TWI691881B - 力量感測器 - Google Patents
力量感測器 Download PDFInfo
- Publication number
- TWI691881B TWI691881B TW108102624A TW108102624A TWI691881B TW I691881 B TWI691881 B TW I691881B TW 108102624 A TW108102624 A TW 108102624A TW 108102624 A TW108102624 A TW 108102624A TW I691881 B TWI691881 B TW I691881B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit board
- sensing
- sensing element
- top surface
- colloid
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/18—Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
- G01L1/2287—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
- G01L1/2293—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/26—Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/16—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
- G01L5/161—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
- G01L5/162—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0264—Pressure sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0292—Sensors not provided for in B81B2201/0207 - B81B2201/0285
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pressure Sensors (AREA)
Abstract
力量感測器包括一感測元件、一第一電路板以及至少一第二電路板。感測元件具有相對的一頂面及一底面且具有一感測部,其中感測部位於頂面。第一電路板配置於頂面上且電性連接於感測元件。至少一第二電路板連接於第一電路板,其中至少一第二電路板遮蔽感測元件。感測部適於藉由從第一電路板往頂面傳遞的一外力而產生感測訊號。
Description
本發明是有關於一種感測器,且特別是有關於一種力量感測器。
微機電系統(Micro-Electro-Mechanical System, MEMS)技術是一種以微小化機電整合結構為出發點的設計。目前常見的微機電技術主要應用於微感測器(Micro sensors)、微制動器(Micro actuators)與微結構(Micro structures)元件等三大領域,其中微感測器可將外界環境變化(如力量、壓力、聲音、速度等)轉換成電訊號(例如電壓或電流等),而實現環境感測功能,如力量感測、壓力感測、聲音感測、加速度感測等。由於微感測器可利用半導體製程技術製造且可與積體電路整合,因此具有較佳的競爭力。是以,微機電感測器以及應用微機電感測器的感測裝置實為微機電系統之發展趨勢。
以微機電力量感測器而言,通常需要加裝殼體來保護力量感測器內的感測元件且提升力量感測元件整體的結構強度,以避免感測元件被暴露出並直接承受按壓力,而造成感測元件容易耗損。但若為了解決上述問題而增設用以覆蓋感測元件的蓋體,則會增加感測器的整體厚度及製造成本。因此,如何在不增加感測器的整體厚度及製造成本的情況下,對力量感測器的感測元件進行保護並維持其感測性能,為微機電力量感測領域的重要議題。
本發明提供一種力量感測器,其感測元件受到良好的保護且具有良好的感測性能。
本發明的力量感測器包括一感測元件、一第一電路板以及至少一第二電路板。感測元件具有相對的一頂面及一底面且具有一感測部,其中感測部位於頂面。第一電路板配置於頂面上且電性連接於感測元件。至少一第二電路板連接於第一電路板,其中至少一第二電路板遮蔽感測元件。感測部適於藉由從第一電路板往頂面傳遞的一外力而產生感測訊號。
在本發明的一實施例中,其中感測元件與至少一第二電路板位於第一電路板的同一側。
在本發明的一實施例中,其中至少一第二電路板圍繞感測元件。
在本發明的一實施例中,力量感測器更包括一第一膠體,其中第一膠體填充於第一電路板、至少一第二電路板與感測元件之間且覆蓋感測元件。
在本發明的一實施例中,力量感測器更包括一第二膠體,其中第一電路板具有一開口。感測部對位於開口。第二膠體至少部分地配置於開口內並覆蓋感測部。第二膠體適於接受外力。
在本發明的一實施例中,其中第二膠體從開口突出。
在本發明的一實施例中,力量感測器更包括至少一導電凸塊,其中至少一導電凸塊配置於頂面與第一電路板之間。感測元件藉由至少一導電凸塊而電性連接於第一電路板。
在本發明的一實施例中,力量感測器更包括至少一第三膠體,其中第三膠體包覆至少一導電凸塊。
在本發明的一實施例中,其中第一電路板內具有一第一線路並藉由第一線路而電性連接於感測元件。至少一第二電路板內具有一第二線路。第二線路的一端連接於第一線路。第二線路的另一端延伸至至少一第二電路板的一末端而構成一電性接點。
在本發明的一實施例中,力量感測器更包括一訊號處理單元,其中訊號處理單元配置於第一電路板且透過第一電路板而電性連接於感測元件。
基於上述,本發明的力量感測器具有第一電路板與第二電路板,感測元件與第一電路板相連接且被第二電路板遮蔽,以藉由第一電路板與第二電路板提供力量感測器良好的結構強度並將感測元件保護於其內。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1是本發明一實施例的力量感測器的剖面圖。請參考圖1,本實施例的力量感測器100例如是微機電力量感測器且包括一感測元件110、一第一電路板120、至少一個第二電路板130、第一膠體140、第二膠體150、第三膠體160以及至少一個導電凸塊170。感測元件110具有相對的一頂面110a及一底面110b且具有一感測部111,感測部111位於頂面110a。感測元件110可為壓阻式感測元件(piezoresistive sensing element)、電容式感測元件(capacitive sensing element)或其他適當種類的感測元件,本發明不對此加以限制。第一電路板120配置於頂面110a上且透過至少一個導電凸塊170電性連接於感測元件110。
至少一個第二電路板130連接於第一電路板120並與感測元件110位於第一電路板120的同一測。至少一個第二電路板130構成一個凹槽130a。感測元件110位於凹槽130a中且受到至少一個第二電路板130的遮蔽。在本實施例中,第二電路板130的數量為一個,並且第二電路板130圍繞著感測元件110設置而構成用以容納感測元件110的凹槽130a。第一膠體140被填充於凹槽130a當中。詳細而言,第一膠體140填充於第一電路板120、至少一個第二電路板130與感測元件110之間且覆蓋感測元件110。在一些實施例中,第二電路板的數量可為多個,這些第二電路板拼湊形成凹槽並使感測元件位於其中,以使這些第二電路板圍繞著感測元件設置,然本發明並不以此為限。
第一電路板120上具有一開口120a。感測元件110的感測部111對位於開口120a。第二膠體150填充於開口120a中並從開口120a中突出於第一電路板120。感測部111適於藉由從第二膠體150傳遞至頂面110a的一外力F而使感測元件110產生感測訊號。第一電路板120內具有第一線路121。至少一個第二電路板130內具有一第二線路131。第二線路131的一端連接於第一線路121。第二線路131的另一端延伸至至少一個第二電路板130的一末端130b而構成一電性接點131a。感測元件110是透過至少一個導電凸塊170電性連接至第一電路板120內的第一線路121。亦即,感測元件110所產生的感測訊號可透過第一線路121與第二線路131而傳遞至至少一個第二電路板130的末端130b的電性接點131a。至少一個第二電路板130可連接於其他的元件並將感測元件110所產生的感測訊號與其他的元件的功能進行整合。力量感測器100可應用於具有觸控功能的裝置,用以藉其力量感測功能來判斷使用者的觸控力道。然本發明不以此為限,力量感測器100可應用於其他種類的裝置。
感測元件110例如是壓阻式感測器(piezoresistive sensor),其主體的材質例如為矽且其上的感測部111設有壓阻材料,壓阻材料電性連接至對應的至少一個導電凸塊170。
在本實施例中,第三膠體160圍繞在至少一個導電凸塊170的周圍,目的是為了保護導電凸塊170確保感測元件110與第一線路131之間的接合,防止導電凸塊170在製程及使用當中脫落而降低力量感測器100無法作用。如此一來,力量感測器100利用第一膠體140、第二膠體150以及第三膠體160來完全地包覆感測元件110,使感測元件110受到良好的保護,從而防止感測元件110接觸到外部環境的水氣與灰塵而降低了力量感測器100的敏感度。
在本實施例中,第二膠體150可與第一膠體140和第三膠體160的材料不相同。第一膠體140和第三膠體160的硬度例如大於第二膠體150的硬度,從而第二膠體150較為柔軟而具有較佳的彈性變形能力,以有效地將外力傳遞至感測元件110的感測部111。此外,具有較大硬度的第一膠體140和第三膠體160可穩固地包覆感測元件110與至少一個導電凸塊170並增加力量感測器100的結構強度。在其他實施例中,第二膠體150的材料可與第一膠體140和第三膠體160的材料相同,本發明不對此加以限制。第一膠體140、第二膠體150以及第三膠體160可為熱固化膠、光固化膠或其他適當種類的膠材固化而成,本發明亦不對此加以限制。
值得一提的是,第一膠體140遠離第一電路板120的一表面140a適於與第二電路板130的末端130b齊平或凹陷於末端130b,其目的是為了方便在末端130b上的電性接點131a與力量感測器100以外的電子裝置的電性連接。第一膠體140例如可利用模具來達到此效果,亦或者是在第一膠體140成形後以表面研磨製程(例如,化學機械研磨製程)來達成此效果,本發明不對此加以限制。
上述的力量感測器100透過第一電路板120與第二電路板130的配置於感測元件110的周圍,而提高了力量感測器100的整體結構強度,因此無須在另外設置殼體在周圍來保護力量感測器100,減少了製造成本。
以下將針對力量感測器的詳細製造流程進行說明。圖2至圖5是本發明一實施例的力量感測器的製造過程的剖面圖。請先參考圖2。第一電路板120與至少一個第二電路板130相互連接,且第一電路板120內的第一電路121與至少一個第二電路板130內的第二電路131被電性連接在一起。值得一提的是,第一電路板120上形成的開口120a與至少一個第二電路板130所構成的凹槽130a是互相連通的。並且,第一電路板120還具有多個第一線路121的導電接點位於凹槽130a中,方便第一電路板120與後續將設置的感測元件110(圖3)電性連接。
請接著參考圖3。感測元件110在其頂面110a透過例如是焊料接合的方式在凹槽130a中形成導電凸塊170而與第一電路板120的第一線路121電性連接。導電凸塊170亦或例如是以電鍍、印刷、或植球方式形成於感測元件110頂面,再與第一電路板120的第一線路121電性連接,本發明並不以此為限。並且,感測元件110的感測部111會對位於開口120a。值得一提的是,至少一個第二電路板130具有電性接點131a的末端130b與第一電路板120之間的距離大於感測元件110的底面110b與第一電路板120之間的距離,使得感測元件110能完全位於凹槽130a內而被至少一個第二電路板130所遮蔽。
請參考圖4。為了保護導電凸塊170不受到後續製程的影響而毀損並為了穩固第一電路板120與感測元件110之間的連結,而將第三膠體160以例如是點膠的形式形成而包覆至少一個導電凸塊170。
請參考圖5。接著,在開口120a內填充第二膠體150。第二膠體150以例如是點膠或是射出成形的方式形成並完全填充於開口120a內。第二膠體150的頂部適於如圖1所示受力(標示為外力F)而使第二膠體150產生彈性變形,感測元件110適於感測第二膠體150的彈性變形而產生感測訊號。同時,第二膠體150從第一電路板120突出而適於接受外力。
接著,請返回參考圖1。第一膠體140以例如是射出成形的方式填充在至少一個第二電路板130所構成的凹槽130a當中並完全覆蓋感測元件110。透過上述的步驟,完成了力量感測器100的全部配置。
圖6是本發明另一實施例的力量感測器的剖面圖。力量感測器200的感測元件210、頂面210a、底面210b、感測部211、第一電路板220、開口220a、第一線路221、至少一個第二電路板230、凹槽230a、末端230b、第二線路231、電性接點231a、第一膠體240、表面240a、第二膠體250、第三膠體260以及第一導電凸塊270的配置與作用方式類似圖1的感測元件110、頂面110a、底面110b、感測部111、第一電路板120、開口120a、第一線路121、至少一個第二電路板130、凹槽130a、末端130b、第二線路131、電性接點131a、第一膠體140、表面140a、第二膠體150、第三膠體160以及導電凸塊170的配置與作用方式,於此不再贅述。力量感測器200與力量感測器100的不同處在於,力量感測器200更包括一訊號處理單元280,第一電路板220與至少一個第二電路板230接合時,凹槽230a內即預留了一個空間,以使訊號處理單元280配置於第一電路板220的與感測元件210的同一側上,並同時被至少一個第二電路板所遮蔽。並且,第一電路板220預留了多個第一線路221的接點,除了透過至少一個第一導電凸塊270與感測元件210電性連接外,透過至少一個第二導電凸塊290使訊號處理單元280也電性連接於第一電路板220的第一線路221。其中,第一膠體240亦同時包覆訊號處理單元280。來自感測元件210的感測部211的感測訊號可經由第一電路板220內的第一線路221傳遞至訊號處理單元280,並在訊號處理單元280進行轉換或過濾雜訊等處理,並透過第二線路231而與其他的電子裝置進行連接。
綜上所述,本發明的力量感測器藉由第一電路板與第二電路板所形成的空間容納感測元件,提供力量感測器良好的結構強度並同時提供感測元件與其他的電子元件之間的電性連接。並且,利用第一膠體、第二膠體以及第三膠體包覆感測元件,使感測元件受到良好的保護,從而避免感測元件被暴露出而易耗損。藉由突出於第一電路板的開口的第二膠體之可彈性變形的特性,作用於第二膠體的按壓力可順利地隨著第二膠體的變形而傳遞至感測元件,使感測元件能夠準確地對所述按壓力進行感測。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100、200:力量感測器
110、220:感測元件
110a、210a:頂面
110b、210b:底面
111、211:感測部
120、220:第一電路板
120a、220a:開口
121、221:第一線路
130、230:第二電路板
130a、230a:凹槽
130b、230b:末端
131、231:第二線路
131a、231a:電性接點
140、240:第一膠體
140a、240a:表面
150、250:第二膠體
160、260:第三膠體
170:導電凸塊
270:第一導電凸塊
280:訊號處理單元
290:第二導電凸塊
F:外力
圖1是本發明一實施例的力量感測器的剖面圖。
圖2至圖5是本發明一實施例的力量感測器的製造過程的剖面圖。
圖6是本發明的另一實施例的力量感測器的剖面圖。
100:力量感測器
110:感測元件
110a:頂面
110b:底面
111:感測部
120:第一電路板
120a:開口
121:第一線路
130:第二電路板
130a:凹槽
130b:末端
131:第二線路
131a:電性接點
140:第一膠體
140a:表面
150:第二膠體
160:第三膠體
170:導電凸塊
F:外力
Claims (8)
- 一種力量感測器,包括:一感測元件,具有相對的一頂面及一底面且具有一感測部,其中該感測部位於該頂面;一第一電路板,配置於該頂面上且電性連接於該感測元件;至少一第二電路板,連接於該第一電路板,其中該至少一第二電路板遮蔽該感測元件,該感測部適於藉由從該第一電路板往該頂面傳遞的一外力而產生感測訊號;以及一第二膠體,其中該第一電路板具有一開口,該感測部對位於該開口,該第二膠體填充於該開口中並覆蓋該感測部,該第二膠體適於接受該外力。
- 如申請專利範圍第1項所述的力量感測器,其中該感測元件與該至少一第二電路板位於該第一電路板的同一側。
- 一種力量感測器,包括:一感測元件,具有相對的一頂面及一底面且具有一感測部,其中該感測部位於該頂面;一第一電路板,配置於該頂面上且電性連接於該感測元件;以及至少一第二電路板,連接於該第一電路板,其中該至少一第二電路板遮蔽該感測元件,該感測部適於藉由從該第一電路板往該頂面傳遞的一外力而產生感測訊號,該至少一第二電路板圍繞該感測元件。
- 一種力量感測器,包括:一感測元件,具有相對的一頂面及一底面且具有一感測部,其中該感測部位於該頂面;一第一電路板,配置於該頂面上且電性連接於該感測元件;至少一第二電路板,連接於該第一電路板,其中該至少一第二電路板遮蔽該感測元件,該感測部適於藉由從該第一電路板往該頂面傳遞的一外力而產生感測訊號;以及一第一膠體,填充於該第一電路板、該至少一第二電路板與該感測元件之間且覆蓋該感測元件。
- 一種力量感測器,包括:一感測元件,具有相對的一頂面及一底面且具有一感測部,其中該感測部位於該頂面;一第一電路板,配置於該頂面上且電性連接於該感測元件;至少一第二電路板,連接於該第一電路板,其中該至少一第二電路板遮蔽該感測元件,該感測部適於藉由從該第一電路板往該頂面傳遞的一外力而產生感測訊號;以及一第二膠體,其中該第一電路板具有一開口,該感測部對位於該開口,該第二膠體至少部分地配置於該開口內並覆蓋該感測部,該第二膠體適於接受該外力,該第二膠體從該開口突出。
- 一種力量感測器,包括:一感測元件,具有相對的一頂面及一底面且具有一感測部,其中該感測部位於該頂面; 一第一電路板,配置於該頂面上且電性連接於該感測元件;至少一第二電路板,連接於該第一電路板,其中該至少一第二電路板遮蔽該感測元件,該感測部適於藉由從該第一電路板往該頂面傳遞的一外力而產生感測訊號;至少一導電凸塊,配置於該頂面與該第一電路板之間,其中該感測元件藉由該至少一導電凸塊而電性連接於該第一電路板;以及至少一第三膠體,包覆該至少一導電凸塊。
- 如申請專利範圍第1項所述的力量感測器,其中該第一電路板內具有一第一線路並藉由該第一線路而電性連接於該感測元件,該至少一第二電路板內具有一第二線路,該第二線路的一端連接於該第一線路,該第二線路的另一端延伸至該至少一第二電路板的一末端而構成一電性接點。
- 如申請專利範圍第1項所述的力量感測器,更包括一訊號處理單元,其中該訊號處理單元配置於該第一電路板且透過該第一電路板而電性連接於該感測元件。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108102624A TWI691881B (zh) | 2019-01-24 | 2019-01-24 | 力量感測器 |
US16/354,205 US11105692B2 (en) | 2019-01-24 | 2019-03-15 | Force sensor having first and second circuit board arrangements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108102624A TWI691881B (zh) | 2019-01-24 | 2019-01-24 | 力量感測器 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI691881B true TWI691881B (zh) | 2020-04-21 |
TW202028939A TW202028939A (zh) | 2020-08-01 |
Family
ID=71132716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108102624A TWI691881B (zh) | 2019-01-24 | 2019-01-24 | 力量感測器 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11105692B2 (zh) |
TW (1) | TWI691881B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112087693B (zh) * | 2020-09-22 | 2022-06-03 | 歌尔微电子股份有限公司 | 一种mems麦克风 |
TWM624369U (zh) * | 2021-10-15 | 2022-03-11 | 中光電智能感測股份有限公司 | 感測模組 |
JP2023109029A (ja) * | 2022-01-26 | 2023-08-07 | アルプスアルパイン株式会社 | 荷重センサ装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW500914B (en) * | 2001-11-09 | 2002-09-01 | Kuo-Ning Chiang | Low thermal stress high sensitivity silicon base micro pressure sensor structure |
TWI258868B (en) * | 2005-05-31 | 2006-07-21 | Univ Tamkang | A piezo-resistive pressure sensor and its packaging method |
TW201036120A (en) * | 2009-02-10 | 2010-10-01 | Freescale Semiconductor Inc | Exposed pad backside pressure sensor package |
TWI593066B (zh) * | 2014-12-23 | 2017-07-21 | 席瑞斯邏輯國際半導體有限公司 | Mems傳感器封裝 |
TWI627391B (zh) * | 2017-03-03 | 2018-06-21 | 智動全球股份有限公司 | 力量感測器 |
CN207908088U (zh) * | 2018-03-19 | 2018-09-25 | 深圳瑞德感知科技有限公司 | 陶瓷mems压力传感器 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8650345B2 (en) * | 2006-10-30 | 2014-02-11 | Microsoft Corporation | Web configurable human input devices |
CN101308802A (zh) | 2007-05-15 | 2008-11-19 | 矽品精密工业股份有限公司 | 感测式半导体装置及其制法 |
US7775126B2 (en) * | 2008-10-22 | 2010-08-17 | Honeywell International Inc. | Fluid flow monitor |
EP2870445A1 (en) | 2012-07-05 | 2015-05-13 | Ian Campbell | Microelectromechanical load sensor and methods of manufacturing the same |
CN105129720A (zh) | 2015-07-25 | 2015-12-09 | 中国科学院地质与地球物理研究所 | Mems传感器的封装结构及封装方法 |
US10060820B2 (en) * | 2015-12-22 | 2018-08-28 | Continental Automotive Systems, Inc. | Stress-isolated absolute pressure sensor |
TWI580938B (zh) | 2016-02-16 | 2017-05-01 | 智動全球股份有限公司 | 微機電力量感測器以及力量感測裝置 |
US9945747B1 (en) * | 2016-10-13 | 2018-04-17 | Honeywell International Inc. | Gel filled port pressure sensor for robust media sealing |
CN108534924A (zh) | 2017-03-03 | 2018-09-14 | 英属开曼群岛商智动全球股份有限公司 | 力量感测器 |
US10481024B2 (en) * | 2017-04-20 | 2019-11-19 | Honeywell International Inc. | Pressure sensor assembly including a cured elastomeric force transmitting member |
US10247629B2 (en) | 2017-04-27 | 2019-04-02 | Continental Automotive Systems, Inc. | Stacked or unstacked MEMS pressure sensor with through-hole cap and plurality of chip capacitors |
CN108645548B (zh) | 2018-05-10 | 2022-04-01 | 苏州敏芯微电子技术股份有限公司 | 压力传感器封装结构及其形成方法、触控装置 |
-
2019
- 2019-01-24 TW TW108102624A patent/TWI691881B/zh active
- 2019-03-15 US US16/354,205 patent/US11105692B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW500914B (en) * | 2001-11-09 | 2002-09-01 | Kuo-Ning Chiang | Low thermal stress high sensitivity silicon base micro pressure sensor structure |
TWI258868B (en) * | 2005-05-31 | 2006-07-21 | Univ Tamkang | A piezo-resistive pressure sensor and its packaging method |
TW201036120A (en) * | 2009-02-10 | 2010-10-01 | Freescale Semiconductor Inc | Exposed pad backside pressure sensor package |
TWI593066B (zh) * | 2014-12-23 | 2017-07-21 | 席瑞斯邏輯國際半導體有限公司 | Mems傳感器封裝 |
TWI627391B (zh) * | 2017-03-03 | 2018-06-21 | 智動全球股份有限公司 | 力量感測器 |
CN207908088U (zh) * | 2018-03-19 | 2018-09-25 | 深圳瑞德感知科技有限公司 | 陶瓷mems压力传感器 |
Also Published As
Publication number | Publication date |
---|---|
TW202028939A (zh) | 2020-08-01 |
US11105692B2 (en) | 2021-08-31 |
US20200240856A1 (en) | 2020-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI691881B (zh) | 力量感測器 | |
TWI627391B (zh) | 力量感測器 | |
JP6188231B2 (ja) | 荷重検出装置及び前記荷重検出装置を用いた電子機器 | |
US5235237A (en) | Surface-mount piezoceramic accelerometer and method for making | |
TWI580938B (zh) | 微機電力量感測器以及力量感測裝置 | |
US20100078739A1 (en) | Vertical Mount Package for MEMS Sensors | |
TWI693382B (zh) | 力量感測器 | |
CN108344530A (zh) | 力量传感器 | |
JP2001027570A (ja) | 静電容量式力覚センサ | |
US20090141913A1 (en) | Microelectromechanical system | |
TW201808019A (zh) | 微機電麥克風封裝結構 | |
WO2016042937A1 (ja) | 圧力センサモジュール | |
CN111473893B (zh) | 力量传感器 | |
CN108534924A (zh) | 力量感测器 | |
CN111473894B (zh) | 力量传感器 | |
EP3273213B1 (en) | Low cost overmolded leadframe force sensor with multiple mounting positions | |
JP5742170B2 (ja) | Memsデバイス、その製造方法、及びそれを有する半導体装置 | |
TWI610068B (zh) | 力量感測器 | |
CN107121223B (zh) | 微机电力量传感器以及力量感测装置 | |
US20150145076A1 (en) | Semiconductor package and manufacturing method thereof | |
JP6491087B2 (ja) | センサ装置 | |
JP6476036B2 (ja) | 圧力センサ | |
KR101696638B1 (ko) | 센서 패키지 및 이의 제조방법 | |
TW201808020A (zh) | 微機電麥克風封裝結構 | |
KR101447982B1 (ko) | 압력 센서 패키지 및 그 제조 방법 |