CN108675941A - 一种基于二氰基荧蒽的非掺杂空穴传输材料 - Google Patents

一种基于二氰基荧蒽的非掺杂空穴传输材料 Download PDF

Info

Publication number
CN108675941A
CN108675941A CN201810330943.9A CN201810330943A CN108675941A CN 108675941 A CN108675941 A CN 108675941A CN 201810330943 A CN201810330943 A CN 201810330943A CN 108675941 A CN108675941 A CN 108675941A
Authority
CN
China
Prior art keywords
compound
midbody compound
formula
added
diphenylamines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810330943.9A
Other languages
English (en)
Other versions
CN108675941B (zh
Inventor
李忠安
孙祥浪
肖奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201810330943.9A priority Critical patent/CN108675941B/zh
Publication of CN108675941A publication Critical patent/CN108675941A/zh
Application granted granted Critical
Publication of CN108675941B publication Critical patent/CN108675941B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/92Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the nitrogen atom of at least one of the amino groups being further bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/22Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/14Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • C07D279/24[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom
    • C07D279/26[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom without other substituents attached to the ring system
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种非掺杂空穴传输材料,它是带有两个苯胺类给电子基团的二氰基荧蒽。本发明提供的这种材料可应用于正式平面结构钙钛矿太阳能电池中,也可用于反式平面结构钙钛矿太阳能电池中。本发明提供的这种非掺杂空穴传输材料合成过程简单,空穴迁移率高,作为非掺杂空穴传输材料应用于有机无机杂化钙钛矿太阳能电池正式平面结构中,最高能量转化效率可以达到18.03%。

Description

一种基于二氰基荧蒽的非掺杂空穴传输材料
技术领域
本发明属于化工领域,涉及一种新光电材料,具体涉及一种非掺杂空穴传输材料。
背景技术
自2009年被首次报道以来,有机无机杂化钙钛矿太阳能电池(简称为PVSCs)迅速成为国内外太阳能光伏研究领域的热点,并在短短几年内取得了十分惊人的进展。目前,其经认证的光电转换效率(简称为PCE)已经突破22%,可以与单晶硅太阳能电池相媲美。鉴于钙钛矿本身有限的载流子传输能力,在其器件制备过程中通常需要插入电子传输层和空穴传输层用以增大器件的电荷抽取能力以及环境稳定性。因此,引入合适的载流子传输层材料在改善PVSCs的器件综合性能方面起着十分重要的作用。钙钛矿太阳能电池中的空穴传输层位于电池的活性层和正极之间,主要作用是提取钙钛矿材料中的空穴并抑制载流子复合,从而将空穴有效地注入电池的正极。在应用于钙钛矿的空穴传输材料中,有机半导体材料由于具备相对温和的制备条件,因此比无机半导体材料更受欢迎。然而,大多数的有机空穴传输材料都存在空穴迁移率和导电率低的缺点,需要通过化学掺杂的工艺来改善。目前常用的掺杂剂是锂盐或者钴盐,但添加剂的引入也带来了巨大的缺陷:一是增加了器件成本并导致器件可操控性不佳;二是复杂的氧化过程(氧气的引入)及离子迁移加速了器件性能的衰减。spiro-OMeTAD是目前最为广泛使用的有机空穴传输材料,通过掺杂其所制备的钙钛矿电池的PCE可达到20%。然而,受离子掺杂剂的不利影响,电池在大气环境下存放时性能会发生快速衰减,且在30天后效率往往衰减为零。因此,开发出一种高效率低成本的非掺杂空穴传输材料对于钙钛矿电池的发展显得至关重要。
发明内容
本发明的任务是提供一种非掺杂空穴传输材料,以克服现有技术的不足。
本发明的另一个任务是提供这种非掺杂空穴传输材料的制备方法。
本发明的又一个任务是提供制备这种材料的中间体及其制备方法。
实现本发明的技术方案是:
本发明提供的非参杂空穴传输材料是带有两个苯胺类给电子基团的二氰基荧蒽。
所述的二氰基荧蒽的两个氰基分别位于2、3取代位上。
所述的两个苯胺类给电子基团R分别位于荧蒽的4、9取代位,其结构如以下通式(A)所示:
上式中R为苯胺类给电子基团,且4、9取代位上的取代基R相同。
所述的苯胺类给电子基团可以是二苯胺、4,4'-二甲基二苯胺、4,4'-二甲氧基二苯胺、吩噻嗪、9,10-二氢-9,9-二甲基吖啶、三苯胺、4,4'-二甲基三苯胺、4,4'-二甲氧基三苯胺、2-对苯基(4-乙烯基苯基)胺、2-对甲苯基(4-乙烯基苯基)胺、2-对甲氧基苯基(4-乙烯基苯基)胺和1-萘氨基苯中的一种。
上述被各苯胺类给电子基团取代后的化合物具体结构式如如表1所示:
表1
本发明提供的基于二氰基荧蒽的非参杂空穴传输材料可以通过Diels-Alder反应制备得到。其方法是:在氮气保护下,以2,7位取代的芴烯和四氰基乙烯作为反应原料,在溶剂N,N-二甲基甲酰胺中加热回流两天,反应物经萃取、干燥后通过柱层析分离纯化得到结构如通式(A)所示的化合物。
本发明的一个实施例提供了苯胺类给电子基团为4,4'-二甲基二苯胺的非参杂空穴传输材料,其结构如下述式(Ⅱ):
一种制备上述结构如式(Ⅱ)所示的化合物的方法如下:
1.制备结构如式(2-1)所示的中间体化合物(中间体2-1):
在反应容器中,加入2,7-二溴芴酮、4,4-二甲基二苯胺、叔丁醇钠、
Pd(dba)2、三叔丁基膦和干燥甲苯,投料摩尔比范围依次为1:2.0~2.5:
2.0~3.0:0.02~0.04:0.04~0.06:30~50,在氮气条件下加热回流12~15小时,冷却,经20~50mL二氯甲烷萃取并干燥后除去溶剂,再经硅胶柱分离后得到深红色固体即为结构如式(2-1)所示的中间体化合物。合成路线如下:
2.制备结构如式(2-2)所示的中间体化合物(中间体2-2):
在反应容器中,加入中间体化合物2-1和干燥四氢呋喃,在-70~-80℃条件下缓慢加入甲基锂,化合物2-1、四氢呋喃和甲基锂的投料摩尔比为1:60~100:1.1~1.5,逐渐升温至室温(20-30℃)后反应过夜(8~10小时),用水猝灭反应后,用20-50mL二氯甲烷萃取,干燥后除去溶剂,硅胶柱分离;得到的粗产物溶解在8~10mL干燥甲苯中,并加入0.05~0.1当量对甲苯磺酸,经薄层色谱监测反应,待原料反应完后用二氯甲烷萃取、干燥,除去溶剂后硅胶柱分离得到黄色固体,即为结构如式(2-2)所示的中间体化合物。合成路线如下:
3.在反应容器中,加入中间体化合物2-2、四氰基乙烯和DMF,投料摩尔比为1:2~3:100~200,在氮气条件下加热至150~180℃反应2~3天,冷却后加入20~30mL二氯甲烷萃取并干燥,除去溶剂后经硅胶柱分离得到蓝色固体即为结构如式(Ⅱ)所示的化合物。合成路线如下:
本发明的另一个实施例提供了苯胺类给电子基团为4,4'-二甲氧基二苯胺的非参杂空穴传输材料,结构如下述式(Ⅲ)
一种制备结构如式(Ⅲ)所示的化合物的方法如下:
1.制备结构如式(3-1)所示的中间体化合物(即制备中间体化合物3-1);
在反应容器中,加入2,7-二溴芴酮、4,4-二甲氧基二苯胺、Pd(dba)2、叔丁醇钠、三叔丁基膦和干燥甲苯,投料摩尔比为1:2.0~2.5:0.02~0.03:2.0~3.0:0.04~0.06:70~100,在氮气条件下加热回流20~25小时,冷却,经20~50mL二氯甲烷萃取并干燥后除去溶剂,再经硅胶柱分离后得到深红色固体,即为结构如式(3-1)所示中间体化合物。合成路线如下:
2.制备结构如式(3-2)所示的中间体化合物(即制备中间体化合物3-2);
在反应容器中,加入式(3-1)所示的中间体化合物和干燥四氢呋喃,在-70~-80℃条件下缓慢加入甲基锂,化合物3-1、四氢呋喃和甲基锂的摩尔投料比为1:50~100:1.1~15,逐渐升温至室温(20~30℃)后反应过夜(8~10小时),用水猝灭反应后,用20~50mL二氯甲烷萃取,干燥后除去溶剂,硅胶柱分离;得到的粗产物溶解在7~10mL干燥甲苯中,并加入005~0.01当量对甲苯磺酸,经薄层色谱监测反应,待原料反应完后用二氯甲烷萃取、干燥,除去溶剂后硅胶柱分离得到黄色固体,即为式(3-2)所示中间体化合物。合成路线如下:
3.在反应容器中,加入中间体化合物3-2、四氰基乙烯和DMF,投料摩尔比为1:2.0~3.0:250~300,在氮气条件下加热至150~180℃反应2~3天,冷却后加入二氯甲烷20~30mL萃取并干燥,除去溶剂后经硅胶柱分离得到蓝色固体,即为结构如式(Ⅲ)所示的化合物。合成路线如下:
在上述制备式(Ⅱ)和式(Ⅲ)化合物中涉及的中间体化合物见表2
表2
上述实验步骤中,所述的室温可以为20℃~30℃。
本申请提供了具有以下通式(A)所示结构的化合物:
其中R为苯胺类给电子基团,且4、9取代位上的取代基R相同。
上述通式(A)中给电子基团可以式二苯胺、4,4'-二甲基二苯胺、4,4'-二甲氧基二苯胺、吩噻嗪、9,10-二氢-9,9-二甲基吖啶、三苯胺、4,4'-二甲基三苯胺、4,4'-二甲氧基三苯胺、2-对苯基(4-乙烯基苯基)胺、2-对甲苯基(4-乙烯基苯基)胺、2-对甲氧基苯基(4-乙烯基苯基)胺和1-萘氨基苯中的一种。
本发明的空穴传输材料具有较高的空穴迁移率,因而可作为非掺杂空穴传输材料。本发明的材料应用于正式平面结构钙钛矿太阳能电池中时,表现出很高的光电转换效率。具体的电池结构为FTO/SnO2/PCBM/mixed perovskite/HTL/MoO3/Au,在光照强度为100mW cm-2的模拟太阳光AM 1.5G照射条件下,最高光电转换可达到18.03%。另外,本发明所涉及化合物作为空穴传输材料,除了可应用于正式平面结构钙钛矿太阳能电池中,也可用于反式平面结构,其中器件组合并不仅限于本文中实例。
附图说明
图1为本发明化合物结构通式。
图2为本发明涉及的具体化合物:化合物1~化合物12(式(Ⅰ)~式(XII)化合物)的结构式。
图3为化合物2的合成路线。
图4为化合物2的氢核磁谱图。
图5为化合物2晶体ORTEP图。
图6为化合物2在不同溶剂中的紫外可见吸收光谱。
图7为化合物3合成路线。
图8为化合物3氢核磁谱图。
图9为化合物3晶体ORTEP图。
图10为化合物3在不同溶剂中的紫外可见吸收光谱。
图11为化合物2和化合物3及参照物Sipro-OMeTAD的空穴迁移率测试。
图12为化合物2和3及Sipro-OMeTAD作为非掺杂空穴传输材料的正向钙钛矿电池的最优器件J-V曲线。
具体实施方式
实施例1
化合物2的合成:合成路线如说明书附图3。
中间体2-1的合成
在250mL schlenk瓶中,加入2,7-二溴芴酮(3.38g,10mmol)、4,4-二甲基二苯胺(4.33g,22mmol)、Pd(dba)2(366mg,0.4mmol)、叔丁醇钠(2.4g,25mmol)、三叔丁基膦(1.5mL,0.6mmol,)和40mL干燥甲苯,在氮气条件下加热回流12小时,冷却,经二氯甲烷萃取并干燥后除去溶剂,再经硅胶柱分离后得到4.95g深红色固体,产率为86.8%,1H NMR(400MHz,Chloroform-d)δ7.25(d,J=2.2Hz,2H,ArH),7.17(d,J=8.1Hz,2H,ArH),7.10-7.02(m,10H,ArH),6.97(d,J=8.4Hz,8H,ArH),2.31(s,12H,-CH3).
中间体2-2的合成
在100mL schlenk瓶中,加入中间体2-1(1.14g,2.0mmol)和10mL干燥四氢呋喃,在-78℃条件下缓慢加入甲基锂(1.38mL,2.2mmol),逐渐升温至室温后反应过夜,用水猝灭反应后,用二氯甲烷萃取,干燥后除去溶剂,硅胶柱分离。得到的粗产物溶解在10mL干燥甲苯中,并加入对甲苯磺酸(34.4mg,0.2mmol),经薄层色谱监测反应,待原料反应完后用二氯甲烷萃取、干燥,除去溶剂后硅胶柱分离得到0.99g黄色固体,产率为95.8%。1H NMR(400MHz,Chloroform-d)δ7.51–7.33(br,m,4H,ArH),7.17–6.88(br,m,18H,ArH),5.80(s,2H,-C=CH2),2.31(s,12H,-CH3).
化合物2的合成
在100mL schlenk瓶中,加入中间体2-2(250mg,0.44mmol)、四氰基乙烯(169mg,1.32mmol)和5mL DMF,在氮气条件下加热至160℃反应2天,冷却后加入二氯甲烷萃取并干燥,除去溶剂后经硅胶柱分离得到蓝色固体82mg,产率为29.1%。1H NMR(400MHz,Chloroform-d)δ7.93(s,1H,ArH),7.80(d,J=7.5Hz,1H,ArH),7.60(d,J=8.2Hz,1H,ArH),7.51(d,J=2.2Hz,1H,ArH),7.37(d,J=7.5Hz,1H,ArH),7.13(d,J=7.9Hz,4H,ArH),7.10–6.99(br,m,9H,ArH),6.91(d,J=8.2Hz,4H,ArH),2.36(s,6H,-CH3),2.29(s,6H,-CH3).13CNMR(101MHz,Chloroform-d)δ149.23,146.07,144.72,143.33,142.34,138.17,135.62,135.60,133.59,133.36,132.26,131.89,130.22,129.74,128.17,125.13,123.72,123.38,122.79,122.53,121.59,119.21,116.72,115.88,111.31,20.91,20.75.HRMS(APCI):(M+H)+=643,2902(calcd for C46H35N4 +,643.2862).
化合物2的氢核磁谱图见图4,单晶结构图见图5。化合物2在浓度为4×10-5摩尔每升的不同溶液下用SHIMADZU UV-3600紫外-可见分光光度计测得的紫外-可见吸收光谱见图6。
实施例2
化合物3的合成,合成路线如说明书附图7。
中间体3-1的合成
在250mL schlenk瓶中,加入2,7-二溴芴酮(1.69g,5mmol)、4,4-二甲氧基二苯胺(2.29g,10mmol)、Pd(dba)2(180mg,0.2mmol)、叔丁醇钠(1.2g,12.5mmol)、三叔丁基膦(0.75mL,0.3mmol,)和40mL干燥甲苯,在氮气条件下加热回流24小时,冷却,经二氯甲烷萃取并干燥后除去溶剂,再经硅胶柱分离后得到2.60g深红色固体,产率为82.3%,1H NMR(400MHz,Chloroform-d)δ7.17(d,J=2.2Hz,2H,ArH),7.13(d,J=8.2Hz,2H,ArH),7.03(d,J=8.8Hz,8H,ArH),6.98–6.90(m,2H,ArH),6.83(d,J=8.9Hz,8H,ArH),3.80(s,12H,-OCH3).
中间体3-2的合成
在100mL schlenk瓶中,加入中间体3-1(1.27g,2.0mmol)和10mL干燥四氢呋喃,在-78℃条件下缓慢加入甲基锂(1.38mL,2.2mmol),逐渐升温至室温后反应过夜,用水猝灭反应后,用二氯甲烷萃取,干燥后除去溶剂,硅胶柱分离。得到的粗产物溶解在10mL干燥甲苯中,并加入对甲苯磺酸(34.4mg,0.2mmol),经薄层色谱监测反应,待原料反应完后用二氯甲烷萃取、干燥,除去溶剂后硅胶柱分离得到1.01g黄色固体,产率为79.8%。1H NMR(400MHz,Chloroform-d)δ7.35(br,m,4H,ArH),7.03-6.83(br,m,18H,ArH),5.77(s,2H,-C=CH2),3.80(s,12H,-OCH3).13C NMR(101MHz,Chloroform-d)δ155.46,147.40,143.31,139.24,133.93,125.90,125.87,123.04,119.47,114.80,114.65,107.79,55.51.
化合物3的合成
在100mL schlenk瓶中,加入中间体3-2(150mg,0.24mmol)、四氰基乙烯(90mg,0.71mmol)和5mL DMF,在氮气条件下加热至160℃反应2天,冷却后加入二氯甲烷萃取并干燥,除去溶剂后经硅胶柱分离得到蓝色固体72mg,产率为43.0%。1H NMR(400MHz,Chloroform-d)δ7.92(s,1H,ArH),7.76(d,J=7.6Hz,1H,ArH),7.57(d,J=8.3Hz,1H,ArH),7.42(d,J=2.2Hz,1H,ArH),7.31(d,J=7.4Hz,1H,ArH),7.11(d,J=8.6Hz,4H,ArH),6.96(m,5H,ArH),6.89(d,J=8.4Hz,4H,ArH),6.78(d,J=8.4Hz,4H,ArH),3.83(s,6H,-OCH3),3.77(s,6H,-COH3).13C NMR(101MHz,Chloroform-d)δ156.45,155.39,149.64,143.58,142.43,142.41,140.26,138.09,135.64,135.26,132.63,130.95,127.89,126.97,124.24,123.45,122.43,121.49,121.46,119.00,116.75,116.03,114.98,114.87,114.49,55.54,55.49.HRMS(APCI):(M+H)+=707.2631(calcd for C46H35N4O4 +,707.2658).
化合物3的氢核磁谱图见图8,单晶结构图见图9。化合物3在浓度为4×10-5摩尔每升的不同溶液下用SHIMADZU UV-3600紫外-可见分光光度计测得的紫外-可见吸收光谱见图10。
实施例3
化合物2和3作为钙钛矿太阳能电池空穴传输层的器件表现:
利用空间电荷限制电流的方法测得化合物2和3在非掺杂情况下的空穴迁移率为分别为6.36×10-5和1.17×10-4cm2V-1s-1(见图11),而在同等条件下测得参照物spiro-OMeTAD的空穴迁移率为2.36×10-5cm2V-1s-1,表明本专利中所设计化合物2和3具有较高的空穴迁移率,可满足钙钛矿电池空穴传输层的需求。以化合物2和3作为空穴传输材料应用于正式平面结构钙钛矿太阳能电池的制备并未进行任何掺杂,具体器件结构为FTO/SnO2/PCBM/mixed perovskite/HTL/MoO3/Au,混合钙钛矿的组分为:(FAPbI3)0.85(MAPbBr3)0.15(FA:NH=CHNH3 +;MA:CH3NH3 +)。在光照强度为100mW cm-2的模拟太阳光AM1.5G照射条件下,化合物2和3作为非掺杂空穴传输材料的电池器件的J-V曲线如图12所示,PCE最高可达到16.34%和18.03%。

Claims (19)

1.一种非掺杂空穴传输材料,其特征在于,它是带有两个苯胺类给电子基团的二氰基荧蒽。
2.根据权利要求1所述的非掺杂空穴传输材料,其特征在于,所述的二氰基荧蒽的氰基取代是2、3位取代。
3.根据权利要求2所述的非掺杂空穴传输材料,其特征在于,所述的两个苯胺类给电子基团分别位于荧蒽的4、9取代位,其结构如以下通式(A)所示:
上式中R为苯胺类给电子基团,且4、9取代位上的取代基R相同。
4.根据权利要求1、2或3所述的非掺杂空穴传输材料,其特征在于,所述的苯胺类给电子基团选自二苯胺、4,4'-二甲基二苯胺、4,4'-二甲氧基二苯胺、吩噻嗪、9,10-二氢-9,9-二甲基吖啶、三苯胺、4,4'-二甲基三苯胺、4,4'-二甲氧基三苯胺、2-对苯基(4-乙烯基苯基)胺、2-对甲苯基(4-乙烯基苯基)胺、2-对甲氧基苯基(4-乙烯基苯基)胺和1-萘氨基苯中的一种。
5.根据权利要求4所述的非掺杂空穴传输材料,其特征在于,所述的苯胺类给电子基团为4,4'-二甲基二苯胺,结构如下述式(Ⅱ):
6.根据权利要求4所述的非掺杂空穴传输材料,其特征在于,所述的苯胺类给电子基团为4,4'-二甲氧基二苯胺,结构如下述式(Ⅲ):
7.具有以下通式(A)所示结构的化合物:
其中R为苯胺类给电子基团,且4、9取代位上的取代基R相同。
8.根据权利要求7所述的化合物,其特征在于,所述的苯胺类给电子基团选自二苯胺、4,4'-二甲基二苯胺、4,4'-二甲氧基二苯胺、吩噻嗪、9,10-二氢-9,9-二甲基吖啶、三苯胺、4,4'-二甲基三苯胺、4,4'-二甲氧基三苯胺、2-对苯基(4-乙烯基苯基)胺、2-对甲苯基(4-乙烯基苯基)胺、2-对甲氧基苯基(4-乙烯基苯基)胺和1-萘氨基苯中的一种。
9.权利要求7所述化合物的制备方法,包括以下步骤:在氮气保护下,以2,7位取代的芴烯和四氰基乙烯作为反应原料,在溶剂N,N-二甲基甲酰胺中加热回流,反应物经萃取、干燥后通过柱层析分离纯化,即得到如权利要求7所述的化合物。
10.结构如式(2-1)所示的中间体化合物:
11.一种制备如权利要求10所述中间体化合物的方法,包括以下步骤:
在反应容器中,加入2,7-二溴芴酮、4,4-二甲基二苯胺、叔丁醇钠、Pd(dba)2、三叔丁基膦和干燥甲苯,所述各原料的投料摩尔比依次为1:2.0~2.5:2.0~3.0:0.02~0.04:0.04~0.06:30~50,在氮气条件下加热回流12~15小时,冷却,经20~50mL二氯甲烷萃取并干燥后除去溶剂,再经硅胶柱分离后得到深红色固体即为权利要求10所述的化合物。
12.结构如式(2-2)所示的中间体化合物:
13.一种制备如权利要求12所述中间体化合物的方法,包括以下步骤:
在反应容器中,加入中间体化合物2-1和干燥四氢呋喃,在-60~-80℃下缓慢加入甲基锂,中间体化合物2-1、四氢呋喃和甲基锂的投料摩尔比为1:60~100:1.1~1.5,逐渐升温至室温后反应过夜,用水猝灭反应后,用20-50mL二氯甲烷萃取,干燥后除去溶剂,硅胶柱分离,得到的粗产物溶解在8~10mL干燥甲苯中,并加入0.05~0.1当量对甲苯磺酸,经薄层色谱监测反应,待原料反应完后用20~50mL二氯甲烷萃取、干燥,除去溶剂后硅胶柱分离得到黄色固体,即为权利要求12所述的中间体化合物。
14.一种制备如权利要求5所述的式(Ⅱ)化合物的方法,包括以下步骤:
(1)制备中间体化合物2-1:
根据权利要求11所述的方法制备中间体化合物2-1;
(2)制备中间体化合物2-2:
根据权利要求13所述的方法制备中间体化合物2-2;
(3)在反应容器中,加入中间体化合物2-2、四氰基乙烯、DMF,各反应原料投料摩尔比范围依次为1:2~3:100~200,在氮气条件下加热至150~180℃反应2~3天,冷却后加入20~50mL二氯甲烷萃取并干燥,除去溶剂后经硅胶柱分离得到蓝色固体即为权利要求5所述的式(Ⅱ)化合物。
15.结构如式(3-1)所示的中间体化合物:
16.一种制备如权利要求15所述的中间体化合物的方法,包括以下步骤:
在容器中,加入2,7-二溴芴酮、4,4-二甲氧基二苯胺、Pd(dba)2、叔丁醇钠、三叔丁基膦和干燥甲苯,各原料的投料摩尔比范围依次为1:2.0~2.5:0.02~0.03:2.0~3.0:0.04~0.06:70~100,在氮气条件下加热回流20~25小时,冷却,经20~50mL二氯甲烷萃取并干燥后除去溶剂,再经硅胶柱分离后得到深红色固体,即为权利要求15所述的中间体化合物。
17.结构如式(3-2)所示的中间体化合物:
18.一种制备如权利要求17所述的中间体化合物的方法,包括以下步骤:
在反应容器中,加入中间体化合物3-1和干燥四氢呋喃,在-70℃~-80℃缓慢加入甲基锂,化合物3-1、四氢呋喃和甲基锂的投料摩尔比范围为1:60~100:1.1~1.5,逐渐升温至室温后反应过夜,用水猝灭反应后,用20~50mL二氯甲烷萃取,干燥后除去溶剂,硅胶柱分离;得到的粗产物溶解在7~10mL干燥甲苯中,并加入0.05~0.1当量对甲苯磺酸,经薄层色谱监测反应,待原料反应完后用二氯甲烷萃取、干燥,除去溶剂后硅胶柱分离得到黄色固体,即为权利要求17所述的中间体化合物。
19.一种制备如权利要求6所述的式(Ⅲ)化合物的方法,包括以下步骤:
(1)制备中间体化合物3-1:
根据权利要求16所述的方法制备中间体化合物3-1;
(2)制备中间体化合物3-2:
根据权利要求18所述的方法制备中间体化合物3-2;
(3)在反应容器中,加入中间体化合物3-2、四氰基乙烯和DMF,投料摩尔比范围依次为1:2.0~3.0:250~300,在氮气条件下加热至150~180℃反应2~3天,冷却后加入20~30mL二氯甲烷萃取并干燥,除去溶剂后经硅胶柱分离得到蓝色固体,即为式(Ⅲ)化合物。
CN201810330943.9A 2018-04-13 2018-04-13 一种基于二氰基荧蒽的非掺杂空穴传输材料 Active CN108675941B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810330943.9A CN108675941B (zh) 2018-04-13 2018-04-13 一种基于二氰基荧蒽的非掺杂空穴传输材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810330943.9A CN108675941B (zh) 2018-04-13 2018-04-13 一种基于二氰基荧蒽的非掺杂空穴传输材料

Publications (2)

Publication Number Publication Date
CN108675941A true CN108675941A (zh) 2018-10-19
CN108675941B CN108675941B (zh) 2020-07-10

Family

ID=63801033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810330943.9A Active CN108675941B (zh) 2018-04-13 2018-04-13 一种基于二氰基荧蒽的非掺杂空穴传输材料

Country Status (1)

Country Link
CN (1) CN108675941B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019094A (zh) * 2019-12-06 2020-04-17 华中科技大学 一种异聚三炔类交叉共轭聚合物、其制备和应用
CN114195709A (zh) * 2021-11-10 2022-03-18 华南理工大学 一类星型非掺杂小分子空穴传输材料的合成方法及其应用
CN114716469A (zh) * 2022-03-10 2022-07-08 中国科学院宁波材料技术与工程研究所 一种无掺杂有机小分子空穴传输材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125467A (ja) * 1996-08-30 1998-05-15 Mitsui Chem Inc 有機電界発光素子
JP2001043979A (ja) * 2000-01-01 2001-02-16 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用正孔輸送材料
CN1327468A (zh) * 1999-09-30 2001-12-19 出光兴产株式会社 有机电致发光器件
US20020022151A1 (en) * 2000-07-25 2002-02-21 Hitoshi Ishikawa Organic electroluminescent device
JP2004315545A (ja) * 2003-02-28 2004-11-11 Chiba Univ 金属光沢を有する有機着色料及びその使用
WO2015161989A1 (en) * 2014-04-22 2015-10-29 Basf Se Hole-transport materials for organic solar cells or organic optical sensors
JP2017092336A (ja) * 2015-11-13 2017-05-25 三菱製紙株式会社 全固体型の光電変換素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125467A (ja) * 1996-08-30 1998-05-15 Mitsui Chem Inc 有機電界発光素子
CN1327468A (zh) * 1999-09-30 2001-12-19 出光兴产株式会社 有机电致发光器件
JP2001043979A (ja) * 2000-01-01 2001-02-16 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用正孔輸送材料
US20020022151A1 (en) * 2000-07-25 2002-02-21 Hitoshi Ishikawa Organic electroluminescent device
JP2004315545A (ja) * 2003-02-28 2004-11-11 Chiba Univ 金属光沢を有する有機着色料及びその使用
WO2015161989A1 (en) * 2014-04-22 2015-10-29 Basf Se Hole-transport materials for organic solar cells or organic optical sensors
JP2017092336A (ja) * 2015-11-13 2017-05-25 三菱製紙株式会社 全固体型の光電変換素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019094A (zh) * 2019-12-06 2020-04-17 华中科技大学 一种异聚三炔类交叉共轭聚合物、其制备和应用
CN111019094B (zh) * 2019-12-06 2020-10-30 华中科技大学 一种异聚三炔类交叉共轭聚合物、其制备和应用
CN114195709A (zh) * 2021-11-10 2022-03-18 华南理工大学 一类星型非掺杂小分子空穴传输材料的合成方法及其应用
CN114716469A (zh) * 2022-03-10 2022-07-08 中国科学院宁波材料技术与工程研究所 一种无掺杂有机小分子空穴传输材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108675941B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
Grisorio et al. Molecular tailoring of phenothiazine-based hole-transporting materials for high-performing perovskite solar cells
CN108864108B (zh) 一种稠环化合物及其制备方法和用途
EP2614047B1 (en) Compounds for organic photovoltaic devices
Liu et al. Anthracene–arylamine hole transporting materials for perovskite solar cells
CN108912140A (zh) 一种不对称a-d-a型共轭小分子及其中间体和应用
CN108530454B (zh) 一种稠合多环化合物及其制备方法和用途
CN108675941A (zh) 一种基于二氰基荧蒽的非掺杂空穴传输材料
CN102229565A (zh) 螺芴二苯并吖啶类有机半导体材料及其制备和应用方法
CN110845543A (zh) 一种有机铱金属配合物及其制备方法和有机电致发光器件
Zhang et al. Star-shaped carbazole-based BODIPY derivatives with improved hole transportation and near-infrared absorption for small-molecule organic solar cells with high open-circuit voltages
CN110903276A (zh) 有机化合物及有机电致发光器件
Lu et al. Triarylboryl-substituted carbazoles as bipolar host materials for efficient green phosphorescent organic light-emitting devices
CN112979687A (zh) 一种热活化延迟荧光材料及其制备方法和应用
CN105860032B (zh) 一种含2,9-二烷基-6-烷氧基菲啶单元的有机半导体材料及其制备方法与应用
CN108203428A (zh) 一种以咔唑为核心的化合物及其应用
CN105503736B (zh) 一种含萘[1,2]并咪唑的n-型化合物及制备与应用
CN113277972B (zh) 基于二苯胺取代咔唑芴杂化的空穴传输材料合成及其在钙钛矿太阳能电池中的应用
CN110156964A (zh) 一类含3,4-二氰基噻吩的p-型共轭聚合物及其制备方法与应用
CN109796449A (zh) 一种以氮杂苯为核心的化合物及其在有机电致发光器件上的应用
CN109776769B (zh) 一种基于噻吩、苝二酰亚胺和异靛蓝单元的三元共聚物及其制备方法
CN107226811A (zh) 一种以二联二苯并五元杂环为骨架的有机化合物及其在oled上的应用
CN111484443A (zh) 基于苯胺基咔唑的空穴传输材料及其应用
CN111138389A (zh) 以呋喃衍生物为π桥的脱氢枞酸三芳胺基D-π-A型化合物及其合成方法
CN114621276B (zh) 一种苯并噻二唑硼氮衍生物及其应用
CN112442037A (zh) 一种发光材料及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant