CN110668391B - 一种具有应力释放功能的双端固支板式mems结构 - Google Patents

一种具有应力释放功能的双端固支板式mems结构 Download PDF

Info

Publication number
CN110668391B
CN110668391B CN201910793511.6A CN201910793511A CN110668391B CN 110668391 B CN110668391 B CN 110668391B CN 201910793511 A CN201910793511 A CN 201910793511A CN 110668391 B CN110668391 B CN 110668391B
Authority
CN
China
Prior art keywords
double
end fixed
stress release
movable structure
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910793511.6A
Other languages
English (en)
Other versions
CN110668391A (zh
Inventor
何凯旋
喻磊
郭立建
姜楠
张胜兵
郭群英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No 214 Institute of China North Industries Group Corp
Original Assignee
No 214 Institute of China North Industries Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No 214 Institute of China North Industries Group Corp filed Critical No 214 Institute of China North Industries Group Corp
Priority to CN201910793511.6A priority Critical patent/CN110668391B/zh
Publication of CN110668391A publication Critical patent/CN110668391A/zh
Application granted granted Critical
Publication of CN110668391B publication Critical patent/CN110668391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0045Packages or encapsulation for reducing stress inside of the package structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0045Packages or encapsulation for reducing stress inside of the package structure
    • B81B7/0048Packages or encapsulation for reducing stress inside of the package structure between the MEMS die and the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Micromachines (AREA)

Abstract

本发明公开一种具有应力释放功能的双端固支板式MEMS结构,包括相互键合的衬底层与可动结构层,衬底层顶部中心设有空腔,衬底层顶部设有环形隔离槽,环形隔离槽位于空腔外周,环形隔离槽与空腔之间形成环形固定锚点;可动结构层包含可动结构外框,可动结构外框内设有双端固支板结构,可动结构外框与双端固支板结构之间形成环形应力释放槽,环形应力释放槽与环形隔离槽相对应;环形固定锚点对双端固支板结构形成支撑;双端固支板结构的四角与可动结构外框的四个内角之间分别对应设有应力释放连接梁;本发明在保证传感器谐振频率不降低的情况下极大地减小了传感器对热应力的敏感度。

Description

一种具有应力释放功能的双端固支板式MEMS结构
技术领域
本发明涉及微电子机械技术领域,具体是一种具有应力释放功能的双端固支板式MEMS结构。
背景技术
微机电系统(Micro Electro-Mechanical Systems,MEMS)是在微电子制造技术基础上发展起来的一门跨学科技术,利用光刻、刻蚀、成膜、键合等微细加工手段形成电子机械结构,融合了电子、材料、机械、物理、化学、生物等多种领域。MEMS以其小型化、低功耗、批量化生产、成本低等诸多优点吸引了人们的广泛关注,在消费电子、汽车电子、智能终端、物联网、生物医学、国防技术等领域有广泛应用。
双端固支板式结构是一种典型的压阻式MEMS加速度传感器敏感结构,具有谐振频率高的优点。当有外界加速度作用于敏感方向时,板式结构会产生位移,并在结构表面形成应力输出。可在板式结构表面制作压敏电阻,组成惠斯通电桥,压敏电阻在应力的作用下产生变化,使惠斯通电桥产生输出,从而可以测量加速度大小。
由于MEMS加速度传感器通常需要进行封装,例如塑封或者灌封,封装材料与硅材料的热膨胀系数不同,会导致热应力适配,当外界温度变化时,会引起加速度传感器敏感结构产生应力形变,使其零位指标产生严重的漂移。由于双端固支结构无法有效释放热应力,严重限制了该结构的实际应用。
发明内容
本发明的目的在于提供一种具有应力释放功能的双端固支板式MEMS结构,该MEMS结构适用于塑封或灌封的高冲击MEMS加速度传感器,在保证传感器谐振频率不降低的情况下极大地减小了传感器对热应力的敏感度。
本发明解决其技术问题所采用的技术方案是:
一种具有应力释放功能的双端固支板式MEMS结构,包括相互键合的衬底层与可动结构层,衬底层顶部中心设有空腔,其特征在于,所述衬底层顶部设有环形隔离槽,环形隔离槽位于空腔外周,环形隔离槽与空腔之间形成环形固定锚点;
所述可动结构层包含可动结构外框,可动结构外框内设有双端固支板结构,可动结构外框与双端固支板结构之间形成环形应力释放槽,环形应力释放槽与环形隔离槽相对应;环形固定锚点对双端固支板结构形成支撑;双端固支板结构的四角与可动结构外框的四个内角之间分别对应设有应力释放连接梁。
本发明的有益效果是,通过环形应力释放槽与环形隔离槽,可以将应力集中到环形隔离槽底部以及应力释放连接梁位置,减小双端固支板敏感板结构的弯曲程度,降低其受热应力的影响;另外,本发明隔离方式没有造成整体结构刚度的减弱,不影响敏感结构的谐振频率,抗过载性能也不受影响。
附图说明
下面结合附图和实施例对本发明进一步说明:
图1是本发明的结构示意图;
图2是本发明的俯视图;
图3是本发明衬底的放大示意图;
图4是图3的俯视图;
图5是本发明典型整体MEMS器件示意图。
具体实施方式
结合图1~4所示,本发明提供一种具有应力释放功能的双端固支板式MEMS结构,包括相互键合的衬底层1与可动结构层2,衬底层1与可动结构层2为全硅结构;衬底层1顶部中心设有空腔3,空腔3深度为1微米~30微米,可采用光刻和反应离子刻蚀或深反应离子刻蚀工艺制作;衬底层1顶部还设有环形隔离槽4,环形隔离槽4位于空腔3外周、且与空腔3同心;环形隔离槽4与空腔3之间形成环形固定锚点5;环形隔离槽4的深度为100微米~500微米,可采用光刻和深反应离子刻蚀工艺制作。
可动结构层2的硅片可为SOI硅片的顶层硅或者单晶硅片减薄形成;可动结构层的硅片通常为N型常阻硅片,典型电阻率1Ω•cm~100Ω•cm,可在该结构层上制作压敏电阻。
所述可动结构层包含可动结构外框6,可动结构外框6内设有双端固支板结构7,可动结构外框与双端固支板结构之间形成环形应力释放槽8,环形应力释放槽8与环形隔离槽4相对应;环形固定锚点5对双端固支板结构7形成支撑;双端固支板结构的四角与可动结构外框的四个内角之间分别对应设有应力释放连接梁9。所述可动结构外框6、双端固支板结构7、环形应力释放槽8与应力释放连接梁9可采用光刻和深反应离子刻蚀工艺进行释放槽刻蚀,一次加工即可形成可动结构层的所有结构。
应力释放连接梁9可以为倾斜排布的梁,也可以为垂直方向放置的梁,能够实现面内两个方向的应力集中;应力释放连接梁9还可以作为表层金属走线的支撑。
结合图5所示,作为典型整体MEMS器件的构成,还包括与可动结构层2相键合的盖帽10,盖帽10设有可动结构运动空腔11,并为可动结构的运动提供合适阻尼。
外界热应力容易使芯片产生弯曲,导致传统的双端固支敏感板结构产生过大的弯曲应力;而本发明通过环形应力释放槽与环形隔离槽,可以将应力集中到环形隔离槽底部以及应力释放连接梁位置,减小双端固支板敏感板结构的弯曲程度,降低其受热应力的影响;另外,本发明隔离方式没有造成整体结构刚度的减弱,不影响敏感结构的谐振频率,抗过载性能也不受影响。
通过结构仿真,在相同外界热应力条件下,可以将双端固支板结构的应力降低至传统结构的1/3,验证了本发明的技术效果。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (1)

1.一种具有应力释放功能的双端固支板式MEMS结构,包括相互键合的衬底层与可动结构层,衬底层顶部中心设有空腔,其特征在于,所述衬底层顶部设有环形隔离槽,环形隔离槽位于空腔外周,环形隔离槽与空腔之间形成环形固定锚点;
所述可动结构层包含可动结构外框,可动结构外框内设有双端固支板结构,可动结构外框与双端固支板结构之间形成环形应力释放槽,环形应力释放槽与环形隔离槽相对应;环形固定锚点对双端固支板结构形成支撑;双端固支板结构的四角与可动结构外框的四个内角之间分别对应设有应力释放连接梁。
CN201910793511.6A 2019-08-27 2019-08-27 一种具有应力释放功能的双端固支板式mems结构 Active CN110668391B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910793511.6A CN110668391B (zh) 2019-08-27 2019-08-27 一种具有应力释放功能的双端固支板式mems结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910793511.6A CN110668391B (zh) 2019-08-27 2019-08-27 一种具有应力释放功能的双端固支板式mems结构

Publications (2)

Publication Number Publication Date
CN110668391A CN110668391A (zh) 2020-01-10
CN110668391B true CN110668391B (zh) 2023-04-07

Family

ID=69075715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910793511.6A Active CN110668391B (zh) 2019-08-27 2019-08-27 一种具有应力释放功能的双端固支板式mems结构

Country Status (1)

Country Link
CN (1) CN110668391B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793058A (zh) * 2017-05-03 2018-11-13 北京万应科技有限公司 一种mems传感器系统封装结构及制造方法
CN109292726A (zh) * 2018-08-17 2019-02-01 北方电子研究院安徽有限公司 一种全硅环境隔离mems器件

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268463B2 (en) * 2005-07-28 2007-09-11 Freescale Semiconductor, Inc. Stress release mechanism in MEMS device and method of making same
CN102862947B (zh) * 2012-09-18 2016-01-27 华东光电集成器件研究所 一种mems器件及其晶圆级真空封装方法
US9000833B2 (en) * 2013-03-06 2015-04-07 Silicon Laboratories Inc. Compensation of changes in MEMS capacitive transduction
DE102014214525B4 (de) * 2014-07-24 2019-11-14 Robert Bosch Gmbh Mikro-elektromechanisches Bauteil und Herstellungsverfahren für mikro-elektromechanische Bauteile
CN105137121B (zh) * 2015-10-15 2018-02-27 华东光电集成器件研究所 一种低应力加速度计的制备方法
US10060820B2 (en) * 2015-12-22 2018-08-28 Continental Automotive Systems, Inc. Stress-isolated absolute pressure sensor
CN106241731A (zh) * 2016-08-25 2016-12-21 华东光电集成器件研究所 一种平板电容mems器件电容间隙的控制制备方法
DE102016219807A1 (de) * 2016-10-12 2018-04-12 Robert Bosch Gmbh Mikromechanischer Sensor
CN107673304A (zh) * 2017-08-12 2018-02-09 北方电子研究院安徽有限公司 一种减小灌封应力的加速度传感器结构及其制备方法
CN108358160B (zh) * 2018-04-18 2023-08-01 中国兵器工业集团第二一四研究所苏州研发中心 吊装式可释放应力的mems器件封装结构
CN208898497U (zh) * 2018-08-23 2019-05-24 安徽北方芯动联科微系统技术有限公司 一种具有应力缓冲结构的mems芯片
CN209024198U (zh) * 2018-09-30 2019-06-25 南京理工大学 一种应用于mems力敏感器件的二级应力隔离结构

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793058A (zh) * 2017-05-03 2018-11-13 北京万应科技有限公司 一种mems传感器系统封装结构及制造方法
CN109292726A (zh) * 2018-08-17 2019-02-01 北方电子研究院安徽有限公司 一种全硅环境隔离mems器件

Also Published As

Publication number Publication date
CN110668391A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
US10145686B2 (en) Micro electro mechanical system
US8671756B2 (en) MEMS biaxial resonant accelerometer
Hsieh et al. A novel stress isolation guard-ring design for the improvement of a three-axis piezoresistive accelerometer
US10598689B2 (en) Out-of plane-accelerometer
US9686864B2 (en) Device including interposer between semiconductor and substrate
WO2016192371A1 (zh) 传感器集成装置及其生产方法
JP4335545B2 (ja) 圧力と加速度との双方を検出するセンサおよびその製造方法
US20050178204A1 (en) Pyramid socket suspension
CN110668394A (zh) 一种抗干扰耐过载mems加速度计的制备方法
Kobayashi et al. Double-frame silicon gyroscope packaged under low pressure by wafer bonding
CN215101976U (zh) 微机电结构
CN110668391B (zh) 一种具有应力释放功能的双端固支板式mems结构
Zhang et al. A SOI sandwich differential capacitance accelerometer with low-stress package
US9731958B2 (en) Microelectromechanical system and fabricating process having decoupling structure that includes attaching element for fastening to carrier
CN109292726B (zh) 一种全硅环境隔离mems器件
WO2018092458A1 (ja) Memsデバイス
JP2003028892A (ja) 加速度センサ
US20190276305A9 (en) Micromechanical device having a decoupled micromechanical structure
US20220219971A1 (en) Multiply encapsulated micro electrical mechanical systems device
Laermer Mechanical microsensors
Wang et al. Vertical signal feedthrough for sandwich devices based on anodic bonding and after laser trimming
Duqi et al. Pressure Sensors
Luo et al. Resonant pressure sensor with through-glass electrical interconnect based on SOI wafer technology
US20150191349A1 (en) Semiconductor secured to substrate via hole in substrate
CN116332118A (zh) 一种应用于mems力敏感传感器的封装级应力隔离结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant