CN108685873A - 仿生型自组装球形核酸纳米颗粒及其制备方法与用途 - Google Patents

仿生型自组装球形核酸纳米颗粒及其制备方法与用途 Download PDF

Info

Publication number
CN108685873A
CN108685873A CN201810777729.8A CN201810777729A CN108685873A CN 108685873 A CN108685873 A CN 108685873A CN 201810777729 A CN201810777729 A CN 201810777729A CN 108685873 A CN108685873 A CN 108685873A
Authority
CN
China
Prior art keywords
nucleic acid
nano particle
formula
acid nano
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810777729.8A
Other languages
English (en)
Other versions
CN108685873B (zh
Inventor
刘兰霞
刘佳乐
孔德领
冷希岗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Najin Biotechnology (Tianjin) Co.,Ltd.
Original Assignee
Institute of Biomedical Engineering of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Biomedical Engineering of CAMS and PUMC filed Critical Institute of Biomedical Engineering of CAMS and PUMC
Priority to CN201810777729.8A priority Critical patent/CN108685873B/zh
Publication of CN108685873A publication Critical patent/CN108685873A/zh
Application granted granted Critical
Publication of CN108685873B publication Critical patent/CN108685873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes

Landscapes

  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及一种仿生型自组装球形核酸纳米颗粒及其制备方法与用途,核酸纳米颗粒是采用两亲性单体分子作为自组装基元并通过自组装制备而成的纳米颗粒;两亲性单体分子是采用疏水性分子与亲水性的核酸分子合成。本发明提供的纳米颗粒,疏水层与亲水层分子均可负载不同特性的药物、抗原或佐剂,作为载体可应用于药物或疫苗等领域;该颗粒直径为151.20±2.43nm,PDI为0.19±0.03nm,电位为‑28.8mV;细胞吞噬颗粒后,所载药物可以游离的形式发挥作用;以二硫键连接的单体分子,在体内环境下不稳定,容易断开,各药物能快速释放发挥作用;该体系制备过程条件温和,保证了纳米颗粒所载药物或疫苗的活性及安全性。

Description

仿生型自组装球形核酸纳米颗粒及其制备方法与用途
技术领域
本发明涉及药物递送、药物载体、疫苗载体、疫苗佐剂及生物技术领域,具体涉及一种仿生型自组装球形核酸纳米颗粒及其制备方法与用途。
背景技术
纳米载体在医学领域的应用极为广泛,在医药领域,纳米粒使药物、抗原或佐剂在人体内的递送方面具有独特的优势。其中,仿生型纳米递送系统通过模仿生物系统的结构和功能,可有效降低传统纳米粒的免疫原性和副作用,成为理想的候选递送系统。
甘油酯或甘油磷酸乙醇胺是机体的正常组分,参与机体代谢或者功能,尤其甘油磷脂是生物膜重要的构成成分,具有良好的生物相容性,其在体内的代谢产物对机体无毒无害,安全性高,是优良的仿生生物材料。如何将甘油酯或甘油磷酸乙醇胺应用于制备载体,是重要的研究方向。
发明内容
针对现有技术中的缺陷,本发明目的在于提供一种仿生型自组装球形核酸纳米颗粒及其制备方法与用途,以利用仿生和自组装技术,提供一种安全高效稳定的仿生型自组装纳米颗粒。
为实现上述目的,本发明提供的技术方案为:
本发明提供了一种核酸纳米颗粒,核酸纳米颗粒是采用两亲性单体分子作为自组装基元并通过自组装制备而成的纳米颗粒;两亲性单体分子是采用疏水性分子与亲水性的核酸分子合成。
优选地,核酸纳米颗粒为球形核酸纳米颗粒;核酸纳米颗粒的直径为148.77~153.63nm;核酸纳米颗粒的分散度指数(PDI)为0.16~0.22。
优选地,疏水性分子为疏水性的甘油酯分子和/或者疏水性的磷脂分子;疏水性的甘油酯分子为1,3-二亚麻酸甘油酯和/或1,2-二油酰-SN-甘油-3-磷酸乙醇胺。
优选地,亲水性的核酸分子选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
本发明还提供一种核酸纳米颗粒,单体分子为式(Ⅰ)、式(Ⅱ)、式(Ⅲ)和式(Ⅳ)中的一种或多种;其中,
式(Ⅰ)为:
式(Ⅱ)为:
式(Ⅲ)为:
式(Ⅳ)为:
式(Ⅰ)、式(Ⅱ)、式(Ⅲ)和式(Ⅳ)中的R1、R2为任一脂肪链,核酸选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
本发明保护核酸纳米颗粒的用途,尤其是在药物递送、药物载体、疫苗载体、疫苗佐剂等技术领域的应用。
本发明还保护核酸纳米颗粒负载药物、抗原或佐剂形成的复合物。
本发明还保护核酸纳米颗粒负载药物、抗原或佐剂形成的复合物的用途,尤其是在药物递送、药物载体、疫苗载体、疫苗佐剂等技术领域的应用。
本发明还提供了一种核酸纳米颗粒的制备方法,包括步骤:S1:将甘油酯和交联剂混合,室温下搅拌反应4~8h后与功能性寡聚脱氧核苷酸混合,室温下搅拌反应过夜,然后透析、冻干;S2:将待负载物与3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯混合,室温下搅拌反应4~8h后与功能性寡聚脱氧核苷酸混合,室温下搅拌反应过夜;S3:将S1得到的溶液和S2得到的溶液混合,加入角鲨烯,室温下1000~1500rpm搅拌2~4h,然后透析、冻干,得到核酸纳米颗粒。
优选地,S1中,甘油酯的体积与交联剂的质量的比值为(100~200)μL:(3~5)mg,甘油酯的体积与功能性寡聚脱氧核苷酸的体积的比值为(100~200)μL:(200~500)μL;甘油酯为1,3-二亚麻酸甘油酯或1,2-二油酰-SN-甘油-3-磷酸乙醇胺;交联剂为叠氮化钠或3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯;功能性寡聚脱氧核苷酸为CPG-ODN或BCL 2-ODN;S2中,待负载物的质量与3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯的质量的比值为(2~5)mg:(4.5~5.5)mg,待负载物的质量与功能性寡聚脱氧核苷酸的体积的比值为(2~5)mg:(200~500)μL;待负载物选自药物、抗原或佐剂中的一种或多种;优选为鸡卵清蛋白或阿糖胞苷;功能性寡聚脱氧核苷酸为Anti-CPG-ODN或Anti-BCL 2-ODN;S3中,甘油酯的体积与待负载物的质量的比值为(100~200)μL:(2~5)mg,甘油酯的体积与角鲨烯的体积的比值为(100~200)μL:(50~100)μL;S1和S3中,透析采用的是透析袋,透析后收集的是分子量大于1000kD的物质。需要说明的是,本发明采用的CPG-ODN的序列(SEQ ID NO.1)为:5’-TCCATGACGTTCCTGACGTT-3’;Anti-CPG-ODN的序列(SEQ ID NO.2)为:5’-AACGTCAGGAACGTCATGGA-3’;BCL 2-ODN的序列(SEQ ID NO.3)为:5’-ATGGCGCACGCTGGGAGAAAA-3’;Anti-BCL 2-ODN的序列(SEQ ID NO.4)为:5’-TTTTCTCCCAGCGTGCGCCAT-3’;CPG-ODN、Anti-CPG-ODN、BCL 2-ODN和Anti-BCL 2-ODN均购买于生工生物工程(上海)股份有限公司。
本发明提供的技术方案,具有如下的有益效果:
(1)本发明将具有亲水特性的甘油酯或者磷脂与亲水性的核酸分子合成两亲性单体分子,并以此为自组装基元通过自组装制备纳米粒,即具有3D结构的仿生型球形核酸纳米粒,球形核酸的3D结构有利于维持脂质纳米囊粒结构的稳定性;该纳米粒亲水端可为功能核酸分子,疏水端是具有良好生物相容性的仿生型的生物材料;疏水层与亲水层分子均可负载不同特性的药物、抗原或佐剂,作为载体应用于药物或疫苗领域;在构建球形核酸纳米粒时,将具有氧化还原响应性的二硫键引入不同功能分子间的合成中,可以实现药物在细胞内的可控释放以及各功能分子以游离形式发挥作用;
(2)本发明提供的纳米颗粒,直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,电位为-28.8mV,1,3-二亚麻酸甘油酯与鸡卵清蛋白分别位于球形纳米颗粒内外,角鲨烯位于脂质层;细胞吞噬颗粒之后,纳米颗粒负载的药物可以游离的分子形式发挥作用;以二硫键连接的单体分子,在体内环境下不稳定,很容易断开,各药物能快速释放发挥作用;
(3)本发明提供的制备过程条件温和,保证了纳米颗粒所载药物或疫苗的活性及安全性;原料廉价易得,工艺简单易行。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为本发明实施例五中叠氮化1,3-二亚麻酸甘油酯的红外光谱图;
图2为本发明实施例七中1,2-二油酰-SN-甘油-3-磷酸乙醇胺与CPG-ODN成功偶联电泳图;
图3为本发明实施例七制备得到的球形核酸纳米颗粒粒径图;
图4为本发明实施例八中1,2-二油酰-SN-甘油-3-磷酸乙醇胺与BCL 2-ODN成功偶联电泳图;
图5为本发明实施例九中激光共聚焦图(50μm);
图6为本发明实施例九中激光共聚焦图(20μm);
图7为本发明实施例九中激光共聚焦图(10μm);
图8为本发明实施例九中流式细胞术实验结果图(CD40);
图9为本发明实施例九中流式细胞术实验结果图(CD80);
图10为本发明实施例九中流式细胞术实验结果图(CD86);
图11为本发明实施例九中的细胞存活率结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只是作为示例,而不能以此来限制本发明的保护范围。
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,数据为三次重复实验的平均值或平均值±标准差。
本发明提供了一种仿生型自组装球形核酸纳米颗粒,其是采用两亲性单体分子作为自组装基元并通过自组装制备而成的纳米颗粒;疏水性分子为疏水性的甘油酯分子和/或者疏水性的磷脂分子;疏水性的甘油酯分子为1,3-二亚麻酸甘油酯和/或1,2-二油酰-SN-甘油-3-磷酸乙醇胺;亲水性的核酸分子选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
仿生型自组装球形核酸纳米颗粒的直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,其单体分子为式(Ⅰ)、式(Ⅱ)、式(Ⅲ)和式(Ⅳ)中的一种或多种;
其中,
式(Ⅰ)为:
式(Ⅱ)为:
式(Ⅲ)为:
式(Ⅳ)为:
式(Ⅰ)、式(Ⅱ)、式(Ⅲ)和式(Ⅳ)中的R1、R2为任一脂肪链,核酸选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
本发明还提供一种仿生型自组装球形核酸纳米颗粒的制备方法,包括步骤:
S1:将甘油酯和交联剂混合,室温下搅拌反应4~8h后与功能性寡聚脱氧核苷酸混合,室温下搅拌反应过夜,然后透析、冻干;其中,甘油酯的体积与交联剂的质量的比值为(100~200)μL:(3~5)mg,甘油酯的体积与功能性寡聚脱氧核苷酸的体积的比值为(100~200)μL:(200~500)μL;甘油酯为1,3-二亚麻酸甘油酯或1,2-二油酰-SN-甘油-3-磷酸乙醇胺;交联剂为叠氮化钠或3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯;功能性寡聚脱氧核苷酸为CPG-ODN或BCL2-ODN;透析采用的是透析袋,透析后收集的是分子量大于1000kD的物质;
S2:将待负载物与3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯混合,搅拌反应室温下搅拌反应4~8h后与功能性寡聚脱氧核苷酸混合,室温下搅拌反应过夜;其中,待负载物的质量与3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯的质量的比值为(2~5)mg:(4.5~5.5)mg,待负载物的质量与功能性寡聚脱氧核苷酸的体积的比值为(2~5)mg:(200~500)μL;待负载物选自药物、抗原或佐剂中的一种或多种;优选为鸡卵清蛋白或阿糖胞苷;功能性寡聚脱氧核苷酸为Anti-CPG-ODN或Anti-BCL 2-ODN;S3:将S1得到的溶液和S2得到的溶液混合,加入角鲨烯,室温下1000~1500rpm搅拌2~4h,然后透析、冻干,得到核酸纳米颗粒;其中,甘油酯的体积与待负载物的质量的比值为(100~200)μL:(2~5)mg,甘油酯的体积与角鲨烯的体积的比值为(100~200)μL:(50~100)μL;透析采用的是透析袋,透析后收集的是分子量大于1000kD的物质。
实施例一
本实施例提供一种仿生型自组装球形核酸纳米颗粒,直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,其单体分子为式(Ⅰ):
式(Ⅰ)中的R1、R2为任一脂肪链,核酸选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
实施例二
本实施例提供一种仿生型自组装球形核酸纳米颗粒,直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,其单体分子为式(Ⅱ):
式(Ⅱ)中的R1、R2为任一脂肪链,核酸选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
实施例三
本实施例提供一种仿生型自组装球形核酸纳米颗粒,直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,其单体分子为式(Ⅲ):
式(Ⅲ)中的R1、R2为任一脂肪链,核酸选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
实施例四
本实施例提供一种仿生型自组装球形核酸纳米颗粒,直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,其单体分子为式(Ⅳ):
式(Ⅳ)中的R1、R2为任一脂肪链,核酸选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
实施例五
本实施例提供一种仿生型自组装球形核酸纳米颗粒的制备方法,包括步骤:
S1:将100μL1,3-二亚麻酸甘油酯和4mg叠氮化钠混合,室温下搅拌反应6h后与200μL CPG-ODN(SEQ ID NO.1:5’-TCC ATG ACGTTCCTGACGTT-3’)混合,室温下搅拌反应过夜,然后采用透析袋进行透析,收集分子量大于1000kD的物质,之后冻干;
S2:将3mg鸡卵清蛋白与5mg 3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯混合,室温下搅拌反应6h后与200μLAnti-CPG-ODN(SEQ ID NO.2:5’-AACGTCAGGAACGTCATGGA-3’)混合,室温下搅拌反应过夜;
S3:将S1得到的溶液和S2得到的溶液混合,加入50μL角鲨烯,室温下1000rpm搅拌4h,然后采用透析袋进行透析,收集分子量大于1000kD的物质,再冻干,得到仿生型自组装球形核酸纳米颗粒。
本实施例中,将1,3-二亚麻酸甘油酯与叠氮化钠在室温下反应,加入三乙胺调节反应液酸碱度,叠氮化1,3-二亚麻酸甘油酯。图1为叠氮化1,3-二亚麻酸甘油酯红外光谱图,显示成功叠氮化。
本实施例制备得到的仿生型自组装球形核酸纳米颗粒的直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,单体分子为:
实施例六
本实施例提供一种仿生型自组装球形核酸纳米颗粒的制备方法,包括步骤:
S1:将100μL1,3-二亚麻酸甘油酯和4mg 3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯混合,室温下搅拌反应6h后与200μL BCL 2-ODN(SEQ ID NO.3:5’-ATGGCGCACGCTGGGAGA AAA-3’)混合,室温下搅拌反应过夜,然后采用透析袋进行透析,收集分子量大于1000kD的物质,之后冻干;
S2:将3mg阿糖胞苷与5mg 3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯混合,室温下搅拌反应6h后与200μLAnti-BCL 2-ODN(SEQ ID NO.4:5’-TTTTCTCCCAGCGTGCGCCAT-3’)混合,室温下搅拌反应过夜;
S3:将S1得到的溶液和S2得到的溶液混合,加入50μL角鲨烯,室温下1000rpm搅拌4h,然后采用透析袋进行透析,收集分子量大于1000kD的物质,再冻干,得到仿生型自组装球形核酸纳米颗粒。
本实施例制备得到的仿生型自组装球形核酸纳米颗粒的直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,单体分子为:
实施例七
本实施例提供一种仿生型自组装球形核酸纳米颗粒的制备方法,包括步骤:
S1:将100μL1,2-二油酰-SN-甘油-3-磷酸乙醇胺和4mg3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯混合,室温下搅拌反应6h后与200μL CPG-ODN(SEQ ID NO.1:5’-TCC ATGACGTTCCTGACGTT-3’)混合,室温下搅拌反应过夜,然后采用透析袋进行透析,收集分子量大于1000kD的物质,之后冻干;
S2:将3mg鸡卵清蛋白与5mg 3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯混合,室温下搅拌反应6h后与200μLAnti-CPG-ODN(SEQ ID NO.2:5’-AACGTCAGGAACGTCATGGA-3’)混合,室温下搅拌反应过夜;
S3:将S1得到的溶液和S2得到的溶液混合,加入50μL角鲨烯,室温下1000rpm搅拌4h,然后采用透析袋进行透析,收集分子量大于1000kD的物质,再冻干,得到仿生型自组装球形核酸纳米颗粒。
本实施例制备得到的仿生型自组装球形核酸纳米颗粒的直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,单体分子为:
图2为1,2-二油酰-SN-甘油-3-磷酸乙醇胺与CPG-ODN成功偶联电泳图;
图3为球形核酸纳米颗粒粒径图。
实施例八
本实施例提供一种仿生型自组装球形核酸纳米颗粒的制备方法,包括步骤:
S1:将100μL1,2-二油酰-SN-甘油-3-磷酸乙醇胺和4mg叠氮化钠混合,室温下搅拌反应6h后与200μL BCL 2-ODN(SEQ ID NO.3:5’-ATGGCGCACGCTGGGAGA AAA-3’)混合,室温下搅拌反应过夜,然后采用透析袋进行透析,收集分子量大于1000kD的物质,之后冻干;
S2:将3mg阿糖胞苷与5mg 3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯混合,室温下搅拌反应6h后与200μLAnti-BCL 2-ODN(SEQ ID NO.4:5’-TTTTCTCCCAGCGTGCGCCAT-3’)混合,室温下搅拌反应过夜;
S3:将S1得到的溶液和S2得到的溶液混合,加入50μL角鲨烯,室温下1000rpm搅拌4h,然后采用透析袋进行透析,收集分子量大于1000kD的物质,再冻干,得到仿生型自组装球形核酸纳米颗粒。
本实施例制备得到的仿生型自组装球形核酸纳米颗粒的直径为151.20±2.43nm,分散度指数(PDI)为0.19±0.03nm,单体分子为:
图4为1,2-二油酰-SN-甘油-3-磷酸乙醇胺与BCL 2-ODN成功偶联电泳图。
实施例九
1、共聚焦实验
为了观察负载OVA(鸡卵清白蛋白)的DOPE-ODN纳米颗粒(实施例七制备得到)在BMDCs中的分布状况,取C57BL/6小鼠骨髓来源树突状细胞(Bone Marrow DerivedDendritic Cell,BMDC)进行培养,第七天收集细胞分别与游离OVA(FITC标记)、负载FITC标记OVA的DOPE-ODN纳米复合物(加药量按20μg/mL OVA计算)共孵育6h后,PBS洗涤细胞3次,用DAPI染细胞核,利用激光共聚焦显微镜(Leica,TCS SP5)观察负载OVA的DOPE-ODN纳米颗粒在BMDCs中分布状况。
结果:激光共聚焦图如图5(50μm)、图6(20μm)和图7(10μm)所示;其中,A指BMDC与负载FITC-OVA的DOPE-ODN纳米复合物孵育6小时的激光共聚焦图,B指BMDC与游离的FITC-OVA孵育6小时的激光共聚焦图;从左到右依次为FITC-OVA(绿色荧光)、DAPI染色的细胞核(蓝色荧光),两种荧光叠加图和细胞明场图,结果显示:DOPE-ODN球形核苷酸纳米颗粒可显著增加抗原在BMDCs中的摄入量。
2、流式细胞术实验:
取BMDC与游离OVA、负载OVA的DOPE-ODN纳米颗粒(实施例七制备得到)共孵育6小时,标记CD11C、CD40、CD80、CD86等流式抗体,用流式细胞仪(BD Bioscience,C6)检测BMDCs活化程度。
结果:如图8、图9和图10所示;其中图8为流式细胞术实验结果图(CD40);图9为流式细胞术实验结果图(CD80);图10为流式细胞术实验结果图(CD86)。结果显示:DOPE-ODN球形核苷酸纳米颗粒负载抗原可显著促进BMDCs细胞表面协同刺激分子的表达,具有促抗原提呈细胞活化的作用。
3、细胞毒性实验:
将培养7天的BMDCs接种于96孔板中,置于37℃,5%CO2培养箱中培养过夜。每孔加入浓度分别为0、10、20、30、40μg/mL负载OVA的DOPE-ODN纳米颗粒(按OVA浓度计算,实施例七制备得到),继续培养24小时,每孔加入10μL CCK-8检测液,置于37℃培养箱中培养1~4h,利用多功能全波长酶标仪(Thermo Varioskan Flash3001)测定450nm处吸光度。
结果:细胞存活率如图11所示,当负载OVA的DOPE-ODN纳米颗粒浓度为10μg/mL时细胞存活率为74%;浓度为40μg/mL时,细胞存活率仍为30%以上,说明负载OVA的DOPE-ODN球形核苷酸纳米颗粒的细胞毒性较低。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对步骤、数字表达式和数值并不限制本发明的范围。在这里示出和描述的所有示例中,除非另有规定,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的保护范围当中。
SEQUENCE LISTING
<110> 中国医学科学院生物医学工程研究所
<120> 仿生型自组装球形核酸纳米颗粒及其制备方法与用途
<130> 2
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工合成
<400> 1
tccatgacgt tcctgacgtt 20
<210> 2
<211> 20
<212> DNA
<213> 人工合成
<400> 2
aacgtcagga acgtcatgga 20
<210> 3
<211> 21
<212> DNA
<213> 人工合成
<400> 3
atggcgcacg ctgggagaaa a 21
<210> 4
<211> 21
<212> DNA
<213> 人工合成
<400> 4
ttttctccca gcgtgcgcca t 21

Claims (10)

1.一种核酸纳米颗粒,其特征在于:
所述核酸纳米颗粒是采用两亲性单体分子作为自组装基元并通过自组装制备而成的纳米颗粒;所述两亲性单体分子是采用疏水性分子与亲水性的核酸分子合成。
2.根据权利要求1所述的核酸纳米颗粒,其特征在于:
所述核酸纳米颗粒为球形核酸纳米颗粒;
所述核酸纳米颗粒的直径为148.77~153.63nm;
所述核酸纳米颗粒的分散度指数为0.16~0.22。
3.根据权利要求1所述的核酸纳米颗粒,其特征在于:
所述疏水性分子为疏水性的甘油酯分子和/或疏水性的磷脂分子;
所述疏水性的甘油酯分子为1,3-二亚麻酸甘油酯和/或1,2-二油酰-SN-甘油-3-磷酸乙醇胺。
4.根据权利要求1所述的核酸纳米颗粒,其特征在于:
所述亲水性的核酸分子选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
5.一种核酸纳米颗粒,其特征在于:
所述核酸纳米颗粒的单体分子为式(Ⅰ)、式(Ⅱ)、式(Ⅲ)和式(Ⅳ)中的一种或多种;
其中,
式(Ⅰ)为:
式(Ⅱ)为:
式(Ⅲ)为:
式(Ⅳ)为:
式(Ⅰ)、式(Ⅱ)、式(Ⅲ)和式(Ⅳ)中的R1、R2为任一脂肪链,核酸选自寡聚脱氧核苷酸、小干扰RNA和核酸适配体中的一种或多种。
6.权利要求1-5任一项所述的核酸纳米颗粒的用途。
7.权利要求1-5任一项所述的核酸纳米颗粒负载药物、抗原或佐剂形成的复合物。
8.权利要求7所述的复合物的用途。
9.一种核酸纳米颗粒的制备方法,其特征在于,包括步骤:
S1:将甘油酯和交联剂混合,室温下搅拌反应4~8h后与功能性寡聚脱氧核苷酸混合,室温下搅拌反应过夜,然后透析、冻干;
S2:将待负载物与3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯混合,室温下搅拌反应4~8h与功能性寡聚脱氧核苷酸混合,室温下搅拌反应过夜;
S3:将S1得到的溶液和S2得到的溶液混合,加入角鲨烯,室温下1000~1500rpm搅拌2~4h,然后透析、冻干,得到所述核酸纳米颗粒。
10.根据权利要求9所述的核酸纳米颗粒的制备方法,其特征在于:
S1中,甘油酯的体积与交联剂的质量的比值为(100~200)μL:(3~5)mg,甘油酯的体积与功能性寡聚脱氧核苷酸的体积的比值为(100~200)μL:(200~500)μL;所述甘油酯为1,3-二亚麻酸甘油酯或1,2-二油酰-SN-甘油-3-磷酸乙醇胺;所述交联剂为叠氮化钠或3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯;所述功能性寡聚脱氧核苷酸为CPG-ODN或BCL 2-ODN;
S2中,待负载物的质量与3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯的质量的比值为(2~5)mg:(4.5~5.5)mg,待负载物的质量与功能性寡聚脱氧核苷酸的体积的比值为(2~5)mg:(200~500)μL;所述待负载物选自药物、抗原或佐剂中的一种或多种;优选为鸡卵清蛋白或阿糖胞苷;所述功能性寡聚脱氧核苷酸为Anti-CPG-ODN或Anti-BCL 2-ODN;
S3中,甘油酯的体积与待负载物的质量的比值为(100~200)μL:(2~5)mg,甘油酯的体积与角鲨烯的体积的比值为(100~200)μL:(50~100)μL;
S1和S3中,透析采用的是透析袋,透析后收集的是分子量大于1000kD的物质。
CN201810777729.8A 2018-07-16 2018-07-16 仿生型自组装球形核酸纳米颗粒及其制备方法与用途 Active CN108685873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810777729.8A CN108685873B (zh) 2018-07-16 2018-07-16 仿生型自组装球形核酸纳米颗粒及其制备方法与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810777729.8A CN108685873B (zh) 2018-07-16 2018-07-16 仿生型自组装球形核酸纳米颗粒及其制备方法与用途

Publications (2)

Publication Number Publication Date
CN108685873A true CN108685873A (zh) 2018-10-23
CN108685873B CN108685873B (zh) 2020-09-04

Family

ID=63850705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810777729.8A Active CN108685873B (zh) 2018-07-16 2018-07-16 仿生型自组装球形核酸纳米颗粒及其制备方法与用途

Country Status (1)

Country Link
CN (1) CN108685873B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108888773A (zh) * 2018-09-17 2018-11-27 中国医学科学院生物医学工程研究所 自组装球形药物纳米制剂及其制备方法与用途
CN110613844A (zh) * 2019-10-23 2019-12-27 中国医学科学院生物医学工程研究所 一种迷你联合佐剂纳米颗粒及其制备方法和应用
CN113318224A (zh) * 2021-03-23 2021-08-31 中国医学科学院生物医学工程研究所 双轮状纳米颗粒及其制备方法
CN114288408A (zh) * 2021-12-20 2022-04-08 中国医学科学院生物医学工程研究所 双佐剂自载体原位纳米疫苗及其制备方法
CN114404607A (zh) * 2019-03-08 2022-04-29 苏州维益生物科技有限公司 核酸球形纳米颗粒药物、及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103025165A (zh) * 2010-05-05 2013-04-03 普罗林科斯有限责任公司 自大分子共轭物的控释

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103025165A (zh) * 2010-05-05 2013-04-03 普罗林科斯有限责任公司 自大分子共轭物的控释

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANTHONY M. RUSH等: "Intracellular mRNA Regulation with Self-Assembled Locked Nucleic Acid Polymer Nanoparticles", 《J. AM. CHEM. SOC.》 *
ANUP M. JAWALEKAR等: "Oligonucleotide Tagging for Copper-Free Click Conjugation", 《MOLECULES》 *
FEI JIA等: "Facile synthesis of nucleic acid-polymer amphiphiles and their self-assembly", 《CHEM COMMUN》 *
HONGMEI LIU等: "SiRNA-phospholipid conjugates for gene and drug delivery in cancer treatment", 《BIOMATERIALS》 *
SALIM KHIATI等: "Nucleoside-Lipid-Based Nanoparticles for Cisplatin Delivery", 《ACS NANO》 *
王金亭: "《生物化学》", 31 December 2017, 北京理工大学出版社 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108888773A (zh) * 2018-09-17 2018-11-27 中国医学科学院生物医学工程研究所 自组装球形药物纳米制剂及其制备方法与用途
CN108888773B (zh) * 2018-09-17 2021-06-29 中国医学科学院生物医学工程研究所 自组装球形药物纳米制剂及其制备方法与用途
CN114404607A (zh) * 2019-03-08 2022-04-29 苏州维益生物科技有限公司 核酸球形纳米颗粒药物、及其制备方法和应用
CN110613844A (zh) * 2019-10-23 2019-12-27 中国医学科学院生物医学工程研究所 一种迷你联合佐剂纳米颗粒及其制备方法和应用
WO2021077770A1 (zh) * 2019-10-23 2021-04-29 中国医学科学院生物医学工程研究所 一种迷你联合佐剂纳米颗粒及其制备方法和应用
CN110613844B (zh) * 2019-10-23 2024-02-27 中国医学科学院生物医学工程研究所 一种迷你联合佐剂纳米颗粒及其制备方法和应用
CN113318224A (zh) * 2021-03-23 2021-08-31 中国医学科学院生物医学工程研究所 双轮状纳米颗粒及其制备方法
CN113318224B (zh) * 2021-03-23 2022-06-03 中国医学科学院生物医学工程研究所 双轮状纳米颗粒及其制备方法
CN114288408A (zh) * 2021-12-20 2022-04-08 中国医学科学院生物医学工程研究所 双佐剂自载体原位纳米疫苗及其制备方法

Also Published As

Publication number Publication date
CN108685873B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN108685873A (zh) 仿生型自组装球形核酸纳米颗粒及其制备方法与用途
Trent et al. Structural properties of soluble peptide amphiphile micelles
CN103906503B (zh) 用于无菌制备脂质-核酸颗粒的单次使用系统
Wacker Nanocarriers for intravenous injection—the long hard road to the market
KR101616771B1 (ko) 비면역원성의 소수성 단백질 나노입자의 형성방법 및 그 용도
Marguet et al. Polymersomes in “gelly” polymersomes: toward structural cell mimicry
US7226618B1 (en) Colloidal suspension of submicronic particles as vectors for active principles and method for preparing same
EP2626130B1 (en) Substance-encapsulating vesicle and process for producing the same
CN110522918A (zh) 靶向元件及其制备方法和运用
ES2640060T3 (es) Proceso para producir una partícula fina revestida
CN110613844B (zh) 一种迷你联合佐剂纳米颗粒及其制备方法和应用
Heffernan et al. Disulfide-crosslinked polyion micelles for delivery of protein therapeutics
CN103588998B (zh) 还原响应多糖pei纳米凝胶、制剂及其制备方法
CN102764240B (zh) 一种前列地尔冻干微乳及其制备方法和应用
CN101874781B (zh) 疏水改性葡聚糖修饰的长循环脂质体及其制备方法
EP1369110A1 (en) Production of nanoparticles from methyl vinyl ether copolymer and maleic anhydride for the administration of hydrophilic pharmaceuticals, more particularly of puric and pyrimidinic bases
Jagdale et al. Bird's eye view on aquasome: Formulation and application
Zong et al. Liposomes encapsulating artificial cytosol as drug delivery system
JP5787323B2 (ja) 脂質膜構造体
CN108888773B (zh) 自组装球形药物纳米制剂及其制备方法与用途
WO2014034669A1 (ja) 非極性溶媒に分散性を有する細菌菌体成分を内封する脂質膜構造体およびその製造方法
CN102552145A (zh) 一种人工脂质体的制备方法
CN114848831A (zh) 包裹型纳米制剂及其载体的制备方法和应用
CN110251686B (zh) 一种淀粉基两亲性自组装载体材料及其制备方法与应用
CN107530438A (zh) Pll用于改善溶液中分子的稳定性的用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230710

Address after: 300450 North 2-204 Industrial Incubation -5-959, No. 18, Haitai West Road, Huayuan Industrial Zone, Binhai, Tianjin

Patentee after: Najin Biotechnology (Tianjin) Co.,Ltd.

Address before: 300192, 236 Bai Causeway Road, Tianjin, Nankai District

Patentee before: CHINESE ACADEMY OF MEDICAL SCIENCES INSTITUTE OF BIOMEDICAL ENGINEERING