CN108707867B - 一种表面增强拉曼散射基片及其制备方法 - Google Patents

一种表面增强拉曼散射基片及其制备方法 Download PDF

Info

Publication number
CN108707867B
CN108707867B CN201810379352.0A CN201810379352A CN108707867B CN 108707867 B CN108707867 B CN 108707867B CN 201810379352 A CN201810379352 A CN 201810379352A CN 108707867 B CN108707867 B CN 108707867B
Authority
CN
China
Prior art keywords
substrate
silver
solid solution
aluminum
nanorod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810379352.0A
Other languages
English (en)
Other versions
CN108707867A (zh
Inventor
张政军
刘跃华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Sanhuan hi tech Raman Chip Technology Co., Ltd
Original Assignee
Guangxi Sanhuan Hi Tech Raman Chip Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Sanhuan Hi Tech Raman Chip Technology Co Ltd filed Critical Guangxi Sanhuan Hi Tech Raman Chip Technology Co Ltd
Priority to CN201810379352.0A priority Critical patent/CN108707867B/zh
Publication of CN108707867A publication Critical patent/CN108707867A/zh
Application granted granted Critical
Publication of CN108707867B publication Critical patent/CN108707867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种稳定的表面增强拉曼基片及其简便制备方法,属于痕量有机物检测技术领域。本发明采用双电子束共沉积的方法制备银铝固溶纳米棒阵列,在沉积腔室内原位退火,在银铝固溶纳米棒表面上自发形成一层均匀的非晶态氧化铝薄膜。超薄的氧化铝层不会大幅度衰减表面增强拉曼效应,基片具有良好的表面增强拉曼效应;同时自发形成的氧化铝薄膜使得银铝纳米棒同外界环境隔离,提高了银铝固溶纳米棒基片的抗硫化/抗氧化/抗腐蚀能力,从而大幅度提升了银铝固溶纳米棒基片的表面增强拉曼效应的稳定性。该基片在工业化批量生产和快速检测痕量有机物等方面具有广泛的应用前景。

Description

一种表面增强拉曼散射基片及其制备方法
技术领域
本发明属于痕量有机物检测技术领域,涉及一种稳定的表面增强拉曼散射基片及其简便制备方法。
背景技术
表面增强拉曼效应作为一种痕量物质检测方法,具有灵敏度高、检测快速、费用低、无损分析等优点,广泛应用于化学、生物分子的痕量检测。通常采用金、银或铜等贵金属材料制备高灵敏度的表面增强拉曼基片,由于银纳米结构基底在环境中容易硫化/氧化/腐蚀,其化学不稳定性限制了表面增强拉曼效应的应用。
为了改善其不足,有报道的做法是通过化学方法、原子层沉积或复合石墨烯等工艺在已制备的银纳米结构上包裹一层极薄的惰性壳层,但这存在多次加工,工艺复杂,容易引进杂质,生产成本增加等缺点,不利于实际应用时批量生产。
通过原位退火在银铝固溶纳米棒表面形成一层非晶氧化铝可有效提高基底的稳定性。本发明制备工艺简单,同时超薄的氧化铝层不会大幅度衰减表面增强拉曼效应,基底具有良好的表面增强拉曼效应;氧化铝薄层可有效隔绝银铝固溶纳米棒同外界环境的接触,防止银铝固溶纳米棒的硫化/氧化/腐蚀,提高了基底的稳定性。
发明内容
本发明的目的在于,克服现有包覆技术工序繁复的不足,提供一种稳定的表面增强拉曼散射基片及其简便制备方法。本发明采用银铝固溶纳米棒基片,通过原位退火,在纳米棒的表面自发形成极薄的非晶氧化铝薄膜,制备工艺简单,在有效提高基片的稳定性的基础上,同时保持其良好的表面增强拉曼效应。
本发明通过以下技术方案来实现:
一种表面增强拉曼散射基片,在基片表面制备银铝固溶纳米棒,通过原位退火在纳米棒表面自发形成极薄的非晶氧化铝薄膜。
进一步,所述基片为单晶硅基片、石英片或玻璃基片。
进一步,所述银铝固溶纳米棒为斜棒或者圆柱阵列薄膜,其长度为300nm~500nm。
进一步,所述非晶态氧化物薄膜的厚度为1nm~5nm。
上述表面增强拉曼散射基片的制备方法,包括步骤如下:利用双电子束共沉积的方法,在基片表面沉积金属银和金属铝,得到银铝固溶纳米棒阵列薄膜;在沉积腔室内利用原位退火技术在银铝固溶纳米棒薄膜表面自发形成一层氧化铝薄膜,得到银铝固溶纳米棒@氧化铝复合纳米棒阵列薄膜作为表面增强拉曼效应基片。
其中,
步骤(1)中所述制备银铝固溶纳米棒阵列的方法为:将基片固定在电子束蒸发镀膜机的样品台上,调整电子束的入射角为85°~88°,并使样品台旋转或静止,以金属银和铝为靶材,在基片上垂直或倾斜共沉积长度为300nm~500nm的银铝固溶纳米棒阵列。
步骤(2)中所述采用原位退火技术的方法为:将银铝固溶纳米棒基片直接在沉积腔室内原位退火,控制退火温度为150℃~300℃,退火时间为1min~120min,真空度为1Pa~10-3Pa。
本发明通过在沉积腔室内原位退火在银铝固溶纳米棒阵列薄膜表面自发行成一层氧化铝薄膜,超薄的氧化铝薄膜厚度为1nm~5nm,基片具有良好的表面增强拉曼效应;同时氧化铝层可保护内部的银铝固溶纳米棒,防止其硫化/氧化/腐蚀,维持纳米棒状结构,大大提升了基片的稳定性。
本发明的有益效果:
本发明的银铝固溶氧化铝纳米棒基片,通过银铝固溶纳米棒在沉积腔内退火后在纳米棒表面自发形成氧化铝非晶层,大大简化了制备工艺。采用所述的银铝固溶纳米棒@氧化铝薄膜作为基底,在提供良好的表面增强拉曼效应的同时,可以有效隔绝外界环境,防止银铝固溶纳米棒的硫化/氧化/腐蚀,提高了基底的稳定性。银铝固溶氧化铝纳米棒基片具有良好稳定的表面增强拉曼效应,同时制备工艺简单,在工业化批量生产和快速检测痕量有机分子等方面具有广泛的应用前景。
附图说明
图1为本发明实施例1中制备的银铝固溶纳米棒@氧化铝表面增强拉曼基底的扫描电镜照片。
图2A为本发明实施例2中制备的银铝固溶纳米棒基底的透射电镜照片;图2B为实施例2中制备的银铝固溶纳米棒@氧化铝基底的透射电镜照片。
图3A为用纯银基底在浸泡氯化钠溶液前后测试亚甲基蓝的表面增强拉曼信号;图3B为本发明实施例3中制备的银铝固溶纳米棒@氧化铝基底在浸泡氯化钠溶液前后测试痕量亚甲基蓝的表面增强拉曼信号;其中Ag表示银基底,Ag-Al@Al2O3表示银铝固溶氧化铝纳米棒复合基底。
具体实施方式
下面结合附图1~3和实施例1~3对本发明予以具体说明,但不能理解为对本发明保护范围的限制。任何熟悉该领域的技术人员根据上述本发明内容对本发明所做的一些非本质的改进和调整,都应该涵盖在本发明的保护范围之内。
实施例1
(1)将单面抛光的硅基片用丙酮、无水乙醇、去离子水逐一超声清洗并晾干;
(2)将预处理过的基片固定在双电子束蒸发镀膜机的样品台上;
(3)在室温下,采用金属银和金属铝为靶材,两个坩埚相距4cm,将双电子束蒸发镀膜机的腔室抽至真空度为9×10-5Pa;
(4)调整双电子束的入射角到85度,并使样品台静止,控制银的镀率为
Figure BDA0001640663930000031
控制铝的镀率为
Figure BDA0001640663930000033
在样品台的基片上共沉积长度约为300nm的银铝固溶纳米斜棒薄膜;
(5)将步骤1~4制备的表面增强拉曼基片在沉积腔室内150℃退火5分钟,真空度为1Pa;
(6)将步骤1~5制备的表面增强拉曼基片取出,在扫描电镜下观察。电镜照片如图1所示。
上述方法制备的银铝固溶纳米棒@氧化铝纳米棒基片,纳米棒分立性良好,纳米棒直径约为40nm。
实施例2
(1)将单面抛光的硅基片用丙酮、无水乙醇、去离子水逐一超声清洗并晾干;
(2)将预处理过的基片固定在双电子束蒸发镀膜机的样品台上;
(3)在室温下,采用金属银和金属铝为靶材,两个坩埚相距4cm,将双电子束蒸发镀膜机的腔室抽至真空度为7×10-5Pa;
(4)调整双电子束的入射角到86度,控制基片台旋转速度为5转/分钟,控制银的镀率为控制铝的镀率为
Figure BDA0001640663930000042
在样品台的基片上共沉积长度约为400nm的银铝固溶纳米棒薄膜;
(5)将步骤1~4制备的表面增强拉曼基片取出,在透射电镜下观察。所制基片的透射电镜照片如图2A所示。
(6)将步骤1~4制备的表面增强拉曼基片在沉积腔室内200℃退火20分钟,真空度为0.1Pa;
(7)将步骤1~6制备的表面增强拉曼基片取出,在透射电镜下观察。退火后的基片的透射电镜照片如图2B所示。
对比图2A和图2B,制备的银铝固溶纳米棒基片在沉积腔室内退火后,在银铝固溶纳米棒表面自发形成了约2.0nm的均匀的非晶氧化铝薄膜。
实施例3
(1)将单面抛光的硅基片用丙酮、无水乙醇、去离子水逐一超声清洗并晾干;
(2)将预处理过的基片固定在双电子束蒸发镀膜机的样品台上;
(3)在室温下,采用金属银和金属铝为靶材,两个坩埚相距4cm,将双电子束蒸发镀膜机的腔室抽至真空度为5×10-5Pa;
(4)调整双电子束的入射角到87度,控制基片台旋转速度为10转/分钟,控制银的镀率为
Figure BDA0001640663930000043
控制铝的镀率为
Figure BDA0001640663930000044
在样品台的基片上共沉积长度约为500nm的银铝固溶纳米斜棒薄膜;
(5)将步骤1~4制备的表面增强拉曼基片在沉积腔室内300℃退火120分钟,真空度为10-3Pa;
(6)配制0.02mol/L的NaCl水溶液;
(7)将步骤1~5制备的表面增强拉曼基片放入步骤6配制的待测溶液,浸泡1小时;
(8)配制10-5mol/L的亚甲基蓝溶液;
(9)分别将将步骤(1)~(5)制备的和步骤(7)处理过的表面增强拉曼基片放入步骤(8)配制的待测溶液,浸泡30分钟;
(10)将步骤(9)中吸附有痕量亚甲基蓝的表面增强拉曼基片放入拉曼光谱仪,选择波长为785nm的光源,进行拉曼光谱的测量;
图3A为用纯银基底在浸泡氯化钠溶液前后测试亚甲基蓝的表面增强拉曼信号;图3B为实施例3中制备的银铝固溶纳米棒@氧化铝基底在浸泡氯化钠溶液前后测试痕量亚甲基蓝的表面增强拉曼信号;其中Ag表示银基底,Ag-Al@Al2O3表示银铝固溶纳米棒@氧化铝复合基底。纯银基底在NaCl水溶液浸泡之后表面增强拉曼活性急剧下降,银铝固溶纳米棒@氧化铝复合基底在NaCl水溶液浸泡前后表面增强拉曼保持稳定。银铝固溶纳米棒@氧化铝基底表面的氧化铝层有效的隔离了溶液的腐蚀,大幅度提升了基片的稳定性。

Claims (7)

1.一种表面增强拉曼散射基片的制备方法,其特征在于,所述散射基片包括基片,基片表面的银铝固溶纳米棒,以及纳米棒表面的非晶态氧化铝薄膜;所述制备方法包括以下步骤:
1)利用双电子束共沉积的方法,在基片表面制备银铝固溶纳米棒阵列薄膜;
2)采用原位退火技术在银铝固溶纳米棒阵列薄膜表面自发形成非晶氧化铝薄膜。
2.根据权利要求1所述的制备方法,其特征在于,所述基片为单晶硅基片、石英片或光学玻璃片。
3.根据权利要求1所述的制备方法,其特征在于,所述银铝固溶纳米棒为斜棒或者圆柱阵列薄膜,其长度为300nm~500nm。
4.根据权利要求1所述的制备方法,其特征在于,所述非晶态氧化铝薄膜的厚度1nm~5nm。
5.根据权利要求1所述的制备方法,其特征在于,步骤1)包括如下步骤:
(1)将基片用丙酮、无水乙醇、去离子水逐一超声清洗并晾干;
(2)将步骤(1)所得基片固定在双电子束蒸发镀膜机的样品台上,其中两个蒸发源的中心距离控制在3cm~6cm;
(3)采用金属银和金属铝为靶材,室温下将双电子束蒸发镀膜机腔室抽真空至2×10 5Pa~9×10-5Pa;
(4)采用倾斜生长法,调整双电子束入射角为85~88度,并使样品台静止或以每分钟5~10转的速率旋转,在样品台的基片上同时沉积金属银和金属铝,控制银的沉积速率为
Figure FDA0002229512140000011
铝的沉积速率为得到银铝固溶纳米棒阵列薄膜。
6.根据权利要求5所述的制备方法,其特征在于,步骤(4)所得银铝固溶纳米棒阵列薄膜的长度为300nm~500nm,所述纳米棒直径约为40nm。
7.根据权利要求1所述的制备方法,其特征在于,步骤2)所述原位退火在沉积腔室内进行,退火温度为150℃~300℃,退火时间为1min~120min,真空度为1Pa~10-3Pa,在银铝固溶纳米棒薄膜表面自发形成非晶态氧化铝薄膜,所述氧化铝薄膜的厚度1nm-5nm。
CN201810379352.0A 2018-04-25 2018-04-25 一种表面增强拉曼散射基片及其制备方法 Active CN108707867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810379352.0A CN108707867B (zh) 2018-04-25 2018-04-25 一种表面增强拉曼散射基片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810379352.0A CN108707867B (zh) 2018-04-25 2018-04-25 一种表面增强拉曼散射基片及其制备方法

Publications (2)

Publication Number Publication Date
CN108707867A CN108707867A (zh) 2018-10-26
CN108707867B true CN108707867B (zh) 2020-01-10

Family

ID=63866840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810379352.0A Active CN108707867B (zh) 2018-04-25 2018-04-25 一种表面增强拉曼散射基片及其制备方法

Country Status (1)

Country Link
CN (1) CN108707867B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129756B (zh) * 2019-06-10 2020-07-10 重庆大学 金属膜耦合纳米岛表面增强拉曼散射基底及其制备方法
CN110359024A (zh) * 2019-07-23 2019-10-22 清华大学 一种大批量制备表面增强拉曼基底的基片台
CN114441561B (zh) * 2020-10-20 2023-12-01 陈健群 用于电子显微镜的测试样品及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025753A (ja) * 2008-07-18 2010-02-04 Hokkaido Univ 表面増強ラマン分光法、及び当該表面増強ラマン分光法を可能にする微細構造体
US8786852B2 (en) * 2009-12-02 2014-07-22 Lawrence Livermore National Security, Llc Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
CN102879379A (zh) * 2012-09-18 2013-01-16 清华大学 一种折线型银纳米斜棒阵列表面增强拉曼基底的制备方法
CN103969241A (zh) * 2014-05-20 2014-08-06 中国科学技术大学 一种拉曼基底
CN104181143A (zh) * 2014-08-08 2014-12-03 清华大学 一种高稳定性表面增强拉曼基片及其制备方法
CN104789939A (zh) * 2015-03-17 2015-07-22 清华大学 一种表面增强拉曼散射基底及其制备方法

Also Published As

Publication number Publication date
CN108707867A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
CN108707867B (zh) 一种表面增强拉曼散射基片及其制备方法
CN104181143A (zh) 一种高稳定性表面增强拉曼基片及其制备方法
Gupta et al. Au-spotted zinc oxide nano-hexagonrods structure for plasmon-photoluminescence sensor
CN104404512A (zh) 一种高稳定性可循环使用表面增强拉曼基底及制备方法
CN103837517B (zh) 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法
CN107860760A (zh) 氧化石墨烯/银纳米颗粒/金字塔形pmma三维柔性拉曼增强基底及制备方法和应用
Satheeshkumar et al. Photochemical decoration of silver nanoparticles on ZnO nanowires as a three‐dimensional substrate for surface‐enhanced Raman scattering measurement
CN107941780B (zh) 一种银钛固溶表面增强拉曼基底及其制备方法
Liu et al. Ag-coated nylon fabrics as flexible substrates for surface-enhanced Raman scattering swabbing applications
Wang et al. A recyclable graphene/Ag/TiO 2 SERS substrate with high stability and reproducibility for detection of dye molecules
CN111763935A (zh) 一种贵金属沉积在氧化钛薄膜的sers基底制备方法
CN108693166B (zh) 一种基于氮化铝纳米结构的表面增强拉曼散射基底的制造方法
CN105241862B (zh) 一种表面具有针孔的表面增强拉曼效应基底及制备方法
CN108823541B (zh) 一种表面增强拉曼散射活性基底的制备方法
CN108893714B (zh) 一种高密度Ag纳米柱表面增强拉曼散射衬底的制备方法
CN107620038B (zh) 纳米金属颗粒阵列结构的制备方法
CN107449768B (zh) 一种银和氧化硅互镶嵌的表面增强拉曼基底及其制备方法
CN109234686B (zh) 一种氮化物表面增强拉曼基片及其制备方法
CN111398245B (zh) 一种周期性排列的“扶手型”表面增强拉曼基片及其制备方法
CN115236055A (zh) 表面增强拉曼散射合金基片及其制备方法及应用
Li et al. Tunable ordered silver nano-arrays prepared by TiO2 templates as surface-enhanced raman scattering substrates
CN108330441B (zh) 一种提高膜基结合力制备表面增强拉曼基底的方法
CN103274353A (zh) 大面积表面增强拉曼活性基底的倾斜生长制备方法
CN108680556A (zh) 一种银铝固溶纳米棒表面增强拉曼基底及其制备方法
CN118090701A (zh) 一种银铁表面增强拉曼基底制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191119

Address after: 537400 Beiliu Ceramics Industrial Park, Yulin City, Guangxi Zhuang Autonomous Region

Applicant after: Guangxi Sanhuan hi tech Raman Chip Technology Co., Ltd

Address before: 100084 Haidian District 100084-82 mailbox Beijing

Applicant before: Tsinghua University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant