CN108700482A - 应力隔离的绝对压力传感器 - Google Patents

应力隔离的绝对压力传感器 Download PDF

Info

Publication number
CN108700482A
CN108700482A CN201680082401.3A CN201680082401A CN108700482A CN 108700482 A CN108700482 A CN 108700482A CN 201680082401 A CN201680082401 A CN 201680082401A CN 108700482 A CN108700482 A CN 108700482A
Authority
CN
China
Prior art keywords
pressure sensor
stress isolation
sensor according
substrate
mems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680082401.3A
Other languages
English (en)
Other versions
CN108700482B (zh
Inventor
S-H.S.陈
J-H.A.邱
R.C.科斯伯格
D.R.恩彭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEMIC AUTOMOTIVE NA Inc
Continental Automotive Systems Inc
Original Assignee
TEMIC AUTOMOTIVE NA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEMIC AUTOMOTIVE NA Inc filed Critical TEMIC AUTOMOTIVE NA Inc
Publication of CN108700482A publication Critical patent/CN108700482A/zh
Application granted granted Critical
Publication of CN108700482B publication Critical patent/CN108700482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/145Housings with stress relieving means
    • G01L19/146Housings with stress relieving means using flexible element between the transducer and the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0045Packages or encapsulation for reducing stress inside of the package structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0045Packages or encapsulation for reducing stress inside of the package structure
    • B81B7/0048Packages or encapsulation for reducing stress inside of the package structure between the MEMS die and the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0046Fluidic connecting means using isolation membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0069Electrical connection means from the sensor to its support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/02Arrangements for preventing, or for compensating for, effects of inclination or acceleration of the measuring device; Zero-setting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/148Details about the circuit board integration, e.g. integrated with the diaphragm surface or encapsulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0055Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements bonded on a diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

使用弹簧式波纹状物或蛇形锯齿状物将微机电系统(MEMS)压力感测元件悬挂在空腔内,这减小了所述感测元件上的热失配机械应力。用凝胶覆盖弹簧式结构和感测元件进一步减小了热失配应力和振动动态应力。

Description

应力隔离的绝对压力传感器
背景技术
微机电系统(MEMS)压力传感器是众所周知的。在各种美国专利中公开了此类传感器的示例,这些美国专利包括但不限于:2011年8月16日发布的名称为“具有高精度和高灵敏度的低压力传感器装置(Low pressure sensor device with high accuracy and highsensitivity)”的美国专利7,997,142;2013年7月12日发布的名称为“用于苛刻介质感测和柔性包装的压力传感器(Pressure sensor for harsh media sensing and flexiblepackaging)”的美国专利8,215,176;以及2014年9月16日发布的名称为“具有用于最小化热噪声的带阶梯空腔的压力感测装置(Pressure sensing device with stepped cavity tominimize thermal noise)”的美国专利8,833,172,每一者的内容通过引用的方式整体地并入本文中。
MEMS压力感测领域的普通技术人员知道:MEMS压力感测元件上的热失配机械应力或振动动态应力不利地影响装置的精度。因此,减小或消除热失配应力和振动动态应力对改进MEMS压力感测元件精度是重要的。
附图说明
图1A是现有技术中的采用MEMS压力感测元件的压力传感器的透视图;
图1B示出了图1A中的MEMS压力感测元件的横截面图;
图2是应力隔离MEMS压力传感器的横截面图;
图3是图2中所示的应力隔离MEMS压力传感器的俯视图或平面图;
图4A是采用MEMS压力感测元件的包覆成型的应力隔离压力传感器的横截面图,所述MEMS压力感测元件将结合线用作互连件;
图4B是采用MEMS压力感测元件的包覆成型的应力隔离压力传感器的横截面图,所述MEMS压力感测元件将传导性贯通过孔(through vias)用作互连件;
图5示出了支撑图2的处于应力隔离压力中的MEMS压力感测元件的波纹状悬挂器的透视图和横截面图;
图6A是支撑图2中的MEMS压力感测元件的蛇形悬挂器的透视图;
图6B是蛇形悬挂器的俯视图;
图6C是蛇形悬挂器的侧视图;
图7是应力隔离MEMS压力传感器的实施例的横截面图;
图8是应力隔离MEMS压力传感器的另一个实施例的横截面图;
图9是安装到专用集成电路(ASIC)上并通过传导性过孔(vias)连接的应力隔离MEMS压力传感器的横截面图;以及
图10是使用传导性过孔安装到ASIC上并且被包覆成型的应力隔离MEMS压力感测元件的横截面图。
具体实施方式
现参考呈分解图的图1,MEMS压力传感器100包括具有端口104的主壳体102,端口104将加压流体传导到位于壳体空腔108内的MEMS压力感测元件106,壳体空腔108在塑料壳体102内。粘性凝胶层110覆盖MEMS压力感测元件106与专用集成电路(ASIC)112两者,ASIC112也安装在壳体空腔108内。
通过延伸穿过塑料壳体102的金属“引导框架(lead frame)”114来向ASIC 112提供电信号和从ASIC 112接收电信号。引导框架114通过小的结合线116电联接到ASIC 112。在ASIC 112的另一侧上,结合线118将ASIC 112与MEMS压力感测元件106连接。图1B中描绘了现有技术中的MEMS压力感测元件106的横截面图。MEMS压力感测元件106包括具有隔膜124的硅衬底120以及空腔126,并且阳极结合(anodically bonded)到玻璃衬底122。空腔126接近真空,以用于通过多个压电电阻器128进行顶侧压力感测,多个压电电阻器128形成于在顶侧上的隔膜124的边缘附近。
可以通过具有柔性“弹簧”或“悬挂器”的改进的MEMS压力感测元件201来减小由MEMS压力感测元件106上的热诱导机械应力和/或振动机械应力造成的不精确性或噪声,所述柔性“弹簧”或“悬挂器”由同一种半导体材料形成,如图2中所示的那样。在优选实施例中,弹簧通过掺杂而变得导电,并将信号载送到如图3中所示的多个压电电阻器304和从多个压电电阻器304载送信号。通过利用粘性凝胶110覆盖弹簧来向应力隔离MEMS压力传感器200提供额外的机械应力隔离,以阻尼掉(damp out)和减小振动动态应力。
图2是应力隔离压力传感器200的优选实施例的横截图,应力隔离压力传感器200包括具有内部真空空腔204的MEMS压力感测元件201。空腔204具有底表面205,并且由侧壁207限定或以侧壁207来界定,所述侧壁基本上与底表面205正交。
如上述现有技术专利中所描述的,形成具有压电电阻器的薄半导体隔膜206,并通过二氧化硅薄层209将其附接到衬底202。
如本文中所使用的,术语“悬挂器”是指使某物悬挂或受支撑的结构。如图2中所示,具有隔膜206的MEMS压力感测元件201通过多个悬挂器208被悬挂在空腔210中,所述多个悬挂器208由制成衬底202和隔膜206的同一种半导体材料形成。通过将硅边沿(rim)212的底表面213结合到衬底214而形成空腔210。
如果衬底214是玻璃衬底,则硅边沿212可以阳极结合到衬底214上。如果衬底214是硅衬底,则硅边沿212可以熔融结合到衬底214上或玻璃烧结式结合(glass-frit-bonded)到衬底214上。
图3是图2中所示的应力隔离压力传感器200的俯视图或平面图。隔膜206基本上为方形,且因此具有四个边缘305。压电电阻器304形成为邻近于隔膜206的每个边缘305定位。压电电阻器304通过多个P+互连件306和结合盘215而彼此电连接,以形成惠斯登(Wheatstone)电桥电路320。如众所周知的,且至少在上文提到的发布的专利中所解释的,隔膜206响应于施加到其顶表面的压力而产生的变形导致压电电阻器304变形和受应力。当它们变形和受应力时,它们的阻力发生改变。当将恒定值的输入电压施加到惠斯登电桥电路的输入端子时,从惠斯登电桥输出的电压响应于变形和应力(即,响应于由于所施加的压力而产生的隔膜挠曲和应力)而改变。
当然,每个压电电阻器304具有两个端子端部。每个压电电阻器304的每一端连接到悬挂器208,每个悬挂器被掺杂以使悬挂器208变得导电。
每个悬挂器208“连接”到在隔膜206的顶表面211上的结合盘215。因此,悬挂器208执行三种功能:支撑隔膜206,提供应力隔离,以及提供去往和来自压电电阻器304的传导性信号路径。
图4A是包覆成型的应力隔离压力传感器400的横截面图。应力隔离压力传感器200利用粘合剂411附接到印刷电路板(PCB)412或引导框架114上。包覆成型部402使用诸如热塑性材料之类的材料来对应力隔离压力传感器200和结合线406进行包覆成型,结合线406将应力隔离压力传感器200连接到ASIC 112或引导框架架114。将凝胶404分配成覆盖应力隔离压力传感器200的顶表面211以保护惠斯登电桥电路320。通过包覆成型部402形成通孔418,以允许压力介质穿过孔418到达凝胶404的顶表面。粘性凝胶404足够软,以将施加于其上的压力传送到MEMS压力感测元件201的隔膜206。凝胶404也被填充到空腔212中。凝胶404可以在振动或冲击期间减弱(damp down)动态应力和减小由隔膜206上的压电电阻器304所感测的噪声。
图4B是包覆成型的应力隔离压力传感器401的横截面图,其包括应力隔离压力传感器200,应力隔离压力传感器200使用与贯通过孔408和焊料凸块410的不同电互连来连接到PCB 412或引导框架114以用于电压信号输入和输出。凝胶404完全填充于在MEMS压力感测元件201之上的空腔中,并且通过包覆成型部402而被包覆成型为没有开放空间。膜420通过包覆成型部402而形成在凝胶404的顶部上。膜420是柔性的,以将施加在其上的压力传送到MEMS压力感测元件201的凝胶和隔膜206。
通过将MEMS压力感测元件106更换为图2中的应力隔离压力传感器200,应力隔离压力传感器也可以被包含在如图1A中所示的现有技术的注射成型塑料壳体102中。
支撑MEMS压力感测元件201并使其与应力隔离的悬挂器208是通过以下步骤形成的:或者蚀刻应力隔离压力传感器200的顶表面211或底面213,或者蚀刻表面211与213两者。形成优选的实施例悬挂器所需的蚀刻是如下所述的多步过程,所述多步过程以制成应力隔离压力传感器200的材料来形成波纹状悬挂器或蛇形悬挂器。波纹状悬挂器或蛇形悬挂器响应于MEMS压力感测元件201的加速或运动而扩展和收缩,且因此充当弹簧,吸收如若不然将施加到隔膜并使其输出信号失真的机械力。换句话说,悬挂器208使隔膜206与机械应力隔离,或减轻机械应力对隔膜206的影响。
图5示出了波纹状悬挂器500,其可以是在如图2和图3中所示的应力隔离压力传感器201中被用于应力隔离的一种悬挂器208。波纹状悬挂器500包括波状顶表面501和波状底表面502。顶表面501被掺硼,具有作为连接如图3中所示的P+互连件306的互连件的P+传导性材料。波纹状悬挂器500具有若干基本为平面和水平的城齿(merlon)504,这些城齿“附接”到本文中被称为垛口(crenel)506的倾斜区段。基本为平面的城齿504基本上平行于应力隔离MEMS压力感测元件201的隔膜206的基本为平面的顶表面和底表面。
图6A是蛇形悬挂器600的透视图,其是波纹状悬挂器500的替代物。图6B是蛇形悬挂器600的俯视图,且图6C是蛇形悬挂器600的侧视图。形成悬挂器600的材料可被掺杂以是传导性的并载送电流。其还可以支撑空腔中的压力感测元件。不同于图5中所示的波纹状悬挂器(波纹状悬挂器具有竖直取向的锯齿状部),蛇形悬挂器600具有本文中被视为水平取向的锯齿状部。与图5中所示的波纹状悬挂器相比,图6中所示的蛇形悬挂器600可以更容易地通过更少的蚀刻步骤形成,且因此被视为“优选的”。
每个锯齿状区段610具有城齿612和垛口614。在优选实施例中,使用常规过程将悬挂器600掺杂为P+以使其导电,而同时使其为机械柔性的。
现参考图7,描绘了应力隔离压力传感器的横截面和形成应力隔离压力传感器的方法。可以形成具有内空腔704的绝缘体上硅(SOI)衬底701,所述SOI衬底由硅支撑衬底702、二氧化硅层706、以及硅装置层708组成。在底表面703的中心处通过深反应离子蚀刻(DRIE)来蚀刻SOI硅支撑衬底702,以有效地形成浅空腔712。
如上文所述,波纹状或蛇形悬挂器208是在另外的DRIE蚀刻过程之后形成的,所述DRIE蚀刻过程形成围绕MEMS压力感测元件201的更深的空腔714。浅空腔712和围绕MEMS压力感测元件201的更深的空腔714构成了空腔210。悬挂器208支撑压力感测元件201并使其与剩余的SOI衬底701机械地隔离。
由MEMS压力感测元件201组成的经蚀刻的SOI衬底附接到衬底720。整个结构被支撑在衬底720上,所述衬底可以是玻璃或硅。
图8描绘了一种形成应力隔离压力传感器的替代方法。蚀刻第一硅衬底802以形成浅空腔804,并将第一硅衬底802附接到SOI衬底810以形成结合衬底。SOI衬底810包括二氧化硅层812、硅装置层814、二氧化硅层816、以及硅支撑衬底818。从顶侧蚀刻结合衬底的边沿或边缘部分以暴露硅装置层814。然后,将具有所形成的深空腔822的硅或玻璃盖820附接到结合衬底810的暴露的硅装置层814的顶表面。如果盖820是玻璃,则盖820可以阳极结合到结合衬底810上。如果盖820是硅,则盖820可以熔融结合到结合衬底810上或玻璃烧结式结合到结合衬底810上。
蚀刻SOI衬底810的底表面以限定基本上方形的MEMS压力感测元件201,MEMS压力感测元件201具有隔膜206和多个支撑悬挂器208以形成应力隔离压力传感器。
图9描绘了应力隔离压力传感器900,其包括附接在硅或玻璃衬底904的顶部上的MEMS压力感测元件901。空腔906(MEMS压力感测元件901通过悬挂器908被悬挂在空腔906中)填充有粘性凝胶910,MEMS压力感测元件901被悬挂在所述粘性凝胶910中。
传导性过孔914在衬底902的顶表面916与衬底904的底表面918之间延伸,并提供至ASIC 920的传导性路径,ASIC 920具有其自己的传导性硅贯通过孔(through-siliconvias)922。因此,可以通过波纹状或蛇形悬挂器将ASIC 920的信号传导到悬挂在粘性凝胶中的MEMS压力感测元件901和从MEMS压力感测元件901传导ASIC 920的信号,所述波纹状或蛇形悬挂器被掺杂以导电。
现参考图10,图9中所示的结构被示为被包覆成型在包覆成型部1002中。应力隔离压力传感器1000及其包覆成型部1002包括具有传导性迹线或传导性引导框架1004的PCB,所述传导性迹线或传导性引导框架从包覆成型部1002的外表面穿过包覆成型材料延伸到ASIC 920上的结合盘1006。
本领域普通技术人员应知道,悬链线是由具有均匀密度和横截面的绳索所假定的曲线,其完全是柔性的但不能够拉伸到水平,并且其从两个固定点自由悬挂。悬链线的示例是从塔架或电线杆悬挂的电源线和电话线。
本领域普通技术人员应认识到,不管弹簧的形状如何,通过弹簧将MEMS压力感测元件支撑或悬挂在空腔中都将具有固有地为悬链线的形状。因此,本文中所公开的弹簧式悬挂器在本文中被视为具有至少部分为悬链线的形状。由相对的弹簧和MEMS压力感测元件假定的形状也被假定成至少部分为悬链线。
上述描述仅用于说明的目的。本发明的真正范围在以下权利要求中进行陈述。

Claims (20)

1.一种应力隔离压力传感器,包括:
空腔,其以边沿来界定;
微机电系统(MEMS)压力感测元件,其被构造成悬挂在所述空腔内;
多个悬挂器,其在所述边沿与所述MEMS压力感测元件之间延伸并将所述MEMS压力感测元件支撑在所述空腔中,所述悬挂器是柔性的并且被掺杂成是导电的。
2.根据权利要求1所述的应力隔离压力传感器,其中,所述边沿附接到衬底,所述应力隔离压力传感器还包括:
开放空间,其位于以下两者的外表面之间:
所述MEMS压力感测元件与界定所述空腔的边沿;以及
所述MEMS压力感测元件与所述衬底。
3.根据权利要求2所述的应力隔离压力传感器,还包括覆盖所述悬挂器和所述MEMS压力感测元件的凝胶,所述凝胶也填充所述开放空间,所述凝胶被选择为将施加到其上的压力传送到所述MEMS压力感测元件。
4.根据权利要求1所述的应力隔离压力传感器,其中,所述MEMS压力感测元件包括隔膜,所述隔膜基本上为矩形且具有相对的顶表面和底表面以及四个侧面,所述隔膜表面中的至少一者具有彼此连接以形成惠斯登电桥电路的多个压电电阻器,每个压电电阻器定位成邻近于所述隔膜的每个侧面。
5.根据权利要求1所述的应力隔离压力传感器,其中,所述悬挂器为蛇形。
6.根据权利要求1所述的应力隔离压力传感器,其中,所述悬挂器具有横截面形状,所述横截面形状为波纹状。
7.根据权利要求1所述的应力隔离压力传感器,还包括衬底,所述衬底的尺寸、形状设计成并且其布置成支撑所述边沿、所述MEMS压力感测元件以及所述悬挂器。
8.根据权利要求7所述的应力隔离压力传感器,其中,所述衬底是玻璃。
9.根据权利要求7所述的应力隔离压力传感器,其中,所述衬底阳极结合到所述边沿。
10.根据权利要求7所述的应力隔离压力传感器,其中,所述衬底是硅。
11.根据权利要求10所述的应力隔离压力传感器,其中,所述衬底玻璃烧结式结合到所述边沿。
12.根据权利要求10所述的应力隔离压力传感器,其中,所述衬底熔融结合到所述边沿。
13.根据权利要求7所述的应力隔离压力传感器,还包括封装所述MEMS压力感测元件、所述衬底以及所述悬挂器的包覆成型部,所述包覆成型部具有空腔,所述空腔的尺寸、形状设计成并且其布置成接收所述MEMS压力感测元件、所述衬底以及所述悬挂器。
14.根据权利要求13所述的应力隔离压力传感器,还包括结合线,所述结合线在所述边沿上的传导性盘与所述包覆成型部中的电导体之间延伸。
15.根据权利要求13所述的应力隔离压力传感器,还包括将所述MEMS压力感测元件连接到所述包覆成型部中的电导体的传导性贯通过孔。
16.根据权利要求13所述的应力隔离压力传感器,还包括在所述包覆成型空腔内的凝胶。
17.根据权利要求13所述的应力隔离压力传感器,还包括在所述凝胶的顶部上的膜,所述膜被构造成接触所述凝胶并且被选择为将施加到其上的压力传送到所述凝胶和所述MEMS压力感测元件。
18.根据权利要求7所述的应力隔离压力传感器,还包括ASIC,所述ASIC附接到所述衬底的外表面并且经由传导性贯通过孔电联接到惠斯登电桥电路。
19.根据权利要求7所述的应力隔离压力传感器,还包括塑料壳体,所述塑料壳体被构造成容纳所述MEMS压力感测元件、所述衬底、所述悬挂器、以及所述ASIC。
20.根据权利要求18所述的应力隔离压力传感器,还包括塑料壳体,所述塑料壳体被构造成容纳ASIC,所述ASIC附接到所述衬底的外表面并且经由传导性贯通过孔电联接到所述惠斯登电桥电路。
CN201680082401.3A 2015-12-22 2016-09-02 应力隔离的绝对压力传感器 Active CN108700482B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562270717P 2015-12-22 2015-12-22
US62/270717 2015-12-22
US15/209,185 US10060820B2 (en) 2015-12-22 2016-07-13 Stress-isolated absolute pressure sensor
US15/209185 2016-07-13
PCT/US2016/050138 WO2017112007A1 (en) 2015-12-22 2016-09-02 Stress-isolated absolute pressure sensor

Publications (2)

Publication Number Publication Date
CN108700482A true CN108700482A (zh) 2018-10-23
CN108700482B CN108700482B (zh) 2021-02-09

Family

ID=59067038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680082401.3A Active CN108700482B (zh) 2015-12-22 2016-09-02 应力隔离的绝对压力传感器

Country Status (4)

Country Link
US (1) US10060820B2 (zh)
EP (1) EP3394586B1 (zh)
CN (1) CN108700482B (zh)
WO (1) WO2017112007A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174951A (zh) * 2020-01-06 2020-05-19 武汉大学 一种压电式传感器及其制备方法
US11385118B2 (en) * 2018-12-07 2022-07-12 Vitesco Technologies USA, LLC Pressure sensor with external vertical electrical interconnection system
US11535508B2 (en) * 2019-02-25 2022-12-27 Stmicroelectronics S.R.L. Pressure sensor including a microelectromechanical transducer and relating pressure-detection method
US12006207B2 (en) 2019-02-25 2024-06-11 Stmicroelectronics S.R.L. Pressure sensor including a microelectromechanical transducer and relating pressure-detection method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290096A (zh) * 2016-04-11 2017-10-24 飞思卡尔半导体公司 具有膜片的压力感测集成电路器件
DE102017203384B3 (de) * 2017-03-02 2018-01-18 Robert Bosch Gmbh Mikromechanischer Drucksensor
US20190010046A1 (en) * 2017-07-06 2019-01-10 China Wafer Level Csp Co., Ltd. Packaging structure and packaging method of mems chip and asic chip
DE102018106560A1 (de) * 2017-10-17 2019-04-18 Infineon Technologies Ag Drucksensorbauelemente und Verfahren zum Herstellen von Drucksensorbauelementen
US10370244B2 (en) * 2017-11-30 2019-08-06 Infineon Technologies Ag Deposition of protective material at wafer level in front end for early stage particle and moisture protection
GB2575694A (en) 2018-07-20 2020-01-22 Atlantic Inertial Systems Ltd Sensor packages
DE102018214113B4 (de) * 2018-08-21 2021-05-06 Robert Bosch Gmbh Verfahren zur Herstellung eines MEMS-Sensors
DE102018216282A1 (de) 2018-09-25 2020-03-26 Robert Bosch Gmbh Verfahren zur Herstellung eines MEMS-Sensors
CN209326840U (zh) 2018-12-27 2019-08-30 热敏碟公司 压力传感器及压力变送器
CN109752418B (zh) * 2019-01-21 2021-11-05 中国科学院上海微系统与信息技术研究所 一种微型热导气体传感器
TWI691881B (zh) * 2019-01-24 2020-04-21 中光電智能感測股份有限公司 力量感測器
CN209857926U (zh) * 2019-02-12 2019-12-27 精量电子(深圳)有限公司 传感器
US10777474B1 (en) 2019-03-06 2020-09-15 Infineon Technologies Ag Pressure sensors on flexible substrates for stress decoupling
CN110668391B (zh) * 2019-08-27 2023-04-07 华东光电集成器件研究所 一种具有应力释放功能的双端固支板式mems结构
US11981560B2 (en) 2020-06-09 2024-05-14 Analog Devices, Inc. Stress-isolated MEMS device comprising substrate having cavity and method of manufacture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791789A (zh) * 2003-05-16 2006-06-21 罗斯蒙德公司 压力传感器膜盒
US20070279845A1 (en) * 2004-02-09 2007-12-06 Winfried Kuhnt Corrosion Protection for Pressure Sensors
US20080034877A1 (en) * 2004-03-12 2008-02-14 Thomas Fessele Sensor Module
CN104418287A (zh) * 2013-08-19 2015-03-18 盛思锐股份公司 具有微米或纳米级结构的设备
CN104515638A (zh) * 2013-09-30 2015-04-15 精工爱普生株式会社 压力传感器、电子设备和移动体
US20150330856A1 (en) * 2014-05-15 2015-11-19 Continental Automotive Systems, Inc. Pressure sensor device with high sensitivity and high accuracy

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196938A (ja) * 1989-01-26 1990-08-03 Aisan Ind Co Ltd 圧力センサ
DE19929026B4 (de) 1999-06-25 2011-02-24 Robert Bosch Gmbh Verfahren zur Herstellung eines Drucksensors
DE10324139B4 (de) * 2003-05-26 2005-07-21 Infineon Technologies Ag Mikroelektromechanisches Bauteil und Verfahren zu seiner Herstellung
DE102004043663B4 (de) * 2004-09-07 2006-06-08 Infineon Technologies Ag Halbleitersensorbauteil mit Hohlraumgehäuse und Sensorchip und Verfahren zur Herstellung eines Halbleitersensorbauteils mit Hohlraumgehäuse und Sensorchip
US8164153B2 (en) 2009-05-27 2012-04-24 Continental Automotive Systems, Inc. Thin semiconductor device having embedded die support and methods of making the same
US7997142B2 (en) * 2009-07-31 2011-08-16 Continental Automotive Systems, Inc. Low pressure sensor device with high accuracy and high sensitivity
US8304275B2 (en) 2010-08-31 2012-11-06 Freescale Semiconductor, Inc. MEMS device assembly and method of packaging same
DE102010042113B4 (de) 2010-10-07 2023-06-29 Robert Bosch Gmbh Halbleiter-Bauelement mit entkoppeltem mikro-elektromechanischen Element
US9187313B2 (en) 2012-06-26 2015-11-17 Honeywell International Inc. Anodically bonded strain isolator
US9487386B2 (en) 2013-01-16 2016-11-08 Infineon Technologies Ag Comb MEMS device and method of making a comb MEMS device
WO2014115766A1 (ja) * 2013-01-22 2014-07-31 京セラ株式会社 電子素子搭載用パッケージ、電子装置および撮像モジュール
TW201516386A (zh) * 2013-10-24 2015-05-01 Asia Pacific Microsystems Inc 複合範圍壓力感測器
DE102014105861B4 (de) * 2014-04-25 2015-11-05 Infineon Technologies Ag Sensorvorrichtung und Verfahren zum Herstellen einer Sensorvorrichtung
US9863828B2 (en) * 2014-06-18 2018-01-09 Seiko Epson Corporation Physical quantity sensor, electronic device, altimeter, electronic apparatus, and mobile object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791789A (zh) * 2003-05-16 2006-06-21 罗斯蒙德公司 压力传感器膜盒
US20070279845A1 (en) * 2004-02-09 2007-12-06 Winfried Kuhnt Corrosion Protection for Pressure Sensors
US20080034877A1 (en) * 2004-03-12 2008-02-14 Thomas Fessele Sensor Module
CN104418287A (zh) * 2013-08-19 2015-03-18 盛思锐股份公司 具有微米或纳米级结构的设备
CN104515638A (zh) * 2013-09-30 2015-04-15 精工爱普生株式会社 压力传感器、电子设备和移动体
US20150330856A1 (en) * 2014-05-15 2015-11-19 Continental Automotive Systems, Inc. Pressure sensor device with high sensitivity and high accuracy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11385118B2 (en) * 2018-12-07 2022-07-12 Vitesco Technologies USA, LLC Pressure sensor with external vertical electrical interconnection system
US11535508B2 (en) * 2019-02-25 2022-12-27 Stmicroelectronics S.R.L. Pressure sensor including a microelectromechanical transducer and relating pressure-detection method
US12006207B2 (en) 2019-02-25 2024-06-11 Stmicroelectronics S.R.L. Pressure sensor including a microelectromechanical transducer and relating pressure-detection method
CN111174951A (zh) * 2020-01-06 2020-05-19 武汉大学 一种压电式传感器及其制备方法

Also Published As

Publication number Publication date
US20170176278A1 (en) 2017-06-22
EP3394586B1 (en) 2020-01-29
US10060820B2 (en) 2018-08-28
EP3394586A1 (en) 2018-10-31
WO2017112007A1 (en) 2017-06-29
CN108700482B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN108700482A (zh) 应力隔离的绝对压力传感器
US10656035B2 (en) Piezoresistive sensor with spring flexures for stress isolation
US8466523B2 (en) Differential pressure sensor device
CN106052941B (zh) 3d堆叠压阻压力传感器
US8215176B2 (en) Pressure sensor for harsh media sensing and flexible packaging
US10407299B2 (en) 3D MEMS device with hermetic cavity
US8171800B1 (en) Differential pressure sensor using dual backside absolute pressure sensing
CN104634501B (zh) 压力传感器
JP5174673B2 (ja) 基板レベル・アセンブリを具えた電子装置及びその製造処理方法
US20010001550A1 (en) Integral stress isolation apparatus and technique for semiconductor devices
US20120266684A1 (en) Sensor device with sealing structure
KR101953454B1 (ko) 압력 센서 칩
EP3092499B1 (en) Robust inertial sensors
CN107892268B (zh) 压力传感器及其制造方法
EP2990377B1 (en) Die attach stress isolation
CN107894297B (zh) 一种压力传感器芯片及其制造方法
US10843917B2 (en) Micromechanical device having a decoupled micromechanical structure
JP2013148495A (ja) 半導体センサ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant