DE102017203384B3 - Mikromechanischer Drucksensor - Google Patents

Mikromechanischer Drucksensor Download PDF

Info

Publication number
DE102017203384B3
DE102017203384B3 DE102017203384.3A DE102017203384A DE102017203384B3 DE 102017203384 B3 DE102017203384 B3 DE 102017203384B3 DE 102017203384 A DE102017203384 A DE 102017203384A DE 102017203384 B3 DE102017203384 B3 DE 102017203384B3
Authority
DE
Germany
Prior art keywords
pressure sensor
core
spring element
micromechanical
sensor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102017203384.3A
Other languages
English (en)
Inventor
Ferenc Lukacs
Arne Dannenberg
Friedjof Heuck
Helmut Grutzeck
Mike Schwarz
Robert Maul
Tamás Dögei
Thomas Friedrich
Volkmar Senz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102017203384.3A priority Critical patent/DE102017203384B3/de
Application granted granted Critical
Publication of DE102017203384B3 publication Critical patent/DE102017203384B3/de
Priority to CN201880015292.2A priority patent/CN110383027B/zh
Priority to PCT/EP2018/054200 priority patent/WO2018158116A1/de
Priority to US16/488,470 priority patent/US11060937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0045Diaphragm associated with a buried cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/145Housings with stress relieving means
    • G01L19/146Housings with stress relieving means using flexible element between the transducer and the support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0069Electrical connection means from the sensor to its support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0618Overload protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0048Details about the mounting of the diaphragm to its support or about the diaphragm edges, e.g. notches, round shapes for stress relief
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Mikromechanischer Drucksensor (100), aufweisend: – einen Drucksensorkern (10) mit einer Sensormembran (14) und einer oberhalb der Sensormembran (14) ausgebildeten Kavität (11); und – einen Drucksensorrahmen (20); wobei – ein Federelement (15) zur mechanischen Anbindung des Drucksensorkerns (10) an den Drucksensorrahmen (20) derart ausgebildet ist, dass eine mechanische Robustheit maximiert ist und eine Stresseinkopplung vom Drucksensorrahmen (20) auf den Drucksensorkern (10) minimiert ist.

Description

  • Die Erfindung betrifft einen mikromechanischen Drucksensor. Die Erfindung betrifft ferner ein Verfahren zum Herstellen eines mikromechanischen Drucksensors.
  • Stand der Technik
  • Moderne Verpackungstechniken machen es erforderlich, den drucksensitiven Teil eines Drucksensors in Form einer Drucksensormembran mittels spezieller Federdesigns zum restlichen Teil des Sensors mechanisch zu entkoppeln und damit unabhängig von AVT-Einflüssen (Aufbau- und Verbindungstechnik) zu machen, wie es zum Beispiel im Sensor LPS22HB von STMicroelectronics realisiert ist. Externe Einflüsse, welche den Drucksensor unter mechanischen Stress (z. B. Verbiegung) setzen, sind zum Beispiel mechanische Verspannungen aufgrund eines Moldprozesses, ein Aufbau mit mehreren Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten, Stress durch Lötverbindungen des aufgebauten Sensors auf einer externen Leiterplatte, usw.
  • Ein mikromechanischer Drucksensor, bei dem eine Druckdifferenz in Abhängigkeit von einer Verformung einer Sensormembran gemessen wird, ist z. B. aus DE 10 2004 006 197 A1 bekannt.
  • Aus der Schrift US 2012/0060605 A1 ist ein mikromechanischer Sensor zur Erfassung der Beschleunigung und des Drucks bekannt, bei dem eine bewegliche Masse über Brückenelemente beweglich innerhalb eines Rahmens eingespannt ist.
  • Offenbarung der Erfindung
  • Es ist eine Aufgabe der vorliegenden Erfindung, einen verbesserten, insbesondere einen stressrobusten mikromechanischen Drucksensor bereit zu stellen.
  • Die Aufgabe wird gemäß einem ersten Aspekt gelöst mit einem mikromechanischen Drucksensor, aufweisend:
    • – einen Drucksensorkern mit einer Sensormembran und einer oberhalb der Sensormembran ausgebildeten Kavität; und
    • – einen Drucksensorrahmen; wobei
    • – ein Federelement zur mechanischen Anbindung des Drucksensorkerns an den Drucksensorrahmen derart ausgebildet ist, dass eine mechanische Robustheit maximiert ist und eine Stresseinkopplung vom Drucksensorrahmen auf den Drucksensorkern minimiert ist.
  • Darüber hinaus zeichnet sich der erfindungsgemäße mikromechanischen Drucksensors zeichnet dadurch aus, dass der Drucksensorkern mittels zweier symmetrisch angeordneter Anbindungselemente an das Federelement angebunden ist, wobei das Federelement mit einem weiteren Anbindungselement an den Drucksensorrahmen angebunden ist. Bei dieser Ausführungsform sind vorteilhaft eine gute mechanische Entkopplung und eine platzsparende Bauweise unterstützt.
  • Weiterhin sieht der mikromechanischen Drucksensors vor, dass das Federelement mittels eines Anbindungselements an den Drucksensorkern angebunden ist, wobei das Federelement mittels zweier symmetrisch angeordneter Anbindungselemente an den Drucksensorrahmen angebunden ist. In diesem Fall ist eine weiter verbesserte mechanische Entkopplung bereitgestellt.
  • Auf diese Weise wird eine optimierte Anbindung des Drucksensorkerns an den Drucksensorrahmen bereitgestellt, wobei eine ausreichende Stabilität bei externer Beschleunigung (z. B. durch ein unsachgemäßes Fallenlassen des Drucksensors) mit einer Robustheit des Drucksensors gegenüber mechanischem Stress aus der Umwelt (z. B. in Form einer Verbiegung des Drucksensorrahmens) realisiert ist. Dabei kann der genannte mechanische Stress aus der Umwelt vorteilhaft von der Drucksensormembran ferngehalten werden, wodurch ein optimiertes Betriebsverhalten des mikromechanischen Drucksensors unterstützt ist. Auf diese Weise wird ein mikromechanischer Drucksensor mit einer allseitig freigestellten Drucksensormembran mit optimierter Anbindung des Drucksensorkerns bereitgestellt, wodurch eine effiziente Stressentkopplungsstruktur realisiert ist.
  • Bevorzugte Ausführungsformen des mikromechanischen Drucksensors sind Gegenstand von abhängigen Ansprüchen.
  • Eine vorteilhafte Weiterbildung des mikromechanischen Drucksensors sieht vor, dass der Drucksensorkern mittels eines kragbalkenartigen Federelements an den Drucksensorrahmen angebunden ist. Auf diese Weise kann eine gute mechanische Entkopplung des Drucksensorkerns vom Drucksensorrahmen bereitgestellt werden. Nützlich ist dies z. B. für mikromechanische Drucksensoren, die in der Regel nicht auf den Boden fallen können, beispielsweise bei fest verbauten Drucksensoren im Automobilbereich. Vorteilhaft kann bei derartigen Sensoren kein statisches Moment eingekoppelt werden.
  • Eine weitere vorteilhafte Weiterbildung des Verfahrens sieht vor, dass das Federelement mittels eines Anbindungselements an den Drucksensorkern angebunden ist, wobei das Federelement ringartig um den Drucksensorkern ausgebildet ist, wobei das Federelement mittels eines weiteren Anbindungselements an den Drucksensorrahmen angebunden ist. Auf diese Weise kann im Falle eines Aufpralls des Drucksensors auf den Boden eine geringere mechanische Belastung eingekoppelt werden. Auch bei dieser Variante kann in vorteilhafter Weise kein statisches Moment in den Drucksensorkern eingekoppelt werden.
  • Eine weitere vorteilhafte Weiterbildung des mikromechanischen Drucksensors zeichnet sich dadurch aus, dass der Drucksensorkern mittels zweier Anbindungselemente an das Federelement angebunden ist, wobei das Federelement ringartig um den Drucksensorkern ausgebildet ist, wobei das Federelement mittels zweier Anbindungselemente an den Drucksensorrahmen angebunden ist. Dadurch wird eine mechanisch robuste Variante eines mikromechanischen Drucksensors bereitgestellt, die einen symmetrischen Aufbau aufweist, wodurch eine Stressentkopplung in vorteilhafter Weise gleichmäßig verteilt ist.
  • Eine weitere vorteilhafte Weiterbildung des mikromechanischen Drucksensors zeichnet sich dadurch aus, dass das Federelement mit vier symmetrisch angeordneten Anbindungselementen an den Drucksensorkern angebunden ist, wobei das Federelement mit zwei symmetrisch angeordneten Anbindungselementen an den Drucksensorrahmen angebunden ist. Vorteilhaft wird bei dieser Variante eine Stressentkopplung an den Rand des Drucksensorkerns verlegt. Durch kann unterstützt sein, dass piezoelektrische Resistoren noch besser stressentkoppelt sind.
  • Eine weitere vorteilhafte Weiterbildung des mikromechanischen Drucksensors zeichnet sich dadurch aus, dass das Federelement mittels zwei an Diagonalen des Drucksensorkerns angeordneten Anbindungselementen an den Drucksensorkern angebunden ist. Diese Ausführungsform ähnelt jener der vorhergehend erwähnten, wobei in diesem Fall eine noch größere Elastizität in der xy-Ebene bereitgestellt ist.
  • Eine weitere vorteilhafte Weiterbildung des mikromechanischen Drucksensors sieht vor, dass elektrische Leitungen für die piezoresistiven Elemente auf den Federelementen geführt sind, wobei eine Wheatstone-Brückenschaltung realisiert ist. Auf diese Weise ist eine platzoptimierte elektrische Leitungsführung für den Drucksensorkern unterstützt.
  • Eine weitere vorteilhafte Weiterbildung des mikromechanischen Drucksensors zeichnet sich dadurch aus, dass das Federelement mittels vier an Eckpunkten des Drucksensorkerns angeordneten Anbindungselementen an den Drucksensorkern angebunden ist. Auf diese Weise kann die Aufhängung des Drucksensorkerns weit entfernt von den Piezoresistoren realisiert werden, wodurch diese besser geschützt sind.
  • Eine weitere vorteilhafte Weiterbildung des mikromechanischen Drucksensors sieht vor, dass die Anbindungselemente derart ausgebildet sind, dass sie ein Optimum bezüglich Robustheit und mechanischer Stressentkopplung zwischen Drucksensorkern und Drucksensorrahmen bereitstellen. Auf diese Weise wird ein Optimum zwischen mechanischer Robustheit und Entkopplung von mechanischem Stress bereitgestellt.
  • Die Erfindung wird im Folgenden mit weiteren Merkmalen und Vorteilen anhand von mehreren Figuren im Detail beschrieben. Gleiche oder funktionsgleiche Elemente haben gleiche Bezugszeichen. Die Figuren sind insbesondere dazu gedacht, die erfindungswesentlichen Prinzipien zu verdeutlichen und sind nicht unbedingt maßstabsgetreu ausgeführt. Der besseren Übersichtlichkeit halber kann vorgesehen sein, dass nicht in sämtlichen Figuren sämtliche Bezugszeichen eingezeichnet sind.
  • Offenbarte Verfahrensmerkmale ergeben sich analog aus entsprechenden offenbarten Vorrichtungsmerkmalen und umgekehrt. Dies bedeutet insbesondere, dass sich Merkmale, technische Vorteile und Ausführungen betreffend das Verfahren zum Herstellen eines mikromechanischen Drucksensors in analoger Weise aus entsprechenden Ausführungen, Merkmalen und technischen Vorteilen des mikromechanischen Drucksensors ergeben und umgekehrt.
  • In den Figuren zeigt:
  • 1 eine Querschnittsansicht eines mikromechanischen Drucksensors;
  • 2 bis 10 Querschnittsansichten mit Ausführungsformen des mikromechanischen Drucksensors; und
  • 11 einen prinzipiellen Ablauf einer Ausführungsform eines Verfahrens zum Herstellen eines mikromechanischen Drucksensors.
  • Beschreibung von Ausführungsformen
  • Ein Kerngedanke der vorliegenden Erfindung ist insbesondere eine Bereitstellung eines verbesserten, insbesondere eines robusten und gut stressentkoppelten mikromechanischen Drucksensors.
  • Ein prinzipieller Aufbau eines vorgeschlagenen mikromechanischen Drucksensors 100 ist in einer Querschnittsansicht in 1 gezeigt. Der drucksensitive Teil des Drucksensors 100, im Folgenden als „Drucksensorinsel” oder „Drucksensorkern” 10 bezeichnet, beinhaltet eine Sensormembran 14 in der Größenordnung von ca. 500 μm × ca. 500 μm, eine Kaverne 11 (Vakuumreferenzkaverne) und eine umlaufende mechanische Stabilisierung (nicht dargestellt). Sämtliche genannten Elemente befinden sich in einer weiteren Kaverne 13, wobei diese Kaverne 13 auf der einen Seite (unterhalb des Drucksensorkerns 10) durch den ASIC 30 und auf der anderen Seite (oberhalb des Drucksensorkerns 10) durch ein Rückseitengitter begrenzt ist.
  • Durch externe mechanische Anregungen (zum Beispiel bei einem Fallen und Aufschlagen des Drucksensors 100 am Boden), kann der Drucksensorkern 10 sehr stark beschleunigt und damit die stabilisierenden Federn (nicht dargestellt) weit ausgelenkt und dabei eventuell zerstört werden. Aus diesem Grund ist es erforderlich, relativ dicke Federelemente und einen großen Abstand zum Rückseitengitter zu verwenden. Im Falle einer starken Auslenkung sind die maximalen mechanischen Belastungen auf die Federn vergleichsweise groß. Zusätzlich sollte auch ein Aufschlagen des Drucksensorkerns auf den ASIC verhindert werden, da dieses Aufschlagen bzw. Berühren zu Rissen in den Passivierungen führen kann und damit das Bauteil ausfallen kann.
  • Externe Einflüsse, welchen den Drucksensor unter mechanischen Stress (z. B. Verbiegung) setzen, sind unter anderem z. B. eine mechanische Verspannung aufgrund eines Moldprozesses, und/oder ein Aufbau mit einem Materialmix mit unterschiedlichen thermischen Ausdehnungskoeffizienten und/oder Stress durch Lötverbindungen des aufgebauten Sensors auf einer externen Kunden-Leiterplatte.
  • Soweit diese verbiegenden Einflüsse auf den Drucksensorkern gelangen, resultieren sie in einem fehlerhaften Drucksignal.
  • Vorgeschlagen wird deshalb, die genannten Federn derart auszulegen, dass sie den Drucksensorkern 10 mechanisch vom restlichen Teil des Drucksensors 100 entkoppeln und dass sie die großen mechanischen Verspannungen bei Beschleunigungen aufnehmen können.
  • 1 zeigt eine Querschnittsansicht eines derartigen mikromechanischen Drucksensors 100, der als ein piezoresistiver Drucksensor ausgebildet ist. Erkennbar ist ein Drucksensorrahmen 20 und ein Drucksensorkern 10, wobei der Drucksensorkern 10 mit dem Drucksensorrahmen 20 auf die oben genannte Weise elektrisch und mechanisch gekoppelt ist. Der Drucksensorkern 10 weist eine Sensormembran 14 auf, in der piezoresistive Elemente 12 zum Erfassen einer Verformung der Sensormembran 14 ausgebildet sind. Oberhalb der Sensormembran 14 des Drucksensorkerns 10 ist eine Kavität 11 (Vakuumreferenzkaverne) ausgebildet. Der Drucksensorkern 10 ist innerhalb der Kavität 13 in der oben erläuterten Weise angeordnet. Der Drucksensorrahmen 20 ist an einen ASIC 30 gekoppelt, der über Bondelemente 40 elektrisch nach außen kontaktiert ist.
  • 2 zeigt eine Draufsicht auf den Drucksensorkern 10 mit der Sensormembran 14 des Drucksensorkerns 10. Man erkennt, dass der Drucksensorkern 10 mittels eines einzelnen, kragbalkenartigen Federelements 15 an den Drucksensorrahmen 20 angebunden ist. Aufgrund dieser singulären Anbindung ist vorteilhaft unterstützt, dass nur minimaler mechanischer Stress vom Drucksensorrahmen 20 in den Drucksensorkern 10 eingekoppelt wird. Eine geometrische Abmessung des Federelements 15 ist derart, dass es eine Optimierung betreffend bezüglich mechanischer Stabilität und Stressentkopplung bereitstellt. Eine Breite des Federelements 15 beträgt ca. 10 μm bis ca. 50 μm.
  • Auf diese Weise wird ein einziges Anbindungselement bzw. ein einziger Aufhängungspunkt am Drucksensorkern 10 und am Drucksensorrahmen 20 bereitgestellt. Auch das Anbindungselement ist geometrisch derart ausgebildet, dass es eine Optimierung betreffend bezüglich mechanischer Stabilität und Stressentkopplung bereitstellt. Dabei ist es mit einem möglichst kleinen mechanischen Kontaktquerschnitt ausgebildet, der eine Robustheit maximiert und andererseits eine mechanische Stresseinkopplung minimiert bzw. eine Stressentkopplung maximiert.
  • Es hat sich herausgestellt, dass dies mit einer geometrischen Abmessung des Anbindungselements von ca. 50 μm × ca. 100 μm am besten erreichbar ist. Die genannten geometrischen Parameter werden vorzugsweise durch rechnerische Simulationsverfahren ermittelt. Durch die Aufhängung des Drucksensorkerns 10 an einem einzelnen Punkt kann kein mechanisches Moment in den Drucksensorkern 10 eingekoppelt werden, ähnlich dem Betrieb eines Kragbalkens. Dadurch, dass die Feder nur an einem Punkt am mechanischen Drucksensorrahmen 20 fixiert sind, kann sie auch nicht einem statischen Moment ausgesetzt werden.
  • Im beschleunigten Fall in vertikaler z-Richtung erfährt der Aufhängungspunkt in x-Richtung kein Moment, da der Drucksensorkern 10 in x-Richtung symmetrisch aufgehängt ist. Mit anderen Worten, wird das Federelement 15 nicht um eine imaginäre Linie durch die Membranmitte, parallel zur y-Achse, rotieren.
  • Die Anordnung von 2 realisiert somit im Ergebnis eine sehr steife Anbindung des Drucksensorkerns 10 an das mechanische Festland des Drucksensorrahmens 20.
  • Um diese hohe Steifigkeit etwas zu reduzieren, kann das Federelement 15, wie in der Anordnung von 3 dargestellt, ringartig um den Drucksensorkern 10 herum ausgebildet werden. Dadurch erfahren beide Anbindungselemente 16, 17 in y-Richtung jedoch ein Moment, da der Drucksensorkern 10 in y-Richtung unsymmetrisch aufgehängt ist. Mit anderen Worten, wird das Federelement 15 um eine imaginäre Linie durch die Membranmitte, parallel zur x-Achse rotiert.
  • In erster Näherung ist für die mechanische Stabilität der Aufhängung in y-Richtung eine Dicke der Aufhängung (d. h. eine Ausdehnung aus der Ebene heraus) von Bedeutung. Der Drucksensorkern 10 ist in Relation zu einer Breite der Aufhängung (Ausdehnung in x-Richtung) vergleichsweise dick ausgebildet.
  • 4 zeigt eine weitere Ausführungsform des mikromechanischen Drucksensors 100 mit einer spezifischen Ausgestaltung des Federelements 15. Diese Art des Federelements 15 realisiert vorteilhaft eine Stressentkopplung durch eine Aufhängung an einem einzigen Anbindungselement 17 des Drucksensorrahmens 20. Auf diese Weise ist der Drucksensorkern 10 im Wesentlichen keinem statischen Moment aufgrund einer Verbiegung des mechanischen Festlandes des Drucksensorrahmens 20 ausgesetzt.
  • Zusätzlich hat diese Art der Aufhängung den Vorteil, dass sie symmetrisch an den Drucksensorkern 10 angreift. Dadurch reduzieren sich im beschleunigten Fall die angreifenden Momente auf den Drucksensorkern 10, wodurch die mechanischen Belastungen vorteilhaft reduziert sind. Diese Art der Federführung ist zudem vorteilhaft platzsparend, da kein Umlauf um den gesamten Drucksensorkern 10 erforderlich ist.
  • Die Anordnung des Federelements 15 im mikromechanischen Drucksensor 100 von 5 ist vom Grundaufbau her ähnlich jener von 4. Ein Unterschied besteht darin, dass der Drucksensorkern 10 an nur einem einzigen Anbindungselement 16 mit dem Federelement 15 verbunden ist. Dadurch können gegenüber der Ausführungsform von 4 die Anbindungselemente 17 an den Drucksensorrahmen 20 vorteilhafterweise durch individuelle, flächenintensivere Designs verstärkt werden. Dabei kann vorteilhaft ausgenutzt werden, dass Designfläche am Drucksensorrahmen 20 geringeren Beschränkungen unterliegt als Designfläche am Drucksensorkern 10.
  • Aufgrund der derart realisierten unsymmetrischen Aufhängung des Drucksensorkerns 10 kann im stark beschleunigen Fall in vertikaler z-Richtung ein hohes Moment auf den Drucksensorkern 10 ausgeübt werden, sodass sich diese Variante vorzugsweise für fest verbaute mikromechanische Drucksensoren 100 (z. B. im Automobilmobilbereich) empfiehlt.
  • Die symmetrisch ausgestaltete Ausführungsform des mikromechanischen Drucksensors 100 von 6 weist insbesondere den Vorteil auf, dass sich eine Verbiegung des Drucksensorkerns 10 in erster Näherung proportional zu einer Relation zwischen einer Breite des Drucksensorkerns 10 zu einer Breite des Anbindungselements 17 reduziert. Das Federelement 15 ist zu diesem Zweck derart weich ausgebildet, dass es möglichst kein Moment auf den Drucksensorkern 10 einkoppelt. Dies lässt sich durch die Tatsache begründen, dass im Gegensatz zu einer nur einseitigen Ankopplung diese Konfiguration nicht so gut externe statische mechanische Verspannung des Drucksensorrahmens 20 auf den Drucksensorkern 10 einkoppeln kann. Vorteilhaft ist diese Anordnung voll symmetrisch und auftretende mechanische Spannungen sind im dynamischen Fall somit ausgeglichener und geringer.
  • Die Konfiguration der Ausführungsform von 7 ist eine Weiterbildung der Ausführungsform von 6. Die piezoresistiven Elemente 12 (zum Beispiel in Form von piezoresistiven Widerständen) des Drucksensorkerns 10 sind für eine Maximierung des Sensorsignals elektrisch zu einer Wheatstone'schen-Brücke verschaltet. Die piezoresistiven Elemente 12 detektieren jegliche Art von mechanischem Stress. Damit der mechanische Stresseintrag der parasitären elektrischen Zuleitungen minimal ist, ist vorgesehen, dass die elektrischen Kontaktierungen der Wheatstone'schen-Brücke an den vier Ecken des Drucksensorkerns 10 realisiert sind. Um das Federdesign zusammen mit der elektrischen Verdrahtung möglichst platzsparend auszuführen, kann die Rückführung zur Mitte des Drucksensorkerns 10 auf einer separaten Feder ausgeführt werden.
  • Die Ausführungsform des mikromechanischen Drucksensors 100 von 8 basiert im Prinzip auf der Ausführungsform von 7. Wird in der Ausführungsform von 7 der Rahmen des Drucksensorkerns 20 in x-Richtung gedehnt, dann führt die Art der Federaufhängung dazu, dass der innere Federrahmen in y-Richtung gestaucht wird, welches dann wiederum zu einem Stresseintrag in den Drucksensorkern 10 führt. Dieser ist reduziert, jedoch nicht vollkommen ausgeschlossen. Um diesen Weg der Stressübertragung weiter zu reduzieren, koppeln in der Ausführungsform von 8 die Federn diagonal von der Anbindung am Drucksensorrahmen 20 in den inneren Federrahmen ein. Als Konsequenz führt dadurch jegliches Verziehen des Drucksensorrahmens 20 lediglich zu einer Rotation des Drucksensorkerns 10 und nicht zu einem Stresseintrag.
  • Die Ausführungsform von 9 optimiert den Platzbedarf für die Anforderungen der elektrischen Verdrahtung zusammen mit den Vorteilen der mechanischen Entkopplung der Ausführungsform von 4. Man erkennt, dass in diesem Fall eine Verdrahtung 18 für die Wheatstone'sche Brückenschaltung auf den Federelementen 15 geführt ist, so dass auf diese Art und Weise eine optimale Ausnutzung der Federfläche erfolgt.
  • 10 zeigt eine weitere Ausführungsform des mikromechanischen Drucksensors 100, bei der das Federelement 15 möglichst weit weg von den piezoresistiven Elementen 12 am Drucksensorkern 10 angreift. Damit lässt sich der fehlerhafte mechanische Stresseintrag in die Druckmessung reduzieren.
  • 11 zeigt einen prinzipiellen Ablauf eines Verfahrens zum Herstellen eines mikromechanischen Drucksensors 100.
  • In einem Schritt 200 wird ein Bereitstellen eines Drucksensorkerns 10 mit einer Sensormembran 14 und einer oberhalb der Sensormembran 14 ausgebildeten Kavität 11 durchgeführt.
  • In einem Schritt 210 wird ein Bereitstellen einer Drucksensorrahmen 20 durchgeführt, wobei ein Federelement 15 zur mechanischen Anbindung des Drucksensorkerns 10 an den Drucksensorrahmen 20 derart ausgebildet wird, dass eine mechanische Robustheit maximiert ist und eine Stresseinkopplung vom Drucksensorrahmen 20 auf den Drucksensorkern 10 minimiert ist.
  • Obwohl vorgehend die Erfindung anhand eines piezoresistiven mikromechanischen Drucksensors beschrieben wurde, ist es auch denkbar, dass der mikromechanische Drucksensor kapazitiv ausgebildet ist.
  • Der Fachmann kann also vorgehend auch nicht oder nur teilweise offenbarte Ausführungsformen der Erfindung realisieren, ohne vom Kern der Erfindung abzuweichen.

Claims (8)

  1. Mikromechanischer Drucksensor (100), aufweisend: – einen Drucksensorkern (10) mit einer Sensormembran (14) und einer oberhalb der Sensormembran (14) ausgebildeten Kavität (11); und – einen Drucksensorrahmen (20); und – ein Federelement (15), welches zur mechanischen Anbindung des Drucksensorkerns (10) an den Drucksensorrahmen (20) derart ausgebildet ist, dass eine mechanische Robustheit maximiert ist und eine Stresseinkopplung vom Drucksensorrahmen (20) auf den Drucksensorkern (10) minimiert ist, wobei • der Drucksensorkern (10) mittels zweier Anbindungselemente (16) an das Federelement (15) angebunden ist, wobei das Federelement (15) ringartig um den Drucksensorkern (10) ausgebildet ist, wobei das Federelement (15) mittels zweier symmetrisch angeordneter Anbindungselemente (17) an den Drucksensorrahmen (20) angebunden ist.
  2. Mikromechanischer Drucksensor (100) nach Anspruch 1, dadurch gekennzeichnet, dass der Drucksensorkern (10) mittels eines kragbalkenartigen Federelements (15) an den Drucksensorrahmen (20) angebunden ist.
  3. Mikromechanischer Drucksensor (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Drucksensorkern (10) mittels zweier symmetrisch angeordneter Anbindungselemente (16) an das Federelement (15) angebunden ist.
  4. Mikromechanischer Drucksensor (100) nach einem der vorhergehenden Ansprüche, wobei das Federelement (15) mit vier symmetrisch angeordneten Anbindungselementen (16) an den Drucksensorkern (10) angebunden ist, wobei das Federelement (15) mit zwei symmetrisch angeordneten Anbindungselementen (17) an den Drucksensorrahmen (20) angebunden ist.
  5. Mikromechanischer Drucksensor (100) nach einem der vorhergehenden Ansprüche, wobei das Federelement (15) mittels zwei an Diagonalen des Drucksensorkerns (10) angeordneten Anbindungselementen (16) an den Drucksensorkern (10) angebunden ist.
  6. Mikromechanischer Drucksensor (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass elektrische Leitungen (18) für piezoresistive Elemente (12) auf den Federelementen (15) geführt sind, wobei eine Wheatstone-Brückenschaltung realisiert ist.
  7. Mikromechanischer Drucksensor (100) einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Federelement (15) mittels vier an Eckpunkten des Drucksensorkerns (10) angeordneten Anbindungselementen (16) an den Drucksensorkern (10) angebunden ist.
  8. Mikromechanischer Drucksensor (100) nach einem der vorhergehenden Ansprüche, wobei die Anbindungselemente (16, 17) und/oder das Federelement (15) derart ausgebildet sind, dass sie ein Optimum bezüglich mechanischer Robustheit und mechanischer Stressentkopplung zwischen Drucksensorkern (10) und Drucksensorrahmen (20) bereitstellen.
DE102017203384.3A 2017-03-02 2017-03-02 Mikromechanischer Drucksensor Active DE102017203384B3 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102017203384.3A DE102017203384B3 (de) 2017-03-02 2017-03-02 Mikromechanischer Drucksensor
CN201880015292.2A CN110383027B (zh) 2017-03-02 2018-02-21 微机械压力传感器
PCT/EP2018/054200 WO2018158116A1 (de) 2017-03-02 2018-02-21 Mikromechanischer drucksensor
US16/488,470 US11060937B2 (en) 2017-03-02 2018-02-21 Micromechanical pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017203384.3A DE102017203384B3 (de) 2017-03-02 2017-03-02 Mikromechanischer Drucksensor

Publications (1)

Publication Number Publication Date
DE102017203384B3 true DE102017203384B3 (de) 2018-01-18

Family

ID=60782926

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017203384.3A Active DE102017203384B3 (de) 2017-03-02 2017-03-02 Mikromechanischer Drucksensor

Country Status (4)

Country Link
US (1) US11060937B2 (de)
CN (1) CN110383027B (de)
DE (1) DE102017203384B3 (de)
WO (1) WO2018158116A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208048B3 (de) * 2017-05-12 2018-09-27 Robert Bosch Gmbh Mikromechanischer Drucksensor
DE102018222724A1 (de) 2018-12-21 2020-06-25 Robert Bosch Gmbh Verfahren zum Herstellen einer dreidimensional stressentkoppelten Substratanordnung
CN114544045A (zh) * 2020-11-19 2022-05-27 纬湃科技美国有限责任公司 具有应力调整器以最小化由电场屏蔽件引起的热滞后的mems压力传感元件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10155318B2 (en) * 2017-03-16 2018-12-18 Perception Robotics, Inc. Systems and methods for post-treatment of dry adhesive microstructures
CN111044182B (zh) * 2019-12-31 2021-12-10 上海交通大学 可调力/力矩的传感器及制作方法
US20240125658A1 (en) * 2022-10-18 2024-04-18 Measurement Specialties, Inc. Membrane of a sensor with multiple ranges

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19825298A1 (de) * 1998-06-05 1999-12-16 Fraunhofer Ges Forschung Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
US20010001550A1 (en) * 1998-11-12 2001-05-24 Janusz Bryzek Integral stress isolation apparatus and technique for semiconductor devices
DE102009029217A1 (de) * 2009-09-04 2011-03-10 Robert Bosch Gmbh Inertialsensor mit einem Feldeffekttransistor
US20120060605A1 (en) * 2010-09-09 2012-03-15 Ming-Ching Wu Mems sensor capable of sensing acceleration and pressure
US20140217521A1 (en) * 2013-02-01 2014-08-07 Analog Devices, Inc. MEMS Device With Stress Relief Structures

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726887B2 (ja) * 1986-05-31 1995-03-29 株式会社堀場製作所 コンデンサマイクロフオン型検出器用ダイアフラム
US6472244B1 (en) * 1996-07-31 2002-10-29 Sgs-Thomson Microelectronics S.R.L. Manufacturing method and integrated microstructures of semiconductor material and integrated piezoresistive pressure sensor having a diaphragm of polycrystalline semiconductor material
US5808210A (en) * 1996-12-31 1998-09-15 Honeywell Inc. Thin film resonant microbeam absolute pressure sensor
DE102004006197B4 (de) 2003-07-04 2013-10-17 Robert Bosch Gmbh Verfahren zur Herstellung eines mikromechanischen Drucksensors
DE102004061796A1 (de) * 2004-12-22 2006-07-13 Robert Bosch Gmbh Mikromechanisches kapazitives Sensorelement
ATE503988T1 (de) * 2006-02-27 2011-04-15 Auxitrol Sa Spannungsisolierter drucksensorchip
EP2473830A4 (de) 2009-09-02 2014-07-02 Kontel Data System Ltd Mems-belastungskonzentrationsstruktur für mems-sensoren
JP2011095188A (ja) * 2009-10-30 2011-05-12 Seiko Epson Corp 圧力センサー素子及び圧力センサー
TWI372570B (en) * 2009-12-25 2012-09-11 Ind Tech Res Inst Capacitive sensor and manufacturing method thereof
CN101776501B (zh) * 2010-01-28 2014-08-06 无锡市纳微电子有限公司 一种mems压力敏感芯片及其制作方法
US8906730B2 (en) * 2011-04-14 2014-12-09 Robert Bosch Gmbh Method of forming membranes with modified stress characteristics
FR2977319B1 (fr) * 2011-07-01 2014-03-14 Commissariat Energie Atomique Dispositif de mesure de pression a sensiblite optimisee
DE102012205878A1 (de) * 2012-04-11 2013-10-17 Robert Bosch Gmbh Mikromechanischer Drucksensor
JP2013246121A (ja) 2012-05-29 2013-12-09 Seiko Epson Corp 圧力センサー素子およびその製造方法、圧力センサー、並びに電子機器
CN103674355B (zh) * 2012-09-11 2015-08-19 中国科学院上海微系统与信息技术研究所 一种消除封装应力的悬浮式力敏传感器芯片及其制作方法
US9809448B2 (en) * 2013-03-13 2017-11-07 Invensense, Inc. Systems and apparatus having MEMS acoustic sensors and other MEMS sensors and methods of fabrication of the same
DE102014211188A1 (de) * 2014-06-12 2015-12-17 Robert Bosch Gmbh Vertikal hybrid integriertes Bauteil mit Interposer zur Stressentkopplung einer MEMS-Struktur und Verfahren zu dessen Herstellung
US9574959B2 (en) 2014-09-02 2017-02-21 Apple Inc. Various stress free sensor packages using wafer level supporting die and air gap technique
US10023461B2 (en) 2014-10-31 2018-07-17 Stmicroelectronics S.R.L. Microintegrated encapsulated MEMS sensor with mechanical decoupling and manufacturing process thereof
KR101892793B1 (ko) * 2015-03-18 2018-10-04 삼성전기주식회사 압력 센서
CN205120297U (zh) * 2015-11-16 2016-03-30 歌尔声学股份有限公司 一种压力传感器芯片
US10060820B2 (en) * 2015-12-22 2018-08-28 Continental Automotive Systems, Inc. Stress-isolated absolute pressure sensor
ITUB20161080A1 (it) * 2016-02-25 2017-08-25 St Microelectronics Srl Dispositivo sensore di pressione di tipo micro-elettro-meccanico con ridotta sensibilita' alla temperatura
DE102016211513A1 (de) * 2016-06-27 2018-01-04 Infineon Technologies Dresden Gmbh Stressentkoppelter piezoresistiver Relativdrucksensor und Verfahren zur Herstellung desselben
DE102016112041A1 (de) * 2016-06-30 2018-01-04 Infineon Technologies Ag Dämpfung eines sensors
US10132705B2 (en) * 2016-07-19 2018-11-20 Kulite Semiconductor Products, Inc. Low-stress floating-chip pressure sensors
US10611628B2 (en) * 2016-12-29 2020-04-07 Epack, Inc. MEMS isolation platform with three-dimensional vibration and stress isolation
US10481025B2 (en) * 2017-01-26 2019-11-19 Rosemount Aerospace Inc. Piezoresistive sensor with spring flexures for stress isolation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19825298A1 (de) * 1998-06-05 1999-12-16 Fraunhofer Ges Forschung Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
US20010001550A1 (en) * 1998-11-12 2001-05-24 Janusz Bryzek Integral stress isolation apparatus and technique for semiconductor devices
DE102009029217A1 (de) * 2009-09-04 2011-03-10 Robert Bosch Gmbh Inertialsensor mit einem Feldeffekttransistor
US20120060605A1 (en) * 2010-09-09 2012-03-15 Ming-Ching Wu Mems sensor capable of sensing acceleration and pressure
US20140217521A1 (en) * 2013-02-01 2014-08-07 Analog Devices, Inc. MEMS Device With Stress Relief Structures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208048B3 (de) * 2017-05-12 2018-09-27 Robert Bosch Gmbh Mikromechanischer Drucksensor
DE102018222724A1 (de) 2018-12-21 2020-06-25 Robert Bosch Gmbh Verfahren zum Herstellen einer dreidimensional stressentkoppelten Substratanordnung
WO2020126669A1 (de) 2018-12-21 2020-06-25 Robert Bosch Gmbh Verfahren zum herstellen einer dreidimensional stressentkoppelten substratanordnung
CN114544045A (zh) * 2020-11-19 2022-05-27 纬湃科技美国有限责任公司 具有应力调整器以最小化由电场屏蔽件引起的热滞后的mems压力传感元件

Also Published As

Publication number Publication date
US20190376864A1 (en) 2019-12-12
WO2018158116A1 (de) 2018-09-07
CN110383027A (zh) 2019-10-25
US11060937B2 (en) 2021-07-13
CN110383027B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
DE102017203384B3 (de) Mikromechanischer Drucksensor
DE102008040855B4 (de) Dreiachsiger Beschleunigungssensor
DE112005000699B4 (de) Drucksensor
DE102008041327B4 (de) Dreiachsiger Beschleunigungssensor
DE102011083487A1 (de) Beschleunigungssensor und Verfahren zum Betrieb eines Beschleunigungssensors
DE102009000594A1 (de) Beschleunigungssensor und Verfahren zum Betreiben eines Beschleunigungssensors
DE102016210479A1 (de) Mikromechanisches Bauteil für eine Drucksensorvorrichtung
CH399007A (de) Kraftmessdose
DE102005052929A1 (de) Intergrierbarer Sensor für Tragflächen von Luftfahrzeugen, insbesondere von Flugzeugen und Hubschraubern, sowie Rotorblatt und Flugzeugtragfläche
DE102012205878A1 (de) Mikromechanischer Drucksensor
EP3430348B1 (de) Messeinrichtung, kraftfahrzeug und verfahren zum erfassen einer momentanen verformung eines bauteils
DE102011007350A1 (de) Sensor zur taktilen Messung von Kräften und Momenten
EP3065968A2 (de) VORRICHTUNG ZUR VERSCHLEIßÜBERWACHUNG AN FAHRLEITUNGEN
DE202016008592U1 (de) Sensor
EP1903326B1 (de) Vorrichtung zur Bestimmung von Torsionsmomenten im Submikronewtonmeterbereich
DE102018208326A1 (de) Drehratensensor mit einem, eine Haupterstreckungsebene aufweisenden Substrat und mindestens einem Massenschwinger
DE102007046017B4 (de) Sensorelement
EP2720021B1 (de) Kraftmesseinrichtung
DE102020200928B3 (de) Sensorsystem zum Bestimmen einer Beladungsmasse und/oder einer Beladungsmasseverteilung eines Fahrzeugs sowie ein Fahrzeug und/oder Fahrgestell mit einem solchen Sensorsystem
DE10250358B4 (de) Sensormodul zur Messung mechanischer Kräfte
DE102016226282A1 (de) Messelement, Messsystem und Verfahren zur Bereitstellung eines Messelements zur Messung von Kräften
EP0383974A1 (de) Plattenförmiges Sensorelement sowie damit versehener Druck-, Kraft- oder Beschleunigungsaufnehmer
DE102019216535A1 (de) Gegenphasiger Beschleunigungssensor mit einer leichten und einer schweren Masse
DE4016147A1 (de) Kraft- und -momentenmesseinrichtung mit an verformteilen angebrachten dehnungsmessstreifen
DE102017203916A1 (de) Mikromechanischer Drucksensor

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final