CN108676178B - 改性多糖水凝胶的制备方法及制备的改性多糖水凝胶 - Google Patents

改性多糖水凝胶的制备方法及制备的改性多糖水凝胶 Download PDF

Info

Publication number
CN108676178B
CN108676178B CN201810385505.2A CN201810385505A CN108676178B CN 108676178 B CN108676178 B CN 108676178B CN 201810385505 A CN201810385505 A CN 201810385505A CN 108676178 B CN108676178 B CN 108676178B
Authority
CN
China
Prior art keywords
hydrogel
preparation
modified polysaccharide
modified
polysaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810385505.2A
Other languages
English (en)
Other versions
CN108676178A (zh
Inventor
张亚彬
刘淑艳
张书香
宗传永
张炉青
马佳晨
翟丛丛
曹影
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan Lanrui New Material Technology Co.,Ltd.
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810385505.2A priority Critical patent/CN108676178B/zh
Publication of CN108676178A publication Critical patent/CN108676178A/zh
Application granted granted Critical
Publication of CN108676178B publication Critical patent/CN108676178B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • C08F220/365Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate containing further carboxylic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Abstract

本发明公开了一种改性多糖水凝胶的制备方法及制备的改性多糖水凝胶,属于凝胶制备技术领域。上述改性多糖水凝胶的制备方法包括以下步骤:(1)双键改性多糖的制备;(2)两性离子巯基聚合物(CB‑SH)制备;(3)“点击”化学水凝胶的制备。本发明的水凝胶在生理条件即可形成,反应条件简单,温和;透明质酸和两性离子聚合物共同作用,提高了材料的生物相容性,使得水凝胶材料具有较高的平衡含水量,具有抗蛋白性能和自愈合性能等。

Description

改性多糖水凝胶的制备方法及制备的改性多糖水凝胶
技术领域
本发明涉及水凝胶制备技术领域,特别是指一种改性多糖水凝胶的制备方法及制备的改性多糖水凝胶。
背景技术
水凝胶是一种三维交联的聚合物网络,性质柔软,在保持其完整性的同时,吸收大量的水而不溶于水。水凝胶因其优异的溶胀-退溶胀特性和刺激反应行为,在软性隐形眼镜、化学传感器、药物控释材料、组织工程、创面敷料和诊断技术等领域得到了广泛的应用。
凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。这些高分子按其来源可分为天然和合成两大类,天然的亲水性高分子包括多糖类(淀粉、纤维素、海藻酸、透明质酸,壳聚糖等)和多肽类(胶原、聚L-赖氨酸、聚L-谷胺酸等)。合成的亲水高分子包括醇、丙烯酸及其衍生物类(聚丙烯酸,聚甲基丙烯酸,聚丙烯酰胺等)。
随着功能高分子合成技术的迅速发展,高分子材料除了力学性能外,更需要特殊基团和结构以显示化学功能、物理功能等特殊性能。烯类单体和巯基化合物的种类非常多,使得通过巯基-双键“点击”反应制备功能性的聚合物具有良好的分子可设计性。巯基-双键“点击反应”具有反应高效、快速;不需要金属催化剂;产物易分离提纯,后处理简单等优点,可以将不同功能性的材料结合在一起,从而赋予材料特殊的性能,具有很大的发展潜力。
许多化学交联,辐射交联的水凝胶,由于无法自发形成水凝胶,限制了其在生物体内的应用。天然高分子具有良好的生物相容性、对环境的敏感性以及丰富的来源、低廉的价格和可降解等优点。生理条件下可形成水凝胶且具有良好生物相容性材料具有更好的发展前景。
发明内容
为解决现有技术中很多合成材料生物相容性差,合成条件苛刻等缺点,本发明提供一种改性改性多糖水凝胶的制备方法及制备的改性多糖水凝胶,制备的水凝胶具有良好的生物相容性,抗蛋白吸附性能,自愈性能和较高的平衡含水率等。
为解决上述技术问题,本发明提供技术方案如下:
本发明提供一种改性多糖水凝胶的制备方法,包括以下步骤:
(1)双键改性多糖的制备:
将多糖与水按比例混合均匀,在磁力搅拌下,加入三乙胺、四丁基溴化铵、甲基丙烯酸缩水甘油酯,反应结束后,依次在氯化钠水溶液和去离子水中透析,冻干得到双键改性的透明质酸;
(2)两性离子巯基聚合物(CB-SH)制备:
将两性离子单体和双丙烯酰胱胺(BAC)(即N,N'-双(丙烯酰)胱胺)溶于溶剂中,加入引发剂,反应24h,将上述反应产物在去离子水中透析三天除去未反应的单体和引发剂,之后在氮气保护下,转移至含有PBS(PH=8)缓冲溶液的烧杯中,加入二硫苏糖醇(DTT),反应6h后,将产物在酸性去离子水(PH=3)中透析,冻干得到两性离子巯基聚合物(CB-SH);
(3)“点击”化学水凝胶的制备:
将步骤1和步骤2制备的原料,按照质量比为1-2:1-2的比例,在37℃水浴中,一段时间自发形成水凝胶。
进一步的,所述步骤(1)中,多糖为透明质酸;所述多糖在水中的浓度为3wt%,所述反应为在室温下反应24h。
进一步的,所述步骤(1)中,所述氯化钠水溶液浓度为0.1mol/L;
所述透析袋截留分子量为Mn=7000Da。
进一步的,所述步骤(1)中,所述多糖、三乙胺、四丁基溴化铵、甲基丙烯酸缩水甘油酯的重量比为1:2:1:8;
所述步骤(1)中制备的双键改性的透明质酸的双键取代度为60%以上。
进一步的,所述步骤(2)中,两性离子单体为羧酸甜菜碱甲基丙烯酸甲酯(CBMA);
所述的溶剂为水和乙醇的混合溶剂,混合体积比为1:1;所述的引发剂为过硫酸铵(APS)和N,N,N',N'-四甲基乙二胺(TMEDA)。
进一步的,所述步骤(2)中,所述两性离子单体、双丙烯酰胱胺、引发剂的重量比为30:2.5:1;所述的透析袋为截留分子量Mn=4000Da,所述冻干温度为-60℃冻干24h。
进一步的,所述步骤(2)制备的两性离子巯基聚合物的巯基含量为0.3M/g。
进一步的,所述步骤(3),反应时间为1h。
本发明还提供一种上述改性多糖水凝胶的制备方法制备的多糖改性的水凝胶,具有不均匀的孔道结构,平均孔径为100nm,平衡含水量为90%以上,所述多糖改性的水凝胶具有抗蛋白吸附的性能和自愈合性能。
本发明具有以下有益效果:
本发明中,所述的水凝胶在生理条件即可形成,反应条件简单,温和;透明质酸和两性离子聚合物共同作用,提高了材料的生物相容性,使得水凝胶材料具有较高的平衡含水量,具有抗蛋白性能和自愈合性能等。
附图说明
图1为本发明实施例1制备的双键改性多糖、两性离子巯基聚合物和“点击”化学水凝胶的红外表征:a,b,c分别为两性离子巯基聚合物,双键改性多糖和“点击”化学水凝胶的红外表征图谱;
图2为本发明实施例1制备的“点击”化学水凝胶的宏观表象和扫描电镜表征:a为宏观图像,b为扫描电镜图像;
图3为本发明实施例1-3制备的“点击”化学水凝胶的平衡含水量图表;
图4为本发明实施例1-3制备的“点击”化学水凝胶的蛋白吸附图表;
图5为本发明实施例1制备的“点击”化学水凝胶的自愈合性能的实物图,a为水凝胶切割前,b为水凝胶切割后,c为水凝胶自愈合后。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
以下实施例中所用试剂除特殊说明外,均为市售产品。
本发明提供一种改性多糖水凝胶的制备方法及制备的改性多糖水凝胶。具体说明如下。
实施例1
本发明提供一种改性多糖水凝胶的制备方法,包括以下步骤:
(1)双键改性多糖的制备:
将0.5g透明质酸与水按比例混合均匀,其浓度为3wt%,磁力搅拌下,加入100μL三乙胺,0.47g四丁基溴化铵,3.2mL甲基丙烯酸缩水甘油酯,反应24h后,依次在0.1M氯化钠和去离子水中透析12h,冻干得到双键改性的透明质酸(HAGMA);
(2)两性离子巯基聚合物(CB-SH)的制备:
将0.5g羧酸甜菜碱甲基丙烯酸甲酯(CBMA)和40mgN,N'-双(丙烯酰)胱胺(BAC)溶于4ml水和乙醇的混合溶剂中,之后加入16mg过硫酸铵,20μL N,N,N',N'-四甲基乙二胺,反应24h,将反应产物在去离子水中透析三天除去未反应的单体和引发剂,之后在氮气保护下,将其转移至含有40ml PBS(PH=8)缓冲溶液的烧杯中,加入0.5g二硫苏糖醇(DTT),反应6h后,将产物在酸性去离子水(PH=3)中透析,冻干得到产物;
(3)“点击”化学水凝胶的制备:
取50mg HAGMA溶于1ml PBS(PH=7.2)缓冲溶液,搅拌均匀,备用;取0.1g CB-SH溶于1ml PBS(PH=7.2)缓冲溶液,搅拌均匀,备用。分别取一定量的两种母液,按双键-巯基比例为1:1的比例混合均匀,放入37℃恒温水浴中,1h内凝胶可自发形成。
图1中,b为双键改性的透明质酸的红外谱图,可以看出在1620cm-1处为C=C的吸收峰,说明透明质酸双键改性成功;1591cm-1处为透明质酸上的N-H的吸收峰;图1中,a为CB-SH的红外谱图2500-2700cm-1为SH的吸收峰,说明二硫键成功被DTT还原成SH;1591cm-1处为N-H的吸收峰;图1中,c为制得的水凝胶的红外谱图,从图中可以看出,2500-2700cm-1处SH吸收峰消失,双键吸收峰基本消失,说明巯基和双键基本完全反应。
图2中,a为水凝胶的宏观图像,从图中可以看出已形成块状凝胶状态,说明水凝胶制备成功,b为水凝胶截面的扫描电镜图像,从图中可以看出,水凝胶具有多空的网络结构,这些不均匀的孔道结构使得水凝胶可以吸收大量的水分。
实施例2
本发明提供一种改性多糖水凝胶的制备方法,包括以下步骤:
(1)双键改性多糖的制备同实施例1步骤(1);
(2)两性离子巯基聚合物(CB-SH)的制备同实施例1步骤(2);
(3)“点击”化学水凝胶的制备:
取50mg HAGMA溶于1ml PBS(PH=7.2)缓冲溶液,搅拌均匀,备用;取0.1g CB-SH溶于1ml PBS(PH=7.2)缓冲溶液,搅拌均匀,备用;分别取一定量的两种母液,按双键-巯基比例为2:1的比例混合均匀,放入37℃恒温水浴中,1h内凝胶可自发形成。
实施例3
本发明提供一种改性多糖水凝胶的制备方法,包括以下步骤:
(1)双键改性多糖的制备同实施例1步骤(1);
(2)两性离子巯基聚合物(CB-SH)的制备同实施例1步骤(2);
(3)“点击”化学水凝胶的制备:
取50mg HAGMA溶于1ml PBS(PH=7.2)缓冲溶液,搅拌均匀,备用;取0.1g CB-SH溶于1ml PBS(PH=7.2)缓冲溶液,搅拌均匀,备用。分别取一定量的两种母液,按双键-巯基比例为1:2的比例混合均匀,放入37℃恒温水浴中,1h内凝胶可自发形成。
为进一步说明本发明制备的水凝胶的性能,因篇幅有限,仅以实施例1为例构建对比例如下。
对比例1
将实施例1步骤(2)中的双丙烯酰胱胺替换为等量的DTT,其余条件与实施例1相同。
对上述实施例和对比例制备的水凝胶进行性能测试,具体测试方式及结果如下。
水凝胶平衡水含量的测试:
将水凝胶在PBS缓冲溶液中浸泡,达到吸水平衡后,取出,擦去表面的水分后称重,记作(Ws),水凝胶冻干后称重,记作(Wd),测试三组数据。平衡水含量(EWC)计算如式(1)所示:
Figure BDA0001642075390000061
图3为“点击”化学水凝胶的平衡含水量。从图中可以看出所有比例的凝胶平衡含水量均达到90%以上,表明制备的水凝胶材料具有较好的吸水性能。DTT交联的水凝胶平衡含水量约为87%,相比于双丙烯酰胱胺交联的水凝胶平衡含水量略有下降,这是由透明质酸较高的吸水保水性决定的。
抗蛋白吸附实验:
37℃下,将制备的水凝胶浸泡在PBS缓冲溶液中,达到吸水平衡后,将水凝胶培育在含有1.0mg ml-1的牛血清蛋白(BSA)的20ml PBS缓冲溶液中12h,之后将溶液用紫外分光光度仪测试279nm处的吸光度。同时制备5种不同浓度的BSA溶液作为对照样以绘制标准曲线,根据标准曲线计算出对应的提取液浓度从而推算出水凝胶的蛋白吸附量。
蛋白质吸附量(Q)计算如式(2)所示。
Q=C0V0-C1V1/S (2)
其中:C0,C1分别为水凝胶吸附前后的BSA质量浓度(g/mL),V0,V1分别为水凝胶吸附前后的BSA溶液体积(mL);S为样品的总表面积(cm2)。
图4显示水凝胶的蛋白吸附测试结果,从图中可以看出,和DTT交联的水凝胶相比,所有比例的水凝胶蛋白吸附量明显降低,说明制备的水凝胶材料具有抗蛋白吸附的性能。
水凝胶自愈合性能测试:
将制备的水凝胶用小刀切成两半,然后将两部分连接在一起,静置30min,得到自愈合的水凝胶材料。
图5中,a,b,c分别为水凝胶切割前后对比图像,可以看出,将水凝胶切割成两部分后,将其放在一起,静置一段时间后,可以自动恢复原状,且能承受住自身重量,说明水凝胶具有很好的自愈合性能。而DTT交联的水凝胶没有自愈合性能。
综上,本发明的改性多糖水凝胶的制备方法制备的改性多糖水凝胶具有较高的平衡含水量,抗蛋白性能和自愈合性能。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种改性多糖水凝胶的制备方法,其特征在于,包括以下步骤:
(1)双键改性多糖的制备:
将透明质酸与水按比例混合均匀,透明质酸在水中的浓度为3wt%,在磁力搅拌下,加入三乙胺、四丁基溴化铵、甲基丙烯酸缩水甘油酯,在室温下反应24h,反应结束后,依次在氯化钠水溶液和去离子水中透析,冻干得到双键取代度为60%以上的双键改性的透明质酸;所述透明质酸、三乙胺、四丁基溴化铵、甲基丙烯酸缩水甘油酯的重量比为1:2:1:8;
(2)两性离子巯基聚合物(CB-SH)制备:
将羧酸甜菜碱甲基丙烯酸甲酯(CBMA)和双丙烯酰胱胺(BAC)溶于体积比为1:1水和乙醇的混合溶剂中,加入引发剂过硫酸铵(APS)和N,N,N',N'-四甲基乙二胺(TMEDA),反应24h,将上述反应产物在去离子水中透析三天除去未反应的单体和引发剂,之后在氮气保护下,转移至含有PBS pH=8缓冲溶液的烧杯中,加入二硫苏糖醇(DTT),反应6h后,将产物在酸性去离子水pH=3中透析,透析袋为截留分子量Mn=4000Da,-60℃冻干24h得到两性离子巯基聚合物(CB-SH);所述CBMA、双丙烯酰胱胺、引发剂的重量比为30:2.5:1;
(3)“点击”化学水凝胶的制备:
将步骤1和步骤2制备的原料,按照双键-巯基比为1-2:1-2的比例,在37℃水浴中,反应1h后自发形成水凝胶。
2.根据权利要求1所述的改性多糖水凝胶的制备方法,其特征在于,所述步骤(1)中,所述氯化钠水溶液浓度为0.1mol/L;
所述透析袋截留分子量为Mn=7000Da。
3.根据权利要求1所述的改性多糖水凝胶的制备方法,其特征在于,所述步骤(2)制备的两性离子巯基聚合物的巯基含量为0.3M/g。
4.权利要求1-3任一所述的改性多糖水凝胶的制备方法制备的多糖改性的水凝胶,其特征在于,具有不均匀的孔道结构,平均孔径为100nm,平衡含水量为90%以上。
5.根据权利要求4所述的多糖改性的水凝胶,其特征在于,所述多糖改性的水凝胶具有抗蛋白吸附的性能和自愈合性能。
CN201810385505.2A 2018-04-26 2018-04-26 改性多糖水凝胶的制备方法及制备的改性多糖水凝胶 Active CN108676178B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810385505.2A CN108676178B (zh) 2018-04-26 2018-04-26 改性多糖水凝胶的制备方法及制备的改性多糖水凝胶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810385505.2A CN108676178B (zh) 2018-04-26 2018-04-26 改性多糖水凝胶的制备方法及制备的改性多糖水凝胶

Publications (2)

Publication Number Publication Date
CN108676178A CN108676178A (zh) 2018-10-19
CN108676178B true CN108676178B (zh) 2021-02-09

Family

ID=63801573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810385505.2A Active CN108676178B (zh) 2018-04-26 2018-04-26 改性多糖水凝胶的制备方法及制备的改性多糖水凝胶

Country Status (1)

Country Link
CN (1) CN108676178B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109627785A (zh) * 2018-12-18 2019-04-16 常州百瑞吉生物医药有限公司 改性明胶基复合凝胶制备方法及应用
CN113454166A (zh) * 2018-12-19 2021-09-28 泰普鲁特医疗技术有限责任公司 基于多糖和两性离子聚合物的水凝胶组合物及其使用方法
CN112126080B (zh) * 2019-06-24 2023-01-31 中国科学院苏州纳米技术与纳米仿生研究所 基于巯基-烯点击反应的光固化水凝胶、其制法与应用
CN112538174B (zh) * 2019-09-23 2021-10-08 天津大学 一种可注射两性离子水凝胶及其制备方法
CN112538126B (zh) * 2019-09-23 2021-10-08 天津大学 一种可注射多羟基聚合物水凝胶及其制备方法
CN112812329B (zh) * 2019-11-18 2023-06-16 孛朗孚(杭州)生物科技有限公司 巯基改性高分子化合物的水凝胶及其制备方法和用途
CN112812201B (zh) * 2019-11-18 2023-06-16 孛朗孚(杭州)生物科技有限公司 巯基改性透明质酸及其制备方法和用途
CN110801739B (zh) * 2019-11-25 2022-10-25 济南大学 一种聚偏氟乙烯膜的共混改性方法
CN110801741A (zh) * 2019-11-25 2020-02-18 济南大学 一种聚偏氟乙烯膜的表面改性方法
CN110801740A (zh) * 2019-11-25 2020-02-18 济南大学 一种聚偏氟乙烯膜的表面改性方法
CN112029037B (zh) * 2020-08-18 2022-05-03 浙江工业大学 一种高强度可降解的抗菌水凝胶及其制备方法
CN115572350B (zh) * 2022-09-29 2024-04-19 四川大学 一种可降解双键透明质酸交联两性离子抗污水凝胶

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007079053A2 (en) * 2005-12-28 2007-07-12 Dentsply International Inc. Light-curable bone growth material for treating dental bone defects
CN101214392A (zh) * 2008-01-11 2008-07-09 北京科技大学 一种含有可逆二硫键的注入式人工晶状体材料及制备方法
CN102307955A (zh) * 2008-12-05 2012-01-04 森普鲁斯生物科学公司 无污、抗菌、抗血栓形成的接出型接枝复合体
CN102942699A (zh) * 2012-10-26 2013-02-27 暨南大学 一种自增强双交联透明质酸水凝胶及其制备方法
CN103059215A (zh) * 2012-12-20 2013-04-24 华南理工大学 结构相对可控的甜菜碱酯类智能水凝胶及制备方法和应用
CN103613686A (zh) * 2013-11-12 2014-03-05 广州市一杰医药科技有限公司 巯基化透明质酸的制备方法及其应用
WO2015057645A1 (en) * 2013-10-14 2015-04-23 The University Of Akron Zwitterionic polysaccharide polymers having antifouling, antimicrobial and optical transparency properties
CN107095859A (zh) * 2017-04-24 2017-08-29 四川大学 一种具有肿瘤细胞生物还原性微环境敏感的载药纳米胶囊及其制备方法
CN107530295A (zh) * 2015-02-27 2018-01-02 韦恩州立大学 与生物相容性植入物相关的方法和组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007079053A2 (en) * 2005-12-28 2007-07-12 Dentsply International Inc. Light-curable bone growth material for treating dental bone defects
CN101214392A (zh) * 2008-01-11 2008-07-09 北京科技大学 一种含有可逆二硫键的注入式人工晶状体材料及制备方法
CN102307955A (zh) * 2008-12-05 2012-01-04 森普鲁斯生物科学公司 无污、抗菌、抗血栓形成的接出型接枝复合体
CN102942699A (zh) * 2012-10-26 2013-02-27 暨南大学 一种自增强双交联透明质酸水凝胶及其制备方法
CN103059215A (zh) * 2012-12-20 2013-04-24 华南理工大学 结构相对可控的甜菜碱酯类智能水凝胶及制备方法和应用
WO2015057645A1 (en) * 2013-10-14 2015-04-23 The University Of Akron Zwitterionic polysaccharide polymers having antifouling, antimicrobial and optical transparency properties
CN103613686A (zh) * 2013-11-12 2014-03-05 广州市一杰医药科技有限公司 巯基化透明质酸的制备方法及其应用
CN107530295A (zh) * 2015-02-27 2018-01-02 韦恩州立大学 与生物相容性植入物相关的方法和组合物
CN107095859A (zh) * 2017-04-24 2017-08-29 四川大学 一种具有肿瘤细胞生物还原性微环境敏感的载药纳米胶囊及其制备方法

Also Published As

Publication number Publication date
CN108676178A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
CN108676178B (zh) 改性多糖水凝胶的制备方法及制备的改性多糖水凝胶
Karoyo et al. A review on the design and hydration properties of natural polymer-based hydrogels
Anwar et al. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, optimization and in-vitro characterization
Bashir et al. Synthesis and characterization of karaya gum-g-poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin
Dragan et al. Macroporous composite IPN hydrogels based on poly (acrylamide) and chitosan with tuned swelling and sorption of cationic dyes
Saber-Samandari et al. UV-induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels
Kundu et al. Development of microcrystalline cellulose based hydrogels for the in vitro delivery of Cephalexin
Feng et al. Synthesis and swelling behaviors of yeast-g-poly (acrylic acid) superabsorbent co-polymer
Kang et al. Cellulose‐Based Gels
Gao et al. Preparation of oxidized sodium alginate-graft-poly ((2-dimethylamino) ethyl methacrylate) gel beads and in vitro controlled release behavior of BSA
Eichenbaum et al. Investigation of the swelling response and drug loading of ionic microgels: The dependence on functional group composition
Srivastava et al. Recent advances in composite hydrogels prepared solely from polysaccharides
Fundueanu et al. Poly (vinyl alcohol) microspheres with pH-and thermosensitive properties as temperature-controlled drug delivery
Díez-Peña et al. Analysis of the swelling dynamics of cross-linked p (N-iPAAm-c o-MAA) copolymers and their homopolymers under acidic medium. a kinetics interpretation of the overshooting effect
Hu et al. Preparation and characterization of composite hydrogel beads based on sodium alginate
Bayer et al. Alginate films as macromolecular imprinted matrices
Mohan et al. Swelling behavior of semi‐interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and poly (acrylamide‐co‐sodium methacrylate)
Saylan et al. Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers
CN105295077A (zh) 一种温敏型聚离子液体凝胶及其制备方法
Sharma et al. Biocompatible stimuli responsive superabsorbent polymer for controlled release of GHK-Cu peptide for wound dressing application
Chen et al. Synthesis mechanical properties and self-healing behavior of aliphatic polycarbonate hydrogels based on cooperation hydrogen bonds
CN110157010B (zh) 一种基于多糖/聚肽的聚电解质复合物水凝胶止血剂
US9683070B2 (en) Bio-based superabsorbents prepared via the macromonomer approach
Chatterjee et al. A detailed discussion on interpenetrating polymer network (IPN) based drug delivery system for the advancement of health care system
Sangeetha et al. Super water-absorbing hydrogel based on chitosan, itaconic acid and urea: preparation, characterization and reversible water absorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231027

Address after: 201, West Unit, Jinan University Science and Technology Park, No. 988 Shunxing Road, Tianqiao District, Jinan City, Shandong Province, 250000

Patentee after: Jinan Lanrui New Material Technology Co.,Ltd.

Address before: No. 336, West Road, South Xin Zhuang, Shandong, Shandong

Patentee before: University of Jinan

TR01 Transfer of patent right