CN108658121A - 一种实现氧化锌纳米线阵列梯度掺杂的方法 - Google Patents

一种实现氧化锌纳米线阵列梯度掺杂的方法 Download PDF

Info

Publication number
CN108658121A
CN108658121A CN201810320695.XA CN201810320695A CN108658121A CN 108658121 A CN108658121 A CN 108658121A CN 201810320695 A CN201810320695 A CN 201810320695A CN 108658121 A CN108658121 A CN 108658121A
Authority
CN
China
Prior art keywords
zinc oxide
wire array
nano
doping
oxide nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810320695.XA
Other languages
English (en)
Other versions
CN108658121B (zh
Inventor
张翔晖
苏明明
娄猛
李岳彬
顾豪爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201810320695.XA priority Critical patent/CN108658121B/zh
Publication of CN108658121A publication Critical patent/CN108658121A/zh
Application granted granted Critical
Publication of CN108658121B publication Critical patent/CN108658121B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • C01G9/03Processes of production using dry methods, e.g. vapour phase processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer

Abstract

本发明公开一种实现氧化锌纳米线阵列梯度掺杂的方法,包括:采用化学气相沉积法或液相合成法制成纯氧化锌纳米线阵列;将掺杂源蒸镀在纯氧化锌纳米线阵列上,制得掺杂氧化锌纳米线阵列;将蒸镀掺杂源后的氧化锌纳米线阵列,放置在设定的高温环境中,使被蒸镀的掺杂源与氧化锌发生固相扩散,实现纳米线掺杂量自上而下呈梯度分布方式;通过控制高温固相扩散时间,实现纳米线的浓度梯度控制;蒸镀时间小于80s,掺杂源质量≤0.1g;之后放入管式炉进行氩气环境下的880‑950℃、1‑3h退火,退火结束后自然冷却。本发明方法实现了梯度掺杂氧化锌纳米线阵列的可靠制备,拓宽了氧化锌纳米线在电子器件,电学性能调控以及发光性能调控的领域的应用。

Description

一种实现氧化锌纳米线阵列梯度掺杂的方法
技术领域
本发明涉及一种实现氧化锌纳米线阵列梯度掺杂的方法,属纳米光电子器件技术领域。
背景技术
氧化锌(ZnO)是具有压电特性的宽禁带半导体材料,直接带隙型禁带宽度(3.34eV)、激子束缚能高达60meV,较好的抗辐射能力,以及生物相容性好等优点,在短波长紫外发光器件、压电光电子器件、太阳能电池和光电传感器等领域有着广泛应用。例如,2001年Yang等人报道了室温下氧化锌纳米线阵列的紫外激光器的研究,在380nm附近出现小于0.3nm展宽的激光发射[1]。2006年Wang等人报道了氧化锌纳米线阵列的压电效应发电机,开启了纳米能源研究的热潮[2]。氧化锌纳米线阵列是通过选择合适的基底,利用晶格匹配的外延生长手段,实现大面积氧化锌纳米线的垂直生长,具有单根氧化锌纳米线的优良理化性质,同时可以兼容传统的薄膜器件工艺,实现纳米材料的功能器件化应用。在氧化锌纳米阵列的各类光电子和半导体器件应用中,通常需要对其进行各种元素和形式的掺杂,以实现更多丰富功能,如调整禁带宽度、增加导电能力,改善光发射光谱等。氧化锌纳米线阵列是一种重要的纳米结构,因为其一维纳米结构可以作为激光器的天然谐振腔;其阵列结构可以有效的散射入射光,增加光吸收;其一维结构还可以作为优良的载流子迁移轨道,减少载流子复合;其巨大的比表面积可以有效增加其作为传感器的灵敏度等。因而近十年来人们对氧化锌纳米线阵列的制备及掺杂研究的兴趣日益剧增。因此,合适的掺杂制备工艺、实现功能丰富的ZnO纳米线阵列材料是一维氧化锌纳米功能器件应用的关键。
ZnO纳米线的掺杂手段主要有液相合成法掺杂,化学气相沉积法掺杂和固相法固溶掺杂等方法,可以实现镁(Mg)、镉(Cd)、铝(Al)、铜(Cu)、镓(Ga)和铟(In)等元素的掺杂。例如,2009年Yuan等人报道了利用化学气相沉积法制备了Ga掺杂氧化锌纳米线阵列,实现了电导率的增强[3]。王中林等人公开报道了通过液相合成法掺锑实现了氧化锌纳米线的P型掺杂(发明专利:一种锑掺杂氧化锌纳米线的制备方法,专利号CN103359772B)。夏晓川等人公开报道了一种在400~1000摄氏度退火1~5小时实现掺杂夹层机构的氧化锌薄膜(发明专利:具有掺杂夹层结构的氧化锌基发光器件,专利号CN200810050429.6)。姚超等人公布了一种利用共沉淀-煅烧一步法合成硅铝共掺杂纳米氧化锌粉体(发明专利:一种掺杂纳米氧化锌粉体及其制备方法,专利号CN201210106093.7)。尽管目前已经公开报道了多种掺杂手段实现了包括纳米线、纳米粉体和薄膜等结构在内的纳米氧化锌多种元素掺杂,但是上述手段得到的掺杂型纳米线都是均匀浓度掺杂,无法实现纳米线的径向或者轴向的梯度掺杂。梯度掺杂对调控半导体材料内部的电子浓度分布和输运过程具有非常重要意义,是半导体材料与器件应用中的重要研究内容。实现氧化锌纳米线的梯度掺杂可以使掺杂元素的浓度在纳米线内部形成一个梯度分布,有利于提高纳米内载流子的控制效率。但由于纳米线的空间尺寸非常小(通常是100nm),传统的掺杂工艺无法实现在纳米尺度空间上的梯度掺杂。因此,开发一种可靠有效的制备氧化锌纳米线梯度掺杂方法具有十分重要的意义。
参考文献:
[1]HUANG M.H.,MAO S.,FEICK H.,et al.Room-temperature ultravioletnanowire nanolasers[J].Science,2001,292(5523):1897-1899.
[2]WANG Z.L.,SONG J.Piezoelectric nanogenerators based on zinc oxidenanowire arrays[J].Science,2006,312(5771):242-246.
[3]YUAN G.D.,ZHANG W.J.,JIE J.S.,et al.Tunable n-Type Conductivityand Transport Properties of Ga-doped ZnO Nanowire Arrays[J].AdvancedMaterials,2008,20(1):168-173.
发明内容
本发明目的是针对背景技术所述问题,设计一种实现氧化锌纳米线阵列梯度掺杂的方法。本专利采用的梯度掺杂采用纳米线阵列生长、金属蒸镀和高温固相退火掺杂三步构成。利用氧化锌纳米线阵列的空间有序结构,在氧化锌纳米线阵列上蒸镀被掺杂的金属,可以实现掺杂金属源在纳米线轴向方向的梯度分布,让后再利用高温退火固相掺杂,实现氧化锌纳米线的轴向(生长方向)梯度掺杂。改变氧化锌纳米线密度(即改变纳米线之间的间距),可以实现掺杂梯度的调控。另外,改变高温退火时间,可以控制氧化锌纳米线固相掺杂的扩散过程,实现纳米线径向(直径方向)掺杂梯度控制。
本发明的技术方案是:一种实现氧化锌纳米线阵列梯度掺杂的方法,是利用纳米线的间距调控,采用三步法实现掺杂浓度的轴向和径向控制,包括如下步骤(1):
(1)氧化锌纳米线阵列的合成:合成工艺采用化学气相沉积法,或者是液相合成法,所合成的氧化锌纳米线具有垂直结构,纳米线之间具有一定的间距;
其特征在于:还包括如下步骤(2)和步骤(3):
(2)掺杂金属的蒸镀:选择一种掺杂源,将掺杂源蒸镀在氧化锌纳米线阵列上,制得掺杂氧化锌纳米线阵列;遵循氧化锌纳米线之间存在的空间间距结构,所述掺杂源的掺杂量沿氧化锌纳米线的表面自上而下呈梯度分布方式:蒸镀工艺根据掺杂源的组分形式,选择:热蒸发、电子束蒸发、或者磁控溅射工艺中的一种;
(3)高温固相掺杂:将蒸镀掺杂源后的氧化锌纳米线阵列,放置在设定的高温环境中,被蒸镀的掺杂源与氧化锌发生固相扩散过程;通过设定高温固相扩散时间,控制掺杂源在氧化锌纳米线径向上的浓度梯度。
如上所述一种实现氧化锌纳米线阵列梯度掺杂的方法,其特征在于:所述步骤(1)包括如下工艺过程:
S1:选取设定大小的导电基底,依次用乙醇、丙酮和去离子水超声清洗,之后用干燥的氮气吹干,制得沉积基片;
S2:利用电子束蒸发镀膜仪在清洗干净的沉积基片上蒸镀一层5~10nm厚的金膜,作为氧化锌纳米线生长的催化剂;
S3:按质量比1:1称取氧化锌粉和碳粉混合后研磨均匀,制成混合粉末,所述氧化锌粉纯度≥99.9%,再将混合粉末作为反应源放置于双温区管式炉的内管封闭端,将镀有金膜催化剂的沉积基片置于内管开口端;
S4:向双温区管式炉中石英管内通入氩气和氧气的混合气体,设定总流量为50~70cm3/min,其中氧气比例占混合气体的1~2%;在此气氛下将双温区管式炉中反应源所在温区的温度升至980~1050℃,沉积基片温度设置为850~900℃,然后保温20~40min,反应结束后,自然冷却至室温,制得纯氧化锌纳米线阵列。
如上所述一种实现氧化锌纳米线阵列梯度掺杂的方法,其特征在于:所述步骤(3)包括如下工艺过程:
S5:将按步骤(2)制得的掺杂氧化锌纳米线阵列放入管式炉中进行高温退火,退火方案如下:
(a)常温下对管式炉进行抽真空,当管式炉中气压降至10Pa以下时,关闭真空泵;
(b)向管式炉内通入氩气,使得管式炉内部压强与外界压强一致;
(c)重复步骤(a)和步骤(b)三次,给管式炉内部提供稳定的氩气环境;
(d)将管式炉内温度加温至880~950℃,保温1~3h后,自然冷却管式炉内温度至常温;制得梯度掺杂的氧化锌纳米线阵列。
如上所述一种实现氧化锌纳米线阵列梯度掺杂的方法,其特征在于:所述步骤(2)中,掺杂源选择为掺杂元素的金属态,或者是容易与氧化锌形成固相掺杂的氧化物;具体选择为:镓、铟、锡、铝、镉金属中的一种,或者是选择为:氧化镓、氧化铟、氧化锡、氧化铝、氧化镉中的一种;设定掺杂源的质量≤0.1g,蒸镀时间为20~80s。
如上所述一种实现氧化锌纳米线阵列梯度掺杂的方法,其特征在于:所述导电基底的尺寸设定为0.5×0.5cm。
本发明一种实现氧化锌纳米线阵列梯度掺杂的方法所依据的原理是:
1)利用氧化锌纳米线的空间分布间隔,结合常规的蒸镀工艺,就可以实现氧化锌轴向上的掺杂元素梯度分布,通过控制纳米线的密度,可以调控纳米线上掺杂元素的梯度大小和位置。2)采用控制氧化锌纳米线固相扩散时间,实现纳米线径向掺杂梯度调控。
3)步骤(2)和(3)中所述掺杂源涉及的金属或金属化合物的特征在于其与氧化锌的固相掺杂温度低于纳米氧化锌的熔点(1000℃),其中包括:镓、铟、锡、铝和镉等金属或者是这几种金属的氧化物。
本发明有益效果是:
本发明一种实现氧化锌纳米线阵列梯度掺杂的方法,在实现掺杂的基础上,通过优化实验条件,实现氧化锌纳米线自顶至底的梯度掺杂,使得氧化锌纳米线由顶至底的掺杂均匀降低,或者径向方向从外而内掺杂浓度梯度降低。采用该方法可实现梯度掺杂氧化锌纳米线阵列的可靠制备,拓宽了氧化锌纳米线在电子器件,电学性能调控以及发光性能调控的领域的应用。
附图说明
图1是本发明实施例“一种实现氧化锌纳米线阵列梯度掺杂的方法”实现镓的梯度掺杂氧化锌纳米线阵列制备流程图。
图2是图1所示各流程中单根氧化锌纳米线实现镓梯度掺杂的示意图。
图3是掺镓前后氧化锌纳米线阵列的扫描电镜图片。
图4为掺杂前的单根氧化锌纳米线的形貌图。
图5为掺镓前后的氧化锌纳米线的x射线衍射图(XRD)。
图6为镀镓40s并进行高温退火掺杂后的纳米线阵列光电子能谱(XPS)全谱表征结果。
图7为镀镓40s并进行高温退火掺杂后的纳米线阵列光电子能谱(XPS)中Ga的2p能级表征结果。
图中标记说明:图1和图2中,1—单根纯氧化锌纳米线,2—镓原子,3—实现梯度掺杂后的单根掺杂氧化锌纳米线。
具体实施方式
以下结合附图对本发明实施例作进一步说明,通过参考附图述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制,凡在本发明的精神和原则之内所做的任何修改、等同替换或改进等,均应包含在本发明的权利要求范围之内,本技术方案中未详细述及的,均为公知技术。
实施例1
参见图1~7,本发明一种实现氧化锌纳米线阵列梯度掺杂的方法实施例1,包括如下步骤:
⑴选取0.5×0.5cm的氮化镓导电基底,依次用乙醇、丙酮和去离子水超声清洗约10min,之后用干燥的氮气吹干,制得沉积基片。
⑵利用电子束蒸发镀膜仪在清洗干净的氮化镓导电基片上蒸镀一层5nm厚的金膜,作为氧化锌纳米线生长的催化剂。
⑶按质量比1:1称取氧化锌粉和碳粉混合后研磨均匀,制成混合粉末,所述氧化锌粉纯度≥99.9%,再称取0.13g混合粉末作为反应源放置于双温区管式炉的内管封闭端,将镀有金膜催化剂的沉积基片置于内管开口端,设定反应源与沉积基片之间的距离为20cm。
⑷设置实验参数,向双温区管式炉中石英管内通入氩气和氧气的混合气体,实现氧化锌纳米线阵列的制备;由于不同的管式炉所用的石英管尺寸不同,生长氧化锌纳米线阵列的参数随之发生变化。本发明实施例中,采用是36mm内径,长度120cm的石英管,典型实验参数如下:
保温时间到后,切断升温电源,双温区管式炉内自然冷却至室温,即制得生长均匀,垂直排列的纯氧化锌纳米线阵列。
⑸在手套箱中用小型程控热蒸发镀膜仪,通过热蒸发法给制得的纯氧化锌纳米线阵列蒸镀所需的梯度掺杂金属镓,所述金属镓的质量选择0.08g,蒸镀时间50s,制得掺杂氧化锌纳米线阵列。
⑹将按步骤⑸制得的掺杂金属镓的氧化锌纳米线阵列放入管式炉中进行高温退火,本发明实施例中,设定退火方案如下:
(a)常温下对管式炉进行抽真空,当管式炉中气压降至10Pa以下时,关闭真空泵;
(b)向管式炉内通入氩气,使得管式炉内部压强与外界压强一致;
(c)依次重复步骤(a)和步骤(b)三次,给管式炉内部提供稳定的氩气环境;
(d)将管式炉内温度加温至900℃,保温2h后,自然冷却管式炉内温度至常温;制得梯度掺杂的氧化锌纳米线阵列。
实施例2
本发明一种实现氧化锌纳米线阵列梯度掺杂的方法实施例2,包括如下步骤:
⑴选取0.5×0.5cm的氮化镓导电基底,依次用乙醇、丙酮和去离子水超声清洗约10min,之后用干燥的氮气吹干,制得沉积基片。
⑵利用电子束蒸发镀膜仪在清洗干净的氮化镓导电基片上蒸镀一层5nm厚的金膜,作为氧化锌纳米线生长的催化剂。
⑶按质量比1:1称取氧化锌粉和碳粉混合后研磨均匀,制成混合粉末,所述氧化锌粉纯度≥99.9%,再称取0.13g混合粉末作为反应源放置于双温区管式炉的内管封闭端,将镀有金膜催化剂的沉积基片置于内管开口端,设定反应源与沉积基片之间的距离为20cm。
⑷设置实验参数,向双温区管式炉中石英管内通入氩气和氧气的混合气体,实现氧化锌纳米线阵列的制备;由于不同的管式炉所用的石英管尺寸不同,生长氧化锌纳米线阵列的参数随之发生变化。本发明实施例中,采用是36mm内径,长度120cm的石英管,典型实验参数如下:
保温时间到后,切断升温电源,双温区管式炉内自然冷却至室温,即制得生长均匀,垂直排列的纯氧化锌纳米线阵列。
⑸在手套箱中用小型程控热蒸发镀膜仪,通过热蒸发法给制得的纯氧化锌纳米线阵列蒸镀所需的梯度掺杂金属铟,所述金属镓的质量选择0.10g,蒸镀时间60s,制得掺杂氧化锌纳米线阵列。
⑹将按步骤⑸制得的掺杂金属铟的氧化锌纳米线阵列放入管式炉中进行高温退火,本发明实施例中,设定退火方案如下:
(a)常温下对管式炉进行抽真空,当管式炉中气压降至10Pa以下时,关闭真空泵;
(b)向管式炉内通入氩气,使得管式炉内部压强与外界压强一致;
(c)依次重复步骤(a)和步骤(b)三次,给管式炉内部提供稳定的氩气环境;
(d)将管式炉内温度加温至900℃,保温2h后,自然冷却管式炉内温度至常温;制得梯度掺杂的氧化锌纳米线阵列。
优选地,实施例1或实施例2中,所述步骤⑸中选择的掺杂金属还包括:铟、锡、铝和镉等金属中的一种,或者是铟、锡、铝和镉等金属的氧化物中的一种。
参考附图3,是掺镓前后氧化锌纳米线阵列的扫描电镜图片,图中a区是镀镓0s(即未掺杂)下氧化锌纳米线阵列的扫描电镜图片。b、c、d区分别是给纯氧化锌纳米线阵列镀镓20s、40s、60s后,再进行高温退火掺杂后氧化锌纳米线阵列的扫描电镜图片。
参考附图4,为掺杂前的单根氧化锌纳米线的形貌图,插图为掺杂后的纳米线的形貌图,由图中可以看出,纳米线呈梯度掺杂状。
参考附图5,为掺镓前后的氧化锌纳米线的x射线衍射图(XRD),图中位下部的纯黑色曲线显示的是纯的氧化锌纳米线阵列的XRD图,图中位于上部的带灰度曲线显示的是镀镓40s并进行高温退火掺杂后的该纳米线阵列的XRD图。可以看出,梯度掺杂镓后,纳米线阵列的XRD图中出现了新的晶向,这是由于掺杂引起的晶格变化这可有效的提高纳米线的电导率。
本发明一种实现氧化锌纳米线阵列梯度掺杂的方法,在实现掺杂的基础上,通过优化实验条件,实现氧化锌纳米线自顶至底的梯度掺杂,使得氧化锌纳米线由顶至底的掺杂均匀降低,采用该方法可实现梯度掺杂氧化锌纳米线阵列的可靠制备,在氧化锌同质结发光,紫外光电响应等方面均有重要的应用;实现氧化锌纳米线的梯度掺杂使得氧化锌纳米线在在紫外光电探测器,光波导及发光LED方面有很大的应用前景。

Claims (4)

1.一种实现氧化锌纳米线阵列梯度掺杂的方法,是利用纳米线的间距调控,采用三步法实现掺杂浓度的轴向和径向控制,包括如下步骤(1):
(1)氧化锌纳米线阵列的合成:合成工艺采用化学气相沉积法,或者是液相合成法,所合成的氧化锌纳米线具有垂直结构,且各纳米线之间呈有一定间距结构;
其特征在于:还包括如下步骤(2)和步骤(3):
(2)掺杂金属的蒸镀:选择一种掺杂源,将掺杂源蒸镀在氧化锌纳米线阵列上,制得掺杂氧化锌纳米线阵列;遵循氧化锌纳米线之间存在的空间间距结构,所述掺杂源的掺杂量沿氧化锌纳米线的表面自上而下呈梯度分布方式:蒸镀工艺根据掺杂源的组分形式,选择:热蒸发、电子束蒸发、或者磁控溅射工艺中的一种;
(3)高温固相掺杂:将蒸镀掺杂源后的氧化锌纳米线阵列,放置在设定的高温环境中,被蒸镀的掺杂源与氧化锌发生固相扩散过程;设定高温固相扩散时间,控制掺杂源在氧化锌纳米线径向上的浓度梯度。
2.如权利要求1所述一种实现氧化锌纳米线阵列梯度掺杂的方法,其特征在于:所述步骤(1)包括如下工艺过程:
S1:选取设定大小的导电基底,依次用乙醇、丙酮和去离子水超声清洗,之后用干燥的氮气吹干,制得沉积基片;
S2:利用电子束蒸发镀膜仪在清洗干净的沉积基片上蒸镀一层5~10nm厚的金膜,作为氧化锌纳米线生长的催化剂;
S3:按质量比1:1称取氧化锌粉和碳粉混合后研磨均匀,制成混合粉末,所述氧化锌粉纯度≥99.9%,再将混合粉末作为反应源放置于双温区管式炉的内管封闭端,将镀有金膜催化剂的沉积基片置于内管开口端;
S4:向双温区管式炉中石英管内通入氩气和氧气的混合气体,设定总流量为50~70cm3/min,其中氧气比例占混合气体的1~2%;在此气氛下将双温区管式炉中反应源所在温区的温度升至980~1050℃,沉积基片温度设置为850~900℃,然后保温20~40min,反应结束后,自然冷却至室温,制得纯氧化锌纳米线阵列。
3.如权利要求1所述一种实现氧化锌纳米线阵列梯度掺杂的方法,其特征在于:所述步骤(3)包括如下工艺过程:
S5:将按步骤(2)制得的掺杂氧化锌纳米线阵列放入管式炉中进行高温退火,退火方案如下:
(a)常温下对管式炉进行抽真空,当管式炉中气压降至10Pa以下时,关闭真空泵;
(b)向管式炉内通入氩气,使得管式炉内部压强与外界压强一致;
(c)重复步骤(a)和步骤(b)三次,给管式炉内部提供稳定的氩气环境;
(d)将管式炉内温度加温至880~950℃,保温1~3h后,自然冷却管式炉内温度至常温;制得梯度掺杂的氧化锌纳米线阵列。
4.如权利要求1所述一种实现氧化锌纳米线阵列梯度掺杂的方法,其特征在于:所述步骤(2)中,掺杂源选择为掺杂元素的金属态,或者是容易与氧化锌形成固相掺杂的氧化物;具体选择为:镓、铟、锡、铝、镉金属中的一种,或者是选择为:氧化镓、氧化铟、氧化锡、氧化铝、氧化镉中的一种;设定掺杂源的质量≤0.1g,蒸镀时间为20~80s。
CN201810320695.XA 2018-04-09 2018-04-09 一种实现氧化锌纳米线阵列梯度掺杂的方法 Expired - Fee Related CN108658121B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810320695.XA CN108658121B (zh) 2018-04-09 2018-04-09 一种实现氧化锌纳米线阵列梯度掺杂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810320695.XA CN108658121B (zh) 2018-04-09 2018-04-09 一种实现氧化锌纳米线阵列梯度掺杂的方法

Publications (2)

Publication Number Publication Date
CN108658121A true CN108658121A (zh) 2018-10-16
CN108658121B CN108658121B (zh) 2020-01-14

Family

ID=63783416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810320695.XA Expired - Fee Related CN108658121B (zh) 2018-04-09 2018-04-09 一种实现氧化锌纳米线阵列梯度掺杂的方法

Country Status (1)

Country Link
CN (1) CN108658121B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382087A (zh) * 2018-11-23 2019-02-26 西南交通大学 一种二氧化锡-锡酸锌核壳纳米线及制备方法
CN109813760A (zh) * 2019-02-28 2019-05-28 江苏理工学院 一种氧化锌纳米线气体传感器及其制备方法
CN112195438A (zh) * 2020-09-10 2021-01-08 湖北大学 氮掺杂p型透明导电BeZnOS薄膜及其制备方法和应用
CN113249785A (zh) * 2021-04-27 2021-08-13 湖北大学 一种共掺杂氧化锌纳米线阵列及其制备方法、光电子器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045553A (zh) * 2007-04-06 2007-10-03 北京科技大学 一种锡掺杂氧化锌纳米线的制备方法
CN102593282A (zh) * 2012-02-09 2012-07-18 常州大学 一种ZnO纳米线阵列的掺杂方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045553A (zh) * 2007-04-06 2007-10-03 北京科技大学 一种锡掺杂氧化锌纳米线的制备方法
CN102593282A (zh) * 2012-02-09 2012-07-18 常州大学 一种ZnO纳米线阵列的掺杂方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENOL HYOUN AHN ET AL.: "Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior", 《NANOTECHNOLOGY》 *
董亚杰等: "一维纳米材料的合成、组装与器件", 《科学通报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382087A (zh) * 2018-11-23 2019-02-26 西南交通大学 一种二氧化锡-锡酸锌核壳纳米线及制备方法
CN109382087B (zh) * 2018-11-23 2021-06-25 西南交通大学 一种二氧化锡-锡酸锌核壳纳米线及制备方法
CN109813760A (zh) * 2019-02-28 2019-05-28 江苏理工学院 一种氧化锌纳米线气体传感器及其制备方法
CN112195438A (zh) * 2020-09-10 2021-01-08 湖北大学 氮掺杂p型透明导电BeZnOS薄膜及其制备方法和应用
CN113249785A (zh) * 2021-04-27 2021-08-13 湖北大学 一种共掺杂氧化锌纳米线阵列及其制备方法、光电子器件

Also Published As

Publication number Publication date
CN108658121B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
Lu et al. ZnO-based thin films synthesized by atmospheric pressure mist chemical vapor deposition
CN108658121A (zh) 一种实现氧化锌纳米线阵列梯度掺杂的方法
KR101869212B1 (ko) 페로브스카이트 필름 제작을 위한 저압 화학 증착에 기초한 시스템 및 방법
Luo et al. Fabrication of Sb2S3 thin films by magnetron sputtering and post-sulfurization/selenization for substrate structured solar cells
Shewale et al. UV photodetection properties of pulsed laser deposited Cu-doped ZnO thin film
Park et al. Characteristics of organic light emitting diodes with Al-doped ZnO anode deposited by atomic layer deposition
CN100428502C (zh) 一种a-b取向ZnO纳米线阵列的制备方法
CN110137317A (zh) 一种新型电致发光器件及其制备方法
Osali et al. Effect of Al doping on crystallography and electro-optical properties of ZnO semiconductor thin films prepared by electrospinning
Fan et al. The influence of annealing temperature on the structural, electrical and optical properties of ion beam sputtered CuInSe2 thin films
CN101164893A (zh) 一种四针状纳米硫化锌的制备方法
Hamrit et al. Realization of high transparent conductive vanadium-doped zinc oxide thin films onto flexible PEN substrates by RF-magnetron sputtering using nanopowders targets
CN103746056A (zh) 一种基于镓掺杂氧化锌纳米线阵列的波长可调节发光二极管及其制备方法
CN1258005C (zh) 一种适合分子束外延制备氧化物薄膜的方法
CN106953231A (zh) 一种实现碲化镓(GaTe)二维材料激子激光发射的方法
Gan et al. High carrier mobility tungsten-doped indium oxide films prepared by reactive plasma deposition in pure argon and post annealing
CN107021784B (zh) 一种实现p型层状碲化镓纳米片自组装纳米花的可控制备方法
CN110724922A (zh) 一种柔性衬底上晶体取向和极性可控的外延azo薄膜及其制备方法
CN107195749B (zh) 一种实现单根GaTe/ZnO异质结纳米线电泵浦发光二极管的方法
Duan et al. Structural and optical properties of (Mg, Al)-codoped ZnO nanoparticles synthesized by the autocombustion method
Kar et al. Fabrication of ZnO thin film-nanowires hybrid homojunction on silicon substrate
CN101693550B (zh) 一种生长CdO纳米线束的方法
Zhang et al. Ultraviolet Emission and Electrical Properties of Aluminum‐Doped Zinc Oxide Thin Films with Preferential C‐Axis Orientation
CN101693528A (zh) 一种生长ZnSe单晶纳米线的方法
CN111647848A (zh) 一种磁控溅射制备大面积CsPbBr3光电薄膜的方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200114

CF01 Termination of patent right due to non-payment of annual fee