CN108714695A - 一种成分和组织双重梯度复合材料的制备方法 - Google Patents

一种成分和组织双重梯度复合材料的制备方法 Download PDF

Info

Publication number
CN108714695A
CN108714695A CN201810637726.4A CN201810637726A CN108714695A CN 108714695 A CN108714695 A CN 108714695A CN 201810637726 A CN201810637726 A CN 201810637726A CN 108714695 A CN108714695 A CN 108714695A
Authority
CN
China
Prior art keywords
ingredient
composite material
preparation
double gradient
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810637726.4A
Other languages
English (en)
Other versions
CN108714695B (zh
Inventor
赵明娟
赵龙志
杨海超
王怀
黄道思
喻世豪
唐延川
刘德佳
沈明学
胡勇
李劲
余梦
徐宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Jiaotong University
Original Assignee
East China Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Jiaotong University filed Critical East China Jiaotong University
Priority to CN201810637726.4A priority Critical patent/CN108714695B/zh
Publication of CN108714695A publication Critical patent/CN108714695A/zh
Application granted granted Critical
Publication of CN108714695B publication Critical patent/CN108714695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/607Molten salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/045Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method accompanied by fusion or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种成分和组织双重梯度复合材料的制备方法。该方法包括以下步骤:①基板预处理;②复合粉末配制;③基板预热处理;④激光多层叠加沉积制备块体梯度复合材料;⑤工件整体在线热处理。利用这种工艺方法,可使复合材料的各梯度层发生不同程度的贝氏体相变,同时实现了基体中贝氏体(Bainite)含量的梯度变化、增强体金属化合物(MxC)含量的梯度变化,达到梯度复合材料中增强体成分和基体组织贝氏体含量的双重梯度变化,获得了成分和组织双重梯度复合材料。本发明具有可设计性强、靶向性高、原材料利用率高、产品致密可靠等优点。

Description

一种成分和组织双重梯度复合材料的制备方法
技术领域
本发明属于增材制造领域,涉及一种具有成分和组织双重梯度复合材料的制备方法。
背景技术
功能梯度材料是上世纪八十年代兴起的新型材料,它通过结构和组分的连续或准连续变化,来获得性能渐变的热应力缓和型非均质复合材料。随着人们对功能梯度材料研究的不断深入,这种材料已推广应用于多项领域,如生物医学、机械工程、信息工程、光电工程、化学工程等。
功能梯度材料能有效降低非均质复合材料的热应力,但实际工程应用环境异常严酷,功能梯度材料仍存在热膨胀匹配问题,进而会出现剥落、龟裂等损伤,致使材料的耐久性、实用性大幅下降。双重梯度复合材料与传统功能梯度材料相比,复合材料中不仅增强体在梯度层之间存在成分梯度,而且复合材料基体的组织含量存在梯度变化,充分发挥了复合材料中增强体和基体各自优势,使复合材料综合性能更加优越。
发明内容
针对现有技术的不足,本发明提供了一种成分和组织双重梯度复合材料的制备方法,该方法具有工艺简单、操作方便、成本低、自动化程度高等优点,产品致密可靠、综合性能优良。
本发明解决技术问题所采用的技术方案是:一种成分和组织双重梯度复合材料的制备方法,所述制备方法主要包括以下步骤:
(1)铁基材料即基板预处理:包括对基板的打磨及喷砂处理;
(2)复合粉末配制:选择合适的铁基自溶性合金粉末及碳化物陶瓷粉末,并采用球磨工艺使两者混合均匀;
(3)基板预热处理:为避免加工过程中材料因冷速过快而发生马氏体相变,采用恒温加热对基板进行预热处理;
(4)激光沉积:采用激光多道多层叠加沉积技术,单层搭接沉积路径为“S”型;
(5)工件整体在线热处理:为促使梯度材料发生贝氏体相变,激光沉积完成后,对梯度材料进行在线等温淬火处理。
进一步地,待在线等温淬火完成后,将双梯度复合材料从盐浴炉中取出,空冷至室温。
进一步地,步骤(1)中基板预处理时,采用喷砂机对基板进行喷砂处理,磨料选用金刚砂。
进一步地,所述的铁基自溶性合金粉末,其粒度为50~100μm,化学成分为(wt%):C:0.35~0.45%,Si:0.60~0.85%,Mn:0.70~0.90%,Cr:0.60~0.90%,Ni:1.60~1.80%,Mo:0.50~0.70%,Al:1.00~1.30%,其余为铁和不可避免的杂质;所述的碳化物陶瓷粉末为Co/WC粉末,粒度为50~100μm,化学成分为12wt%Co+Bal.WC。
进一步地,所述步骤(3)中基板的预热处理,采用恒温加热平台进行,加热温度设置为300~350℃。
进一步地,所述激光沉积时,单层搭接沉积路径为“S”型,单层沉积结束后激光熔覆头上移且坐标回归初始位置,重复单层搭接沉积过程,通过这种叠加的方式制备块体材料。
进一步地,所述激光沉积时,采用高纯氩保护,气流量为10~20L/min,激光功率600~1200W,扫描速度200~400mm/min。
进一步地,所述激光沉积时,采用同轴送粉的原料添加方式,送粉速度为5~25g/min,送粉气为高纯氩,气流量为5~15L/min。
进一步地,所述激光沉积时,搭接率为40%,Z轴抬高量为0.3~1.5mm/层。
进一步地,所述的在线等温淬火采用盐浴等温的方式,盐液成分为NaNO2、KNO3等比例混合,等温温度为300℃,等温时间为2h。
本发明提供的制备方法中,预热处理降低了沉积过程中复合材料与基板的温度梯度,能有效防止复合材料开裂;激光沉积工艺具有能量密度高的特点,结合同轴送粉装置及数控机床,制备过程自动化程度高、靶向性强、生产效率高,且能保证产品致密度;在线等温淬火处理,促进不同成分的各子梯度层发生不同程度的贝氏体相变,从而实现组织的梯度变化。
本发明的有益效果是:与现有技术相比,本发明所提供的一种成分和组织双重梯度复合材料的制备方法,具有工艺简单、操作方便、成本低、自动化程度高等优点,产品致密可靠、综合性能优良,实现复合材料的成分与组织双重梯度化。
附图说明
图1为制备双梯度复合材料的整体装备示意图;
图2为双重梯度复合材料中各梯度层相对应的微观形貌图。
具体实施方式
下面通过具体实施例来进一步说明本发明。但这些实例仅用于说明本发明而不用于限制本发明的范围。
下述实施例中,采用的激光沉积设备的型号为:LDM-2500-60型半导体激光器;采用的预热装置的型号为:JF-956A型恒温加热平台;采用的在线等温淬火装置的型号为:SG2-5-10型井式电阻炉。
实施例
一种成分和组织双重梯度复合材料的制备方法,主要包括以下步骤:
①基板预处理:
基板材料选用U75V热轧钢轨,采用线切割机将其切割成尺寸为80mm×60mm×8mm的板型件,并采用QF-6050型手动喷砂机对基板进行喷砂处理,磨料选用金刚砂。
②复合粉末配制:
选择合适的铁基自溶性合金粉末及碳化物陶瓷粉末,并采用球磨工艺使两者混合均匀。
其中,铁基自溶性合金粉末粒度为50~100μm,化学成分为(wt%):C:0.35~0.45%,Si:0.60~0.85%,Mn:0.70~0.90%,Cr:0.60~0.90%,Ni:1.60~1.80%,Mo:0.50~0.70%,Al:1.00~1.30%,其余为铁和不可避免的杂质。碳化物陶瓷粉末选用Co/WC粉末,粒度为50~100μm,化学成分为12wt%Co+Bal.WC。
双梯度复合材料各子梯度层成分如下:第一梯度层100vt%-Fe,第二梯度层2.5vt%Co/WC+97.5vt%Fe,第三梯度层5vt%Co/WC+95vt%Fe,第四梯度层7.5vt%Co/WC+92.5vt%Fe,第五梯度层10vt%Co/WC+90vt%Fe。
③基板预热处理:
为避免加工过程中材料因冷速过快而发生马氏体相变,采用JF-956A型恒温加热平台对基板进行预热处理,温度设置为320℃;
④采用激光多层叠加沉积技术制备块体材料:
单层搭接沉积路径为“S”型,单层沉积结束后激光熔覆头上移且坐标回归初始位置,重复单层搭接沉积过程,通过这种叠加的方式制备块体材料;
激光沉积时,采用高纯氩保护,气流量为15L/min,激光功率800W,扫描速度300mm/min。采用同轴送粉的原料添加方式,送粉速度为15g/min,送粉气为高纯氩,气流量为9L/min。采用6道10层叠加沉积(每种成分的复合粉末沉积2层),激光扫描路径为“S”型,搭接率为40%,Z轴抬高量为0.5mm/层。
⑤工件整体在线热处理:
为促使功能梯度材料发生贝氏体相变,激光沉积完成后,对功能梯度材料进行在线等温淬火处理。为保证工件受热均匀,采用盐浴等温的方法进行在线热处理,盐液成分为NaNO2、KNO3等比例混合,等温温度为300℃,等温时间为2h。热处理完成后,将工件从盐浴炉中取出,空冷至室温,最终形成结构梯度和成分双重梯度复合材料。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (10)

1.一种成分和组织双重梯度复合材料的制备方法,其特征在于,所述制备方法主要包括以下步骤:
(1)铁基材料即基板预处理:包括对基板的打磨及喷砂处理;
(2)复合粉末配制:选择合适的铁基自溶性合金粉末及碳化物陶瓷粉末,并采用球磨工艺使两者混合均匀;
(3)基板预热处理:为避免加工过程中材料因冷速过快而发生马氏体相变,采用恒温加热对基板进行预热处理;
(4)激光沉积:采用激光多道多层叠加沉积技术,单层搭接沉积路径为“S”型;
(5)工件整体在线热处理:为促使梯度材料发生贝氏体相变,激光沉积完成后,对梯度材料进行在线等温淬火处理。
2.如权利要求1所述的一种成分和组织双重梯度复合材料的制备方法,其特征在于:待在线等温淬火完成后,将双梯度复合材料从盐浴炉中取出,空冷至室温。
3.如权利要求1或2所述的一种成分和组织双重梯度复合材料的制备方法,其特征在于:步骤(1)中基板预处理时,采用喷砂机对基板进行喷砂处理,磨料选用金刚砂。
4.如权利要求1或2所述的一种成分和组织双重梯度复合材料的制备方法,其特征在于:所述的铁基自溶性合金粉末,其粒度为50~100μm,化学成分为(wt%):C:0.35~0.45%,Si:0.60~0.85%,Mn:0.70~0.90%,Cr:0.60~0.90%,Ni:1.60~1.80%,Mo:0.50~0.70%,Al:1.00~1.30%,其余为铁和不可避免的杂质;所述的碳化物陶瓷粉末为Co/WC粉末,粒度为50~100μm,化学成分为12wt%Co+Bal.WC。
5.如权利要求1或2所述的一种成分和组织双重梯度复合材料的制备方法,其特征在于:所述步骤(3)中基板的预热处理,采用恒温加热平台进行,加热温度设置为300~350℃。
6.如权利要求1或2所述的一种成分和组织双重梯度复合材料的制备方法,其特征在于:所述激光沉积时,单层搭接沉积路径为“S”型,单层沉积结束后激光熔覆头上移且坐标回归初始位置,重复单层搭接沉积过程,通过这种叠加的方式制备块体材料。
7.如权利要求6所述的一种成分和组织双重梯度复合材料的制备方法,其特征在于:所述激光沉积时,采用高纯氩保护,气流量为10~20L/min,激光功率600~1200W,扫描速度200~400mm/min。
8.如权利要求6所述的一种成分和组织双重梯度复合材料的制备方法,其特征在于:所述激光沉积时,采用同轴送粉的原料添加方式,送粉速度为5~25g/min,送粉气为高纯氩,气流量为5~15L/min。
9.如权利要求6所述的一种成分和组织双重梯度复合材料的制备方法,其特征在于:所述激光沉积时,搭接率为40%,Z轴抬高量为0.3~1.5mm/层。
10.如权利要求1所述的一种成分和组织双重梯度复合材料的制备方法,其特征在于:所述在线等温淬火采用盐浴等温的方式,盐液成分为NaNO2、KNO3等比例混合,等温温度为300℃,等温时间为2h。
CN201810637726.4A 2018-06-20 2018-06-20 一种成分和组织双重梯度复合材料的制备方法 Active CN108714695B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810637726.4A CN108714695B (zh) 2018-06-20 2018-06-20 一种成分和组织双重梯度复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810637726.4A CN108714695B (zh) 2018-06-20 2018-06-20 一种成分和组织双重梯度复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108714695A true CN108714695A (zh) 2018-10-30
CN108714695B CN108714695B (zh) 2021-08-20

Family

ID=63912105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810637726.4A Active CN108714695B (zh) 2018-06-20 2018-06-20 一种成分和组织双重梯度复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108714695B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170656A (zh) * 2019-06-05 2019-08-27 南京工业大学 功能复合蜂窝材料的增材制造方法
CN110181049A (zh) * 2019-05-31 2019-08-30 西安文理学院 基于激光立体成形技术的奥氏体复合梯度材料的制备方法
CN110344053A (zh) * 2019-08-06 2019-10-18 贵州大学 一种高强贝氏体钢激光修复用合金粉末及其制备方法
CN110496966A (zh) * 2019-08-30 2019-11-26 鑫精合激光科技发展(北京)有限公司 一种激光沉积增材制造方法
CN111151880A (zh) * 2020-01-06 2020-05-15 安徽工业大学 基于激光同步预热沉积钢/钛异种金属的梯度过渡连接方法
CN113245558A (zh) * 2021-06-10 2021-08-13 北京煜鼎增材制造研究院有限公司 一种高性能高温梯度材料构件的制造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031516A (zh) * 2010-12-21 2011-04-27 上海工程技术大学 梯度功能的Ni基纳米WC/Co复合涂层的制备方法
CN104388929A (zh) * 2014-11-28 2015-03-04 江苏中科四象激光科技有限公司 一种双光束激光熔覆刀具的加工方法
CN104746068A (zh) * 2015-04-09 2015-07-01 安徽工业大学 一种用于铁基合金表面激光熔覆的铜基涂层及其制备方法
CN104831270A (zh) * 2014-12-30 2015-08-12 北京瑞观光电科技有限公司 一种铁基镍包碳化钨激光熔覆材料的制备方法
CN105112908A (zh) * 2015-09-14 2015-12-02 温州大学 激光熔覆碳化钨陶瓷颗粒增强金属基涂层及其加工方法
CN105177569A (zh) * 2015-10-13 2015-12-23 武汉华工激光工程有限责任公司 一种球磨铸铁表面激光修复方法
CN105420724A (zh) * 2015-12-17 2016-03-23 辽宁工业大学 一种铁基合金梯度熔覆层及其制备方法
CN106001568A (zh) * 2016-07-07 2016-10-12 四川三阳永年增材制造技术有限公司 一种梯度材料金属模具3d打印一体化制备方法
CN106424700A (zh) * 2016-08-19 2017-02-22 东北大学 激光直接沉积陶瓷增强Fe60合金复合耐磨涂层及方法
CN106637200A (zh) * 2016-12-27 2017-05-10 江苏大学 一种热、声、磁复合能场辅助激光熔覆金属基陶瓷涂层的方法
CN108034888A (zh) * 2017-12-13 2018-05-15 张旭峰 一种整体锻压辙叉用合金钢及其热处理工艺
CN108103499A (zh) * 2017-12-22 2018-06-01 北京机科国创轻量化科学研究院有限公司 一种用于超高速激光熔覆的颗粒增强铁基金属粉末
CN108130539A (zh) * 2016-12-01 2018-06-08 邢桂兰 一种高温热处理激光熔覆合金层

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031516A (zh) * 2010-12-21 2011-04-27 上海工程技术大学 梯度功能的Ni基纳米WC/Co复合涂层的制备方法
CN104388929A (zh) * 2014-11-28 2015-03-04 江苏中科四象激光科技有限公司 一种双光束激光熔覆刀具的加工方法
CN104831270A (zh) * 2014-12-30 2015-08-12 北京瑞观光电科技有限公司 一种铁基镍包碳化钨激光熔覆材料的制备方法
CN104746068A (zh) * 2015-04-09 2015-07-01 安徽工业大学 一种用于铁基合金表面激光熔覆的铜基涂层及其制备方法
CN105112908A (zh) * 2015-09-14 2015-12-02 温州大学 激光熔覆碳化钨陶瓷颗粒增强金属基涂层及其加工方法
CN105177569A (zh) * 2015-10-13 2015-12-23 武汉华工激光工程有限责任公司 一种球磨铸铁表面激光修复方法
CN105420724A (zh) * 2015-12-17 2016-03-23 辽宁工业大学 一种铁基合金梯度熔覆层及其制备方法
CN106001568A (zh) * 2016-07-07 2016-10-12 四川三阳永年增材制造技术有限公司 一种梯度材料金属模具3d打印一体化制备方法
CN106424700A (zh) * 2016-08-19 2017-02-22 东北大学 激光直接沉积陶瓷增强Fe60合金复合耐磨涂层及方法
CN108130539A (zh) * 2016-12-01 2018-06-08 邢桂兰 一种高温热处理激光熔覆合金层
CN106637200A (zh) * 2016-12-27 2017-05-10 江苏大学 一种热、声、磁复合能场辅助激光熔覆金属基陶瓷涂层的方法
CN108034888A (zh) * 2017-12-13 2018-05-15 张旭峰 一种整体锻压辙叉用合金钢及其热处理工艺
CN108103499A (zh) * 2017-12-22 2018-06-01 北京机科国创轻量化科学研究院有限公司 一种用于超高速激光熔覆的颗粒增强铁基金属粉末

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘宗昌,冯佃臣: "《热处理工艺学》", 31 August 2015 *
张贵锋,黄昊: "《固态相变原理及应用》", 30 June 2016 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110181049A (zh) * 2019-05-31 2019-08-30 西安文理学院 基于激光立体成形技术的奥氏体复合梯度材料的制备方法
CN110170656A (zh) * 2019-06-05 2019-08-27 南京工业大学 功能复合蜂窝材料的增材制造方法
CN110170656B (zh) * 2019-06-05 2020-05-01 南京工业大学 功能复合蜂窝材料的增材制造方法
CN110344053A (zh) * 2019-08-06 2019-10-18 贵州大学 一种高强贝氏体钢激光修复用合金粉末及其制备方法
CN110344053B (zh) * 2019-08-06 2021-05-25 贵州大学 一种高强贝氏体钢激光修复用合金粉末及其制备方法
CN110496966A (zh) * 2019-08-30 2019-11-26 鑫精合激光科技发展(北京)有限公司 一种激光沉积增材制造方法
CN110496966B (zh) * 2019-08-30 2021-12-03 鑫精合激光科技发展(北京)有限公司 一种激光沉积增材制造方法
CN111151880A (zh) * 2020-01-06 2020-05-15 安徽工业大学 基于激光同步预热沉积钢/钛异种金属的梯度过渡连接方法
CN113245558A (zh) * 2021-06-10 2021-08-13 北京煜鼎增材制造研究院有限公司 一种高性能高温梯度材料构件的制造方法
CN113245558B (zh) * 2021-06-10 2021-10-01 北京煜鼎增材制造研究院有限公司 一种高性能高温梯度材料构件的制造方法

Also Published As

Publication number Publication date
CN108714695B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN108714695A (zh) 一种成分和组织双重梯度复合材料的制备方法
CN102441672B (zh) 一种激光熔覆纳米陶瓷颗粒增强的金属基梯度涂层制备方法
CN101519778B (zh) 一种穿孔顶头表面强化的激光熔覆方法
CN103394685B (zh) 用于制备高熵合金涂层的合金粉末及其制备方法和应用
CN107470619A (zh) 一种金属零件的增材制造方法
CN109439995B (zh) 高熵非晶合金涂层及其制备方法
CN102605230B (zh) 双相纳米颗粒增强型钛合金防护涂层及制备方法
CN104745887A (zh) 纳米陶瓷颗粒增强镍基高温合金复合材料及其激光3d打印成形方法
CN101122018A (zh) 激光快速成形专用铁基粉料
CN110788323B (zh) 一种改善激光增材制造合金钢构件耐磨耐冲击的方法
CN101210325B (zh) 一种用于热锻模具的纳米复合耐磨涂层组合物及其应用
CN102965590A (zh) 一种改性硬质合金及其制备
CN105728725B (zh) 3d打印制备多元素过渡界面协同增强镍基复合材料的方法
CN109396429B (zh) 一种改善激光增材制造合金结构钢组织和力学性能方法
CN107755697B (zh) 铜锌合金制件及其增材制造成型方法
CN104195548A (zh) 一种激光熔覆用耐锌腐蚀涂层钴基合金粉末
Wu et al. Direct additive manufacturing of TiCp reinforced Al2O3-ZrO2 eutectic functionally graded ceramics by laser directed energy deposition
CN107876768A (zh) 一种等离子3d打印装置和方法及其在特种耐磨材料修复中的应用
CN112961998A (zh) 一种分步成型烧结碳化物硬质合金/钢双层结构复合材料的粉末冶金制备方法
CN106119663B (zh) 水泥回转窑上过渡带内表面用合金粉体、制备及其涂层
CN113199037A (zh) 一种感应辅助喷丸细化激光增材制造轻合金晶粒的方法和装置
CN113231646A (zh) 基于电子束3D打印技术制备GCr15轴承钢及汽车部件的方法
CN113564498B (zh) 一种抗冲击耐磨复合衬板及其制备方法
CN113579248B (zh) 一种电子束熔化制备m2高速钢的工艺方法及设备
CN116275010A (zh) 一种原位氮化物增强3d打印镍基高温合金粉末

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant