CN108722395A - 一种利用酿酒葡萄残渣制备的铂纳米催化剂及其制氢方法 - Google Patents

一种利用酿酒葡萄残渣制备的铂纳米催化剂及其制氢方法 Download PDF

Info

Publication number
CN108722395A
CN108722395A CN201810660937.XA CN201810660937A CN108722395A CN 108722395 A CN108722395 A CN 108722395A CN 201810660937 A CN201810660937 A CN 201810660937A CN 108722395 A CN108722395 A CN 108722395A
Authority
CN
China
Prior art keywords
vinifera
residue
platinum nano
prepared
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810660937.XA
Other languages
English (en)
Inventor
刘海
袁振
王毅敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Minzu University
Original Assignee
North Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Minzu University filed Critical North Minzu University
Priority to CN201810660937.XA priority Critical patent/CN108722395A/zh
Publication of CN108722395A publication Critical patent/CN108722395A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种利用酿酒葡萄残渣制备的铂纳米催化剂及其制氢方法,所述的铂纳米催化剂由以下步骤制备而成:1)将酿酒葡萄残渣晾干,研磨成粉末;2)将酿酒葡萄残渣粉末与水混合提取,离心,过滤,得酿酒葡萄残渣水提液,将水提液冷冻干燥,得固体植物质;3)将酿酒葡萄残渣水提液的固体植物质与水混合后,再与氯铂酸溶液混合反应,制得铂纳米溶胶。本发明还包括一种利用酿酒葡萄残渣制备的铂纳米催化剂进行制氢的方法。本发明使用酿酒葡萄残渣作为原料,成本低廉,符合低资源高值化的理念,整个过程工艺简单,无其他化学试剂的加入,绿色环保;产氢效果佳且催化剂稳定性良好,在光催化领域具有良好的应用前景。

Description

一种利用酿酒葡萄残渣制备的铂纳米催化剂及其制氢方法
技术领域
本发明涉及一种铂纳米颗粒及其应用,具体涉及一种利用酿酒葡萄残渣制备的铂纳米催化剂及其制氢方法。
背景技术
随着化石燃料的日益枯竭,寻找新型可替代能源已成为全球科学家的关注热点。普通化石燃料在燃烧过程中会产生二氧化硫、一氧化碳、一氧化氮、二氧化碳等气体,对环境造成严重损害,而氢能源的燃烧效率高,燃烧产物只有水,不会对环境造成污染,且属于可再生能源,因此是理想的替代能源。
光催化分解水制氢是利用太阳能分解水生成氢气,是最理想、最经济的制备方法,对人类社会的发展具有重要意义。在光催化产氢中,催化剂的选择至关重要,而通常的光催化产氢方法中,催化剂的制备需要高温煅烧、水热处理等过程,制备步骤繁琐且耗能高。因此,探究出一条工艺简单,耗能低的光催化产氢方法具有重要的现实意义。
铂纳米是一种优异的催化材料,在光催化领域应用广泛。例如:将二氧化钛修饰的铂催化剂用于光催化降解苯酚等污染物具有显著效果(Anna Golabiewska etal.Molecular Catalysis 2017,442:154–163),将铂纳米作为助催化剂用于二氧化钛半导体光催化高效产氢(X Jiang et al.Journal of Materials Chemistry A,2015,3(5):2271-2282;2.李书军等,专利号201610808987.9),将铂纳米作为助催化剂用于C3N4光催化产氢体系(郝旭强等.物理化学学报2016,32(10):2581-2592),将铂纳米作为催化剂直接产氢等(Li Wang et al.Optics Communications 2016,370:122–126)。
铂纳米具有优异的催化性能,使其在光催化产氢领域成为明星材料。但在目前已有的光催化产氢研究中,使用的铂纳米是由光照法或化学法制备而成,这些方法通常需要引入PVP(聚乙烯吡咯烷酮)、CTAB(三甲基十六烷基溴化铵)等表面活性剂以及甲醇、乙二醇、硼氢化钠等还原剂,这些物质通常有毒且易污染环境,与光催化绿色环保的理念相违背。因此,绿色制备铂纳米,再将铂纳米用于光催化产氢体系,对光催化的发展具有重要意义。
植物法制备贵金属纳米材料具有绿色、环保、经济的特点,近年来,植物法制备铂纳米及其应用引起了全球科学家的关注(Birgütay Sahin et al.Colloids and SurfacesB:Biointerfaces 2018,163:119–124;2.A.Thirumurugan et al.Materials Letters 170(2016):175–178)。然而至今,将植物法制备的铂纳米用于光催化产氢领域却尚无研究。
发明内容
本发明所要解决的技术问题是,针对现有技术的不足,提供一种绿色环保,不会对环境造成污染的利用酿酒葡萄残渣制备的铂纳米催化剂。
本发明进一步要解决的技术问题是,提供一种工艺简单,能耗低,绿色环保的利用酿酒葡萄残渣制备的铂纳米催化剂制氢方法。
本发明解决其技术问题所采用的技术方案是:一种利用酿酒葡萄残渣制备的铂纳米催化剂,由以下步骤制备而成:
1)将酿酒葡萄残渣晾干,研磨成粉末;
2)将酿酒葡萄残渣粉末与水混合提取,离心,过滤,得酿酒葡萄残渣水提液,将水提液冷冻干燥,得固体植物质;
3)将酿酒葡萄残渣水提液的固体植物质与水混合后,再与氯铂酸溶液混合反应,制得铂纳米溶胶。
进一步,步骤1)中,将酿酒葡萄残渣研磨后,可使用筛子筛得较细粉末,优选30-100目的筛子。
进一步,步骤2)中,酿酒葡萄残渣粉末与水的比例可为10-150g/L(优选30-100g/L,更优选40-60g/L),其中,酿酒葡萄残渣粉末按质量计算,水按体积计算。
进一步,步骤2)中,混合提取过程的温度可为20-90℃(优选25-70℃,更优选30-50℃),时间可为0.5-35h(优选2-24h,更优选4-12h)。
进一步,步骤3)中,酿酒葡萄残渣水提液的固体植物质与水的比例可为0.1-20g/L(优选3-15g/L,更优选5-9g/L),其中,酿酒葡萄残渣水提液的固体植物质按质量计算,水按体积计算;控制溶液中氯铂酸的浓度为0.5×10-4-3.0×10-4mol/L(优选1.0×10-4-2.0×10-4mol/L)。
进一步,步骤3)中,反应温度可为20-90℃(优选25-70℃,更优选30-50℃),时间可为1-35h(优选3-12h)。
本发明进一步解决其技术问题所采用的技术方案是:一种利用酿酒葡萄残渣制备的铂纳米催化剂进行制氢的方法,包括以下步骤:
将上述方法制得的铂纳米溶胶转移至石英光催化反应瓶,加入光敏剂曙红和牺牲剂三乙醇胺溶液,通入氮气置换后,放入光催化反应器中反应,即可。每隔一小时用气相色谱仪检测氢气含量。
进一步,对于10mL浓度为0.5×10-4-3.0×10-4mol/L的铂纳米溶胶,光敏剂曙红添加量可为5-80mg(优选10-60mg,更优选20-40mg),牺牲剂三乙醇胺溶液添加量可为30mL,pH可为6-12(优选pH为9)。
进一步,牺牲剂三乙醇胺溶液为15wt%的水溶液。
进一步,氮气置换≥30分钟。
本发明之利用酿酒葡萄残渣制备的铂纳米催化剂,使用废料酿酒葡萄残渣作为制备纳米铂的还原剂和稳定剂,成本低廉,符合低资源高值化的理念,整个过程无其他化学试剂的加入,绿色环保,不会对环境造成伤害。
本发明之利用酿酒葡萄残渣制备的铂纳米催化剂制氢方法,与已有的化学法制备纳米铂产氢以及以纳米铂作为助催化剂产氢的结果对比(Li Wang et al.OpticsCommunications 2016,370:122–126;2.李书军等,专利号201610808987.9),本发明在铂添加量低(浓度为1.25×10-4mol/L)的情况下能实现更高效的产氢,且催化剂稳定性良好(产氢量最高可达700μmol以上,且实验循环6次产氢效果仍未见明显降低),因此在光催化领域具有良好的应用前景。
附图说明
图1为本发明实施例1中不同浓度的酿酒葡萄残渣植物质制备的铂纳米产氢效果图;
图2为本发明实施例2中9g/L的酿酒葡萄残渣植物质反应不同时间制备的铂纳米产氢效果图;
图3为本发明实施例3中使用不同pH的三乙醇胺溶液的产氢效果图;
图4为本发明实施例4中使用不同曙红添加量的产氢效果图;
图5为本发明实施例5中铂纳米催化剂的稳定性循环实验产氢效果图。
具体实施方式
以下结合附图及实施例对本发明作进一步说明,但本发明的实施并不局限于此。
实施例1
一种利用酿酒葡萄残渣制备的铂纳米催化剂,由以下步骤制备而成:
1)将酿酒葡萄残渣自然晾干,使用研磨机研磨成粉末;
2)将酿酒葡萄残渣粉末与水混合提取,离心,过滤,得酿酒葡萄残渣水提液,将水提液冷冻干燥,得固体植物质;
酿酒葡萄残渣粉末与水的比例为60g/L,其中,酿酒葡萄残渣粉末按质量计算,水按体积计算;混合提取过程的温度为30℃,时间为6h;
3)将酿酒葡萄残渣水提液的固体植物质分别配成浓度为5g/L、9g/L、15g/L的溶液,加入氯铂酸溶液,控制溶液中氯铂酸的浓度为1.25×10-4mol/L,分别反应12h,制得铂纳米催化剂。
制氢方法,包括以下步骤:
取10mL上述步骤3)所得的反应液,加入曙红20mg,pH为9的15wt%三乙醇胺溶液30mL,氮气置换后放入光催化反应器中反应。每隔一小时用气相色谱仪检测氢气含量。以五小时的产氢量作为对比,9g/L为最佳浓度,产氢量为484.3μmol。各浓度产氢结果见图1。
实施例2
一种利用酿酒葡萄残渣制备的铂纳米催化剂,由以下步骤制备而成:
1)将酿酒葡萄残渣自然晾干,使用研磨机研磨成粉末;
2)将酿酒葡萄残渣粉末与水混合提取,离心,过滤,得酿酒葡萄残渣水提液,将水提液冷冻干燥,得固体植物质;
酿酒葡萄残渣粉末与水的比例为60g/L,其中,酿酒葡萄残渣粉末按质量计算,水按体积计算;混合提取过程的温度为30℃,时间为6h;
3)将酿酒葡萄残渣水提液的固体植物质分别配成三份9g/L的溶液,加入氯铂酸溶液,控制溶液中氯铂酸的浓度为1.25×10-4mol/L,分别反应3h、6h、12h,制得铂纳米催化剂。
制氢方法,包括以下步骤:
取10mL上述步骤3)所得的反应液,加入曙红20mg,pH为9的15wt%三乙醇胺溶液30mL,氮气置换后放入光催化反应器中反应。每隔一小时用气相色谱仪检测氢气含量。以五小时的产氢量作为对比,反应6h为最佳反应时间,产氢量为537.03μmol。不同反应时间制备铂纳米的产氢结果见图2。
实施例3
一种利用酿酒葡萄残渣制备的铂纳米催化剂,由以下步骤制备而成:
1)将酿酒葡萄残渣自然晾干,使用研磨机研磨成粉末;
2)将酿酒葡萄残渣粉末与水混合提取,离心,过滤,得酿酒葡萄残渣水提液,将水提液冷冻干燥,得固体植物质;
酿酒葡萄残渣粉末与水的比例为60g/L,其中,酿酒葡萄残渣粉末按质量计算,水按体积计算;混合提取过程的温度为30℃,时间为6h;
3)将酿酒葡萄残渣水提液的固体植物质分别配成三份9g/L的溶液,加入氯铂酸溶液,控制溶液中氯铂酸的浓度为1.25×10-4mol/L,分别反应6h,制得铂纳米催化剂。
制氢方法,包括以下步骤:
取10mL上述步骤3)所得的反应液,加入曙红20mg,分别加入pH=7、pH=9、pH=11的15wt%三乙醇胺溶液30mL,氮气置换后放入光催化反应器中反应。每隔一小时用气相色谱仪检测氢气含量。以五小时的产氢量作为对比,pH=9的三乙醇胺溶液为最佳pH,产氢量为537.03μmol。不同pH的三乙醇胺溶液产氢结果见图3。
实施例4
一种利用酿酒葡萄残渣制备的铂纳米催化剂,由以下步骤制备而成:
1)将酿酒葡萄残渣自然晾干,使用研磨机研磨成粉末;
2)将酿酒葡萄残渣粉末与水混合提取,离心,过滤,得酿酒葡萄残渣水提液,将水提液冷冻干燥,得固体植物质;
酿酒葡萄残渣粉末与水的比例为60g/L,其中,酿酒葡萄残渣粉末按质量计算,水按体积计算;混合提取过程的温度为30℃,时间为6h;
3)将酿酒葡萄残渣水提液的固体植物质分别配成三份9g/L的溶液,加入氯铂酸溶液,控制溶液中氯铂酸的浓度为1.25×10-4mol/L,分别反应6h,制得铂纳米催化剂。
制氢方法,包括以下步骤:
取10mL上述步骤3)所得的反应液,分别加入曙红20mg、40mg、60mg,pH为9的15wt%三乙醇胺溶液30mL,氮气置换后放入光催化反应器中反应。每隔一小时用气相色谱仪检测氢气含量。以五小时的产氢量作为对比,40mg的曙红为最佳添加量,产氢量724.03μmol。不同曙红添加量的产氢结果见图4。
实施例5
一种利用酿酒葡萄残渣制备的铂纳米催化剂,由以下步骤制备而成:
1)将酿酒葡萄残渣自然晾干,使用研磨机研磨成粉末;
2)将酿酒葡萄残渣粉末与水混合提取,离心,过滤,得酿酒葡萄残渣水提液,将水提液冷冻干燥,得固体植物质;
酿酒葡萄残渣粉末与水的比例为60g/L,其中,酿酒葡萄残渣粉末按质量计算,水按体积计算;混合提取过程的温度为30℃,时间为6h;
3)将酿酒葡萄残渣水提液的固体植物质分别配成9g/L的溶液,加入氯铂酸溶液,控制溶液中氯铂酸的浓度为1.25×10-4mol/L,分别反应12h,制得铂纳米催化剂。
制氢方法,包括以下步骤:
取10mL上述步骤3)所得的反应液,加入曙红20mg,pH为9的15wt%三乙醇胺溶液30mL,氮气置换后放入光催化反应器中反应5小时后,氮气置换放入光催化反应器中继续反应5小时。此时产氢量有所降低,是由于曙红的消耗,加入20mg曙红后氮气置换反应5小时,继续氮气置换反应5小时,再继续加曙红进行第5次和第6次循环操作。每隔一小时用气相色谱仪检测氢气含量,可见循环6次的产氢量仍无明显降低,说明植物法制备的铂纳米在光催化产氢中稳定性良好。各时间段的产氢结果见图5。
以上所述本发明的具体实施方式,仅为本发明的较佳实施例,并不限定本发明的保护范围。任何以本发明的技术构思所做的其他相应的变动和修饰的方案,均属于本发明的保护范围。

Claims (10)

1.一种利用酿酒葡萄残渣制备的铂纳米催化剂,其特征在于,由以下步骤制备而成:
1)将酿酒葡萄残渣晾干,研磨成粉末;
2)将酿酒葡萄残渣粉末与水混合提取,离心,过滤,得酿酒葡萄残渣水提液,将水提液冷冻干燥,得固体植物质;
3)将酿酒葡萄残渣水提液的固体植物质与水混合后,再与氯铂酸溶液混合反应,制得铂纳米溶胶。
2.根据权利要求1所述的利用酿酒葡萄残渣制备的铂纳米催化剂,其特征在于:步骤1)中,将酿酒葡萄残渣研磨后,使用筛子筛得较细粉末。
3.根据权利要求1或2所述的利用酿酒葡萄残渣制备的铂纳米催化剂,其特征在于:步骤2)中,酿酒葡萄残渣粉末与水的比例为10-150g/L,其中,酿酒葡萄残渣粉末按质量计算,水按体积计算。
4.根据权利要求3所述的利用酿酒葡萄残渣制备的铂纳米催化剂,其特征在于:步骤2)中,混合提取过程的温度为20-90℃,时间为0.5-35h。
5.根据权利要求1或2所述的利用酿酒葡萄残渣制备的铂纳米催化剂,其特征在于:步骤3)中,酿酒葡萄残渣水提液的固体植物质与水的比例为0.1-20g/L,其中,酿酒葡萄残渣水提液的固体植物质按质量计算,水按体积计算;控制溶液中氯铂酸的浓度为0.5×10-4-3.0×10-4mol/L。
6.根据权利要求5所述的利用酿酒葡萄残渣制备的铂纳米催化剂,其特征在于:步骤3)中,反应温度为20-90℃,时间为1-35h。
7.一种利用权利要求1所述的铂纳米催化剂进行制氢的方法,其特征在于,包括以下步骤:
将制得的铂纳米溶胶转移至石英光催化反应瓶,加入光敏剂曙红和牺牲剂三乙醇胺溶液,通入氮气置换后,放入光催化反应器中反应,即可。
8.根据权利要求7所述的制氢的方法,其特征在于:对于10mL浓度为0.5×10-4-3.0×10-4mol/L的铂纳米溶胶,光敏剂曙红添加量为5-80mg,牺牲剂三乙醇胺溶液添加量为30mL,pH为6-12。
9.根据权利要求8所述的制氢的方法,其特征在于,牺牲剂三乙醇胺溶液为15wt%的水溶液。
10.根据权利要求7-9任一权利要求所述的制氢的方法,其特征在于,氮气置换≥30分钟。
CN201810660937.XA 2018-06-25 2018-06-25 一种利用酿酒葡萄残渣制备的铂纳米催化剂及其制氢方法 Pending CN108722395A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810660937.XA CN108722395A (zh) 2018-06-25 2018-06-25 一种利用酿酒葡萄残渣制备的铂纳米催化剂及其制氢方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810660937.XA CN108722395A (zh) 2018-06-25 2018-06-25 一种利用酿酒葡萄残渣制备的铂纳米催化剂及其制氢方法

Publications (1)

Publication Number Publication Date
CN108722395A true CN108722395A (zh) 2018-11-02

Family

ID=63930489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810660937.XA Pending CN108722395A (zh) 2018-06-25 2018-06-25 一种利用酿酒葡萄残渣制备的铂纳米催化剂及其制氢方法

Country Status (1)

Country Link
CN (1) CN108722395A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184468A (zh) * 2011-12-28 2013-07-03 新奥科技发展有限公司 一种含有鞣酸作为光敏化剂的电解液和光电催化制氢系统
CN104550994A (zh) * 2013-10-22 2015-04-29 傅文甫 一种在水溶液中可见光还原铁盐为铁纳米粒子的方法
CN105457629A (zh) * 2015-12-11 2016-04-06 上海源由纳米科技有限公司 一种负载型纳米贵金属催化剂及其制备方法和应用
CN105562093A (zh) * 2015-12-22 2016-05-11 苏州大学 光催化剂及其制备方法、光催化分解水制氢催化剂及其制备方法与氢气的制备方法
CN106179410A (zh) * 2016-07-01 2016-12-07 上海电力学院 一种光催化分解水制氢的光催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184468A (zh) * 2011-12-28 2013-07-03 新奥科技发展有限公司 一种含有鞣酸作为光敏化剂的电解液和光电催化制氢系统
CN104550994A (zh) * 2013-10-22 2015-04-29 傅文甫 一种在水溶液中可见光还原铁盐为铁纳米粒子的方法
CN105457629A (zh) * 2015-12-11 2016-04-06 上海源由纳米科技有限公司 一种负载型纳米贵金属催化剂及其制备方法和应用
CN105562093A (zh) * 2015-12-22 2016-05-11 苏州大学 光催化剂及其制备方法、光催化分解水制氢催化剂及其制备方法与氢气的制备方法
CN106179410A (zh) * 2016-07-01 2016-12-07 上海电力学院 一种光催化分解水制氢的光催化剂及其制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AMIT KUMAR MITTAL ET AL.: "Synthesis of metallic nanoparticles using plant extracts", 《BIOTECHNOLOGY ADVANCES》 *
BABITA BARUWATI AND RAJENDER S VARMA: "High Value Products from Waste: Grape Pomace Extract-A Three-in-One Package for the Synthesis of Metal Nanoparticles", 《CHEMSUSCHEM》 *
KESARLA MOHAN KUMAR ET AL.: "Green synthesis of nano platinum using naturally occurring polyphenols", 《RSC ADVANCES》 *
李华等: "葡萄籽多酚提取物的提取工艺研究", 《食品研究与开发》 *
王丽姣等: "高活性二硫化钼的溶剂热合成及光催化产氢性能研究", 《中国化学会第29届学术年会摘要集》 *
王立英等: "金属纳米颗粒制备中的还原剂与修饰剂", 《化学进展》 *
陈丽萍: "山竹果壳提取液中金纳米粒子的生物合成及光谱性质研究", 《化学研究应用》 *
陈宗家等: "光解水制氢Pt基助催化剂的理性设计和研究", 《中国化学会第十二届全国量子化学会议论文摘要集》 *

Similar Documents

Publication Publication Date Title
CN101791565B (zh) 一种TiO2@石墨相氮化碳异质结复合光催化剂及其制备方法
CN104324733B (zh) 无贵金属高活性光解水制氢催化剂的制备方法
CN103071513B (zh) 一种产氢光催化剂MoS2/ZnIn2S4及其制备方法
CN100398201C (zh) 钒酸铋负载氧化钴的复合光催化剂及其制备方法
CN104001496B (zh) 一种BiVO4纳米片复合型光催化剂及其制备方法和应用
CN101279274B (zh) 纳米银/溴化银可见光光催化材料及其制备方法
CN103316714A (zh) 一种光催化分解水制氢用催化剂及其制备方法
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN108479810A (zh) 一种WS2/ZnIn2S4复合可见光催化剂及其制备方法
CN103480353A (zh) 一种用水热法合成碳量子点溶液制备复合纳米光催化剂的方法
CN101279275A (zh) 纳米银/氯化银可见光光催化材料及其制备方法
Speltini et al. Photocatalytic hydrogen evolution assisted by aqueous (waste) biomass under simulated solar light: Oxidized g-C3N4 vs. P25 titanium dioxide
CN102861597B (zh) 一种响应可见光的光解水制氢催化剂及其制备方法
CN106552651B (zh) 一种Bi12O17Br2光催化剂的合成及应用方法
CN101347724A (zh) 一种碳60/二氧化钛纳米复合光催化剂及其制备方法和用途
CN103041865B (zh) 有机蒽醌染料敏化负载贵金属的无机半导体可见光光催化剂及其制备方法和应用
CN103933967A (zh) 一种纳米钼酸铋可见光催化剂的仿生合成方法
CN111450858A (zh) 一种复合光催化剂Ag/AgCl@Co3O4的制备方法及由此制得的复合光催化剂
CN112110420A (zh) 一种利用可见光驱动氨基苯酚甲醛树脂催化合成过氧化氢的方法
Wang et al. Hierarchically grown Ni–Mo–S modified 2D CeO2 for high-efficiency photocatalytic hydrogen evolution
Yuan et al. Synthesis of a novel TiO2/HA/RGO composite material with photocatalytic activity for dye degradation
CN102806078B (zh) 一种制备Bi系复合氧化物一维中空超结构光催化材料的方法
CN102600829A (zh) 一种铋系光催化剂及其制备方法
CN103785425A (zh) 一种花状Bi2O(OH)2SO4光催化剂的制备方法及应用
CN105771988A (zh) 一种高催化活性分等级结构钼酸银的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181102

RJ01 Rejection of invention patent application after publication