷雾器将混合溶液III喷洒到转盘内球形前驱体II和钒磷氧化物粉末上,经混合接触后,成型20min,得到球形前驱体III,其直径为1.0~1.5mm;
球形前驱体III采用离心式喷雾干燥,转速为10000r/min,电加热最大功率为80kW,加料速度为6L/h,干燥温度为100℃,干燥4h;最后在马弗炉中250℃,焙烧6h,得到球形钒磷氧化物,其直径为1.0~1.5mm;将球形钒磷氧化物置于管式焙烧炉中,通入丁烷/空气的混合气(丁烷体积浓度为0.8%),快速将活化温度从室温升高至250℃,然后缓慢升温到400℃并保持20h,活化过程结束,即得到钒磷氧催化剂。所得催化剂经XRD 检测其晶相为(VO)2P2O7相(体积含量为90%)。比表面积为60m2/g,孔容为0.06ml/g,且具有双重孔道分布,孔径为10~20nm和20~35nm;其中10~20nm的孔分布占总孔容29%,20~35nm的孔分布占总孔容的40%。
量取5mL催化剂(5~10目)置于内径为10mm的不锈钢反应管中。在反应温度380℃,反应压力0.25MPa,反应气为丁烷体积浓度1.5%的正丁烷/空气混合气,气体体积空速为1750h-1的反应条件下进行催化性能评价。经气相色谱分析,正丁烷转化率为91%(摩尔),顺酐选择性达74%(摩尔)。
实施例2
(1)二乙基氯化铵250g,四氟硼酸铵180g,纯水400g,混合,在搅拌下加热到90℃,恒温1.5h后,澄清,自然冷却至30℃左右,离心过滤出固体得离子液体I 260g,含水约3.5wt%,收率73wt%。
离子液体Ⅱ的制备步骤同实施例1。
(2)将250g离子液体I加入到带有搅拌器的四口烧瓶中,加入五氧化二钒30.0g,将该反应体系加热至反应温度为95℃,回流反应时间3h;向反应体系中滴加浓度为85%的浓磷酸38.0g,磷/钒摩尔比为1.0,继续回流5h;然后加入100g的离子液体Ⅱ,继续反应5h,反应结束后,反应液冷却到室温,进行过滤,将滤饼在室温下自然风干,然后在150℃烘箱中干燥10h,最后在马弗炉中250℃下,焙烧5h,得到钒磷氧化物粉末。
(3)混合溶液I:5g离子液体I和10mL含硝酸锆和硝酸铁的盐溶液(其中的金属浓度为1.2mol/L)混合得到;
混合溶液II:10g离子液体I和10mL含硝酸锆和硝酸铁的盐溶液(其中的金属浓度为5mol/L)混合得到;
混合溶液III:15g离子液体I和10mL含硝酸锆和硝酸铁的盐溶液(其中的金属浓度为20mol/L)混合得到;
(4)将120g钒磷氧化物粉末置于转盘成型机内,调节转盘的倾角为50º,转盘的转速为10rpm,经喷雾器将混合溶液I喷洒到转盘内的粉末上,经混合接触后,在滚球成型的条件下,成型15min,得到直径0.1~0.5mm的球形前驱体I;
将球形前驱体I和120g钒磷氧化物粉末在转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为20rpm,经喷雾器将混合溶液II喷洒到转盘内球形前驱体I的和粉末上,经混合接触后,在滚球成型条件下,成型20min,使得前驱体成型长大,得到直径0.6~0.9mm的球形前驱体II;
将球形前驱体II和120g钒磷氧化物粉末在转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为20rpm,经喷雾器将混合溶液III喷洒到转盘内球形前驱体II和钒磷氧化物粉末上,经混合接触后,成型20min,得到球形前驱体III,其直径为1.0~1.5mm。
球形前驱体III采用离心式喷雾干燥,转速为10000r/min,电加热最大功率为90kW,加料速度为5L/h,干燥温度为100℃,干燥4h;最后在马弗炉中240℃,焙烧6h,得到球形钒磷氧化物,其直径为1.0~1.5mm;将球形钒磷氧化物置于管式焙烧炉中,通入丁烷/空气的混合气(丁烷体积浓度为0.8%),快速将活化温度从室温升高至250℃,然后缓慢升温到375℃并保持24h,活化过程结束,即得到钒磷氧催化剂。所得催化剂经XRD 检测其晶相为(VO)2P2O7相(体积含量为93%)。比表面积为69m2/g,孔容为0.09ml/g,且具有双重孔道分布,孔径为10~20nm和20~35nm;其中10~20nm的孔分布占总孔容35%,20~35nm的孔分布占总孔容的39%。
量取5mL催化剂(5~10目)置于内径为10mm的不锈钢反应管中。在在反应温度380℃,反应压力0.25MPa,反应气为丁烷体积浓度1.5%的正丁烷/空气混合气,气体体积空速为1750h-1的反应条件下进行催化性能评价。经气相色谱分析,正丁烷转化率为93%(摩尔),顺酐选择性达71%(摩尔)。
实施例3
(1)甲基氯化铵250g,四氟硼酸铵150g,纯水300g,混合,在搅拌下加热到90℃,恒温1.5h后,澄清,自然冷却至30℃左右,离心过滤出固体得离子液体I 300g,含水约3.5wt%,收率73wt%。
离子液体Ⅱ的制备步骤同实施例1。
(2)将300g离子液体I加入到带有搅拌器的四口烧瓶中,加入五氧化二钒30.0g,将该反应体系加热至反应温度为110℃,回流反应时间3h;向反应体系中滴加95%的浓磷酸34.0g,磷/钒摩尔比为1.0,继续回流5h;然后加入100g的1-羟乙基-3-甲基咪唑氟硼酸盐离子液体,继续反应7h,反应结束后,反应液冷却到室温,进行过滤,将滤饼在室温下自然风干,然后在130℃烘箱中干燥8h,最后在马弗炉中240℃下,焙烧7h,得到钒磷氧化物粉末。
(3)混合溶液I:10g离子液体I和15mL含硝酸锆和硝酸铁的盐溶液(其中的金属浓度为1.5mol/L)混合得到;
混合溶液II:10g离子液体I和10mL含硝酸锆和硝酸铁的盐溶液(其中的金属浓度为6mol/L)混合得到;
混合溶液III:15g离子液体I和10mL含硝酸锆和硝酸铁的盐溶液(其中的金属浓度为20mol/L)混合得到;
(4)将120g钒磷氧化物粉末置于转盘成型机内,调节转盘的倾角为50º,转盘的转速为15rpm,经喷雾器将混合溶液I喷洒到转盘内的粉末上,经混合接触后,在滚球成型的条件下,成型20min,得到直径0.1~0.5mm的球形前驱体I;
将球形前驱体I和120g钒磷氧化物粉末在转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为20rpm,经喷雾器将混合溶液II喷洒到转盘内球形前驱体I的和粉末上,经混合接触后,在滚球成型条件下,成型30min,使得前驱体成型长大,得到直径0.6~0.9mm的球形前驱体II;
将球形前驱体II和120g钒磷氧化物粉末在转盘成型机内充分混合,调节转盘的倾角为40º,转盘的转速为20rpm,经喷雾器将混合溶液III喷洒到转盘内球形前驱体II和钒磷氧化物粉末上,经混合接触后,得到球形前驱体III,其直径为1.0~1.5mm。
球形前驱体III采用离心式喷雾干燥,转速为10000r/min,电加热最大功率为100kW,加料速度为8L/h,干燥温度为120℃,干燥5h;最后在马弗炉中260℃,焙烧5h,得到球形钒磷氧化物,其直径为1.0~1.5mm;将球形钒磷氧化物置于管式焙烧炉中,通入丁烷/空气的混合气(丁烷体积浓度为0.8%),快速将活化温度从室温升高至250℃,然后缓慢升温到400℃并保持36h,活化过程结束,即得到钒磷氧催化剂。所得催化剂经XRD 检测其晶相为(VO)2P2O7相(体积含量为94%)。比表面积为68m2/g,孔容为0.08ml/g,且具有双重孔道分布,孔径为10~20nm和20~35nm;其中10~20nm的孔分布占总孔容30%,20~35nm的孔分布占总孔容的41%。
量取5mL催化剂(5~10目)置于内径为10mm的不锈钢反应管中。在反应温度380℃,反应压力0.25MPa,反应气为丁烷体积浓度1.5%的正丁烷/空气混合气,气体体积空速为1750h-1的反应条件下进行催化性能评价。经气相色谱分析,正丁烷转化率为95%(摩尔),顺酐选择性达69%(摩尔)。
比较例1
在带有搅拌器的四口烧瓶中,加入五氧化二钒30.0g,异丁醇和苯甲醇的混合液600mL,异丁醇和苯甲醇的混合体积比为15:1,助剂硝酸锆0.5g,助剂六水硝酸镍0.95g,搅拌升温,110±2℃下回流4h;然后称取100%的磷酸35.5g,磷/钒摩尔比为1.1,加入到烧瓶中,继续回流6h,得到反应液。反应液冷却至室温,真空抽滤,滤饼用少量异丁醇淋洗三次,在120℃烘箱中干燥12h,在马弗炉中250℃下,焙烧5h,得到黑褐色的钒磷氧化物粉末。将钒磷氧氧化物置于管式焙烧炉中,通入丁烷/空气的混合气(丁烷体积浓度为0.8%),快速将活化温度从室温升高至250℃,然后缓慢升温到400℃并保持20小时,活化过程结束,即得到钒磷氧催化剂。所得钒磷氧催化剂经XRD检测其晶相为(VO)2P2O7相(体积含量为80%)。比表面积为30m2/g;孔容为0.06ml/g,孔径为18nm。
量取5mL催化剂(5~10目)置于内径为10mm的不锈钢反应管中。在反应温度400℃,反应压力0.25MPa,反应气为丁烷体积浓度1.5%的正丁烷/空气混合气,气体空速为2750h-1的反应条件下进行催化性能评价价。经气相色谱分析,正丁烷转化率为70%(摩尔),顺酐选择性达51%(摩尔)。

Claims (12)

1.一种球形钒磷氧催化剂的制备方法,包括以下步骤:
(1)将M1和M2加入水中,搅拌,加热,恒温反应,反应结束后,冷却,离心,过滤,得到离子液体I;
所述M1为四氟硼酸铵、四氟硼酸钠、四氟硼酸钾、六氟磷酸铵、六氟磷酸钠或六氟磷酸钾中的至少一种;
所述M2具有通式为(R1R2R3R4)N+Z-的结构,其中R1、R2、R3和R4分别独立地选自H或C1~C4的烷基,且R1、R2、R3和R4的C原子之和≤4,Z为卤素,为F、Cl或Br中的一种;
将M3和M4混合,恒温反应,得到中间产物,将其冷却、洗涤、干燥后加入到丙酮中,再加入M1,室温搅拌反应,抽滤,洗涤,洗涤液与滤液合并,用干燥剂干燥后,旋转蒸发出丙酮和水分,得到离子液体Ⅱ;
所述M3为咪唑、烷基咪唑、吡啶、烷基吡啶中的至少一种;
所述M4为卤代烷基醇,具有通式为Z(CH2)nCH2OH、Z(CH2)nCHOHCH2OH或Z(CH2)nCHOHCH2CH2OH的结构,其中n为0~9的整数,Z为卤素,为F、Cl或Br中的一种;
(2)离子液体I和五氧化二钒混合,升温到95~130℃回流反应2~4h;通入浓磷酸,继续反应4~6h,通入离子液体II继续反应4~8h,经过滤、干燥和焙烧,得到钒磷氧化物粉末;
(3)配制金属助剂的可溶性盐溶液,按其中的金属元素计浓度分别为1.0~3.0mol/L、4.0~10.0mol/L、15.0~20.0mol/L,所述金属助剂选自Co、Ni、Zn、Bi、Zr、Cu、Li、K、Ca、Mg、Ti、La、Mo、Nb、B、Fe、Cr和Ce中的至少一种,将离子液体I分别与上述三种浓度的可溶性盐溶液按2~12g:10~30mL的比例混合得到混合溶液I、混合溶液II、混合溶液III;
(4)将步骤(2)得到的钒磷氧化物粉末置于转盘成型机内,在其成型过程中分别将混合溶液I、混合溶液II、混合溶液III喷洒到转盘内的粉末上,其中按照预设的球形催化剂颗粒半径为R,在形成平均半径为1/4R的颗粒前喷洒混合溶液I,在形成平均半径为1/2R的颗粒前喷洒混合溶液II,在最后阶段喷洒混合溶液III,最后经干燥、焙烧、活化得到球形钒磷氧催化剂。
2.根据权利要求1所述的方法,其特征在于:所述M1为六氟磷酸铵和/或四氟硼酸铵。
3.根据权利要求1所述的方法,其特征在于:所述M2的通式中,R1、R2、R3和R4分别独立地选自H、甲基或乙基,Z为氯。
4.根据权利要求1所述的方法,其特征在于:所述M4为氯乙醇。
5.根据权利要求1所述的方法,其特征在于:步骤(1)中M1与M2的摩尔比为1:1~1:2,反应温度为60~150℃,恒温反应时间为1~4h。
6.根据权利要求1所述的方法,其特征在于:步骤(1)中M3与M4的摩尔比为1:1~1:2,反应温度为70~100℃,恒温反应时间为20~30h。
7.根据权利要求1所述的方法,其特征在于:步骤(1)中所述中间产物与M1的重量比为0.5:1~3:1;所述中间产物与丙酮的重量比为0.1:1~1:1。
8.根据权利要求1所述的方法,其特征在于:步骤(2)中所述的离子液体I与五氧化二钒的重量比为5:1~15:1;离子液体II与五氧化二钒的重量比为1:1~10:1。
9.根据权利要求1所述的方法,其特征在于:步骤(2)所述的浓磷酸的质量百分浓度为85%~100%;浓磷酸的加入量以体系内磷与钒的摩尔比计为0.85:1~1.35:1。
10.根据权利要求1所述的方法,其特征在于:步骤(3)中三种金属助剂的可溶性盐溶液的浓度分别为:1.0~2.0mol/L、4~6mol/L、16~20mol/L。
11.权利要求1~10任意一项所述的方法制备的球形钒磷氧催化剂。
12.权利要求11所述的球形钒磷氧催化剂在正丁烷氧化制顺酐反应中的应用。
CN201710262155.6A 2017-04-20 2017-04-20 一种球形钒磷氧催化剂的制备方法 Active CN108722456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710262155.6A CN108722456B (zh) 2017-04-20 2017-04-20 一种球形钒磷氧催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710262155.6A CN108722456B (zh) 2017-04-20 2017-04-20 一种球形钒磷氧催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN108722456A true CN108722456A (zh) 2018-11-02
CN108722456B CN108722456B (zh) 2020-08-04

Family

ID=63933206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710262155.6A Active CN108722456B (zh) 2017-04-20 2017-04-20 一种球形钒磷氧催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108722456B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551175A (zh) * 2013-11-06 2014-02-05 兰州理工大学 磷酸氧钒催化剂及其制备方法与用途
CN103769181A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种钒磷氧催化剂及其制备方法
CN103769183A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种钒磷氧化物及其制备方法
CN104607221A (zh) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 一种钒磷氧化物及其制备方法
CN104607220A (zh) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 一种环己烷氧化制顺酐的钒磷氧催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103769181A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种钒磷氧催化剂及其制备方法
CN103769183A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种钒磷氧化物及其制备方法
CN104607221A (zh) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 一种钒磷氧化物及其制备方法
CN104607220A (zh) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 一种环己烷氧化制顺酐的钒磷氧催化剂及其制备方法
CN103551175A (zh) * 2013-11-06 2014-02-05 兰州理工大学 磷酸氧钒催化剂及其制备方法与用途

Also Published As

Publication number Publication date
CN108722456B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
CN106622316B (zh) 一种钒磷氧催化剂,其制备方法及应用
Marquez et al. Increasing the availability of active sites in Zn-Co double metal cyanides by dispersion onto a SiO2 support
CN104549391B (zh) 一种负载型钒磷氧催化剂及其制备方法
CN102188981B (zh) 丙烯腈流化床催化剂的制备方法
CN103861640B (zh) 一种杂多酸催化剂及其制备方法
CN106622315B (zh) 一种钒磷氧化物及其制备方法
CN104549394B (zh) 一种钒磷氧催化剂及其制备方法
CN108355690A (zh) 一种磷酸氧钒催化剂、其制备方法及用途
CN108325545A (zh) 一种磷酸氧钒催化剂、其制备方法及用途
CN109201095A (zh) 一种苯氧化制顺酐催化剂及其制备方法与应用
KR20050043737A (ko) 폴리옥소메탈레이트 촉매 및 알칸의 촉매적 부분 산화에의한 카르복실산의 제조 방법
Li et al. Selective aerobic oxidation of glycerol over zirconium phosphate-supported vanadium catalyst
CN101455976A (zh) 草酸二甲酯加氢合成乙二醇中使用的高效催化剂及其制法
CN101745428B (zh) 一种二氧化碳催化转化为甲基丙烯酸的催化剂与应用
CN101439882B (zh) 一种用尿素作为沉淀剂合成介孔钼酸镍铵的方法
CN108722455A (zh) 一种钒磷氧催化剂的制备方法
CN103418405B (zh) 维持丙烯腈装置稳定生产的补加催化剂
CN104549392B (zh) 一种钒磷氧催化剂的制备方法
JPH02192410A (ja) バナジウム―リン系結晶性酸化物およびそれを含有する触媒の製造法
CN108722456A (zh) 一种球形钒磷氧催化剂的制备方法
CN107537538B (zh) 一种负载型钒磷氧催化剂及其制备方法和应用
CN107175119A (zh) 一种负载型钒磷氧催化剂的制备方法及其应用
CN107537539B (zh) 一种球形钒磷氧化物,由其制备的钒磷氧催化剂及制备方法
CN111203267B (zh) 一种催化γ-戊内酯脱羧制丁烯的固体酸催化剂及其制备方法和应用
Li et al. Preparation of 5-hydroxymethylfurfural using magnetic Fe 3 O 4@ SiO 2@ mSiO 2-TaOPO 4 catalyst in 2-pentanol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230907

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee after: CHINA PETROLEUM & CHEMICAL Corp.

Patentee after: Sinopec (Dalian) Petrochemical Research Institute Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee before: CHINA PETROLEUM & CHEMICAL Corp.

Patentee before: DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC Corp.