CN108649264B - 一种添加缓冲层的薄膜固态电解质的制备方法 - Google Patents

一种添加缓冲层的薄膜固态电解质的制备方法 Download PDF

Info

Publication number
CN108649264B
CN108649264B CN201810461744.1A CN201810461744A CN108649264B CN 108649264 B CN108649264 B CN 108649264B CN 201810461744 A CN201810461744 A CN 201810461744A CN 108649264 B CN108649264 B CN 108649264B
Authority
CN
China
Prior art keywords
sputtering
buffer layer
thin film
target material
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810461744.1A
Other languages
English (en)
Other versions
CN108649264A (zh
Inventor
薛文东
白立雄
王兴宇
王玉田
胡凯
戎马屹飞
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201810461744.1A priority Critical patent/CN108649264B/zh
Publication of CN108649264A publication Critical patent/CN108649264A/zh
Application granted granted Critical
Publication of CN108649264B publication Critical patent/CN108649264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于锂离子电池领域,涉及到一种添加缓冲层的新型薄膜固态电解质的制备方法。其特征是在LiPON薄膜表面添加缓冲层来改善LiPON薄膜的界面性能。LiPON薄膜的制备是利用磁控溅射设备,靶材选择为Li3PO4(纯度为99.9%)靶材;打开磁控溅射设备,安装靶材与基片,关闭溅射室,将其抽至7×10‑4Pa的高真空,然后通入氮气,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为10h。LiSiPON缓冲层的制备是选择Li3PO4‑Li3SiO3(纯度为99.9%)靶材,将溅射室抽至7×10‑4Pa的高真空,然后通入工作气体,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为1h。本发明可以改善LiPON固态电解质的水解还原问题,得到具有稳定界面结构的固态薄膜电解质。

Description

一种添加缓冲层的薄膜固态电解质的制备方法
技术领域
本发明涉及锂离子电池领域,尤其涉及全固态电池的制备,特别是一种快离子导体无机固态薄膜电解质的制备。
背景技术
电池的更新换代过程中,其性能在不断提升,但是电解液泄露、电池体积过大以及电池容量不够高等问题仍然存在。1992年,美国橡树岭国家实验室通过射频磁控溅射方式制备得到LiPON固态电解质薄膜,这使得固态电解质代替液体电解质成为可能。
全固态锂离子电池的优势在于体型小、安全性高、循环性能好、稳定性高且易于制作在不同基底上。
目前,关于全固态锂离子电池的研究主要集中在新的成膜技术研究、新的电池结构研究、新型阴阳极薄膜研究以及新型高离子电导率固态电解质的研究等诸多方面。现有方法获得薄膜制备效率低下、界面性能较难控制,严重阻碍了薄膜锂离子电池的发展。所以,改进LiPON电解质膜的制备技术,开发新型固态电解质薄膜是固态薄膜锂电池领域的重要课题。
发明内容
本发明主要针对现有LiPON薄膜在潮湿环境中容易水化问题,影响离子电导率,以及电池容量问题。提供在薄膜电解质表面添加缓冲层的解决方法。
本发明的基本构思主要是以Li3PO4和Li3PO4-Li2SiO3作为靶材,采用磁控溅射的办法溅射制备具有缓冲层的LiPON固态电解质薄膜,改善薄膜水化问题,提高薄膜电解质的离子电导率。
一种添加缓冲层的薄膜固态电解质的制备方法,其特征在于在LiPON薄膜表面添加缓冲层来改善LiPON薄膜的界面性能,制备步骤如下:
(1)LiPON薄膜的制备:利用磁控溅射设备,靶材选择为Li3PO4(纯度为99.9%)靶材;打开磁控溅射设备,安装靶材与基片,关闭溅射室,将其抽至7×10-4Pa的高真空,然后通入氮气,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为10h;
(2)LiSiPON缓冲层的制备:选择Li3PO4-Li3SiO3(纯度为99.9%)靶材,将溅射室抽至7×10-4Pa的高真空,然后通入工作气体,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为1h。
进一步地,所述靶材的厚度为3mm,直径为76.2mm。
进一步地,步骤(1)中所述氮气气体流量设置为80sccm。
进一步地,步骤(1)中所述制备的LiPON薄膜的厚度为1-2μm。
进一步地,步骤(2)中所述缓冲层的溅射过程中工作气体流量设置为40sccm。
进一步地,步骤(2)中缓冲层的溅射过程中通入工作气体为氮气和氩气的混合气体,其比例分别为4-1:0-3。
进一步地,步骤(2)中所述制备的LiSiPON缓冲层的厚度为0.1-0.3μm。
根据上述方法制备的全固态薄膜电解质与现有薄膜相比具有以下优点:
硅掺杂可以有效改善薄膜电解质的潮湿环境中的水解还原问题,利用硅掺杂的LiSiPON薄膜作为缓冲层,可以有效改善电解质薄膜的界面性能,稳定全固态薄膜电池结构。
具体实施方式
实施例一
1)第一步磁控溅射LiPON薄膜,靶材选择为Li3PO4靶材。打开磁控溅射设备,安装靶材与基片,关闭溅射室,将其抽至7×10-4Pa的高真空,然后通入氮气,气体流量设置为80sccm,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为10h.
2)第二步磁控溅射LiSiPON缓冲层,选择Li3PO4-Li3SiO3靶材,将溅射室抽至7×10-4Pa的高真空,然后通入工作气体,比例为4:0的氮氩混合气体,气体流量设置为40sccm,工作压强调整为1.5Pa,溅射功率设置为180W。溅射时间为1-3h。
实施例二
1)第一步磁控溅射LiPON薄膜,靶材选择为Li3PO4靶材。打开磁控溅射设备,安装靶材与基片,关闭溅射室,将其抽至7×10-4Pa的高真空,然后通入氮气,气体流量设置为80sccm,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为10h.
2)第二步磁控溅射LiSiPON缓冲层,选择Li3PO4-Li2SiO3靶材,将溅射室抽至7×10-4Pa的高真空,然后通入工作气体,比例为3:1的氮氩混合气体,气体流量设置为40sccm,工作压强调整为1.5Pa,溅射功率设置为180W。溅射时间为1-3h。
实施例三
1)第一步磁控溅射LiPON薄膜,靶材选择为Li3PO4靶材。打开磁控溅射设备,安装靶材与基片,关闭溅射室,将其抽至7×10-4Pa的高真空,然后通入氮气,气体流量设置为80sccm,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为10h.
2)第二步磁控溅射LiSiPON缓冲层,选择Li3PO4-Li2SiO3靶材,将溅射室抽至7×10-4Pa的高真空,然后通入工作气体,比例为2:2的氮氩混合气体,气体流量设置为40sccm,工作压强调整为1.5Pa,溅射功率设置为180W。溅射时间为1-3h。
实施例四
1)第一步磁控溅射LiPON薄膜,靶材选择为Li3PO4靶材。打开磁控溅射设备,安装靶材与基片,关闭溅射室,将其抽至7×10-4Pa的高真空,然后通入氮气,气体流量设置为80sccm,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为10h.
2)第二步磁控溅射LiSiPON缓冲层,选择Li3PO4-Li2SiO3靶材,将溅射室抽至7×10-4Pa的高真空,然后通入工作气体,比例为1:3的氮氩混合气体,气体流量设置为40sccm,工作压强调整为1.5Pa,溅射功率设置为180W。溅射时间为1-3h。
本具体实施例仅仅是对本发明的解释,并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都本发明的保护范围。

Claims (5)

1.一种添加缓冲层的薄膜固态电解质的制备方法,其特征在于在LiPON薄膜表面添加缓冲层来改善LiPON薄膜的界面性能,制备步骤如下:
(1)LiPON薄膜的制备:利用磁控溅射设备,靶材选择为纯度为99.9%的Li3PO4靶材;打开磁控溅射设备,安装靶材与基片,关闭溅射室,将其抽至7×10-4Pa的高真空,然后通入氮气,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为10h;
(2)LiSiPON缓冲层的制备:选择纯度为99.9%的Li3PO4-Li3SiO3靶材,将溅射室抽至7×10-4Pa的高真空,然后通入工作气体,工作压强调整为1.5Pa,溅射功率设置为180W,溅射时间为1h;
步骤(1)中所述制备的LiPON薄膜的厚度为1-2μm;
步骤(2)中所述制备的LiSiPON缓冲层的厚度为0.1-0.3μm。
2.根据权利要求1所述的添加缓冲层的薄膜固态电解质的制备方法,其特征在于所述靶材的厚度为3mm,直径为76.2mm。
3.根据权利要求1所述的添加缓冲层的薄膜固态电解质的制备方法,其特征在于步骤(1)中所述氮气气体流量设置为80sccm。
4.根据权利要求1所述的添加缓冲层的薄膜固态电解质的制备方法,其特征在于步骤(2)中所述缓冲层的溅射过程中工作气体流量设置为40sccm。
5.根据权利要求1所述的添加缓冲层的薄膜固态电解质的制备方法,其特征在于步骤(2)中缓冲层的溅射过程中通入工作气体为氮气和氩气的混合气体,其比例分别为4-1:0-3。
CN201810461744.1A 2018-05-15 2018-05-15 一种添加缓冲层的薄膜固态电解质的制备方法 Active CN108649264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810461744.1A CN108649264B (zh) 2018-05-15 2018-05-15 一种添加缓冲层的薄膜固态电解质的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810461744.1A CN108649264B (zh) 2018-05-15 2018-05-15 一种添加缓冲层的薄膜固态电解质的制备方法

Publications (2)

Publication Number Publication Date
CN108649264A CN108649264A (zh) 2018-10-12
CN108649264B true CN108649264B (zh) 2020-07-31

Family

ID=63755713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810461744.1A Active CN108649264B (zh) 2018-05-15 2018-05-15 一种添加缓冲层的薄膜固态电解质的制备方法

Country Status (1)

Country Link
CN (1) CN108649264B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120547B (zh) * 2019-05-20 2021-03-09 河南固锂电技术有限公司 用于全固态锂离子电池电解质膜的制备方法及电解质膜
CN111430787B (zh) * 2020-03-03 2022-03-15 桂林电子科技大学 复合薄膜固体电解质及其制备方法与应用
CN112126905A (zh) * 2020-09-25 2020-12-25 桂林电子科技大学 一种多源磁控溅射沉积系统
CN115954467B (zh) * 2023-03-15 2023-05-16 成都工业学院 一种锂金属负极保护层及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652324B1 (ko) * 2003-06-27 2006-11-30 마쯔시다덴기산교 가부시키가이샤 고체전해질 및 그것을 이용한 전고체전지
US7211351B2 (en) * 2003-10-16 2007-05-01 Cymbet Corporation Lithium/air batteries with LiPON as separator and protective barrier and method
CN101267057A (zh) * 2008-05-08 2008-09-17 复旦大学 高比能可充式全固态锂空气电池
EP2472663A1 (en) * 2009-10-02 2012-07-04 Sumitomo Electric Industries, Ltd. Solid-electrolyte battery

Also Published As

Publication number Publication date
CN108649264A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
CN108649264B (zh) 一种添加缓冲层的薄膜固态电解质的制备方法
CN110265709B (zh) 表面包覆改性的锂镧锆氧基固体电解质材料及其制备方法和应用
CN112838264A (zh) 一种固体电解质材料及其制备方法和固态锂电池
CN107732288A (zh) 用于超低温放电的聚合物锂离子电池及其制备方法
Zhang et al. Thickness-dependent beneficial effect of the ZnO layer on tailoring the Li/Li7La3Zr2O12 interface
CN109686928B (zh) 一种应用于二次电池的碳硅复合负极材料的制备方法
CN111453713A (zh) 一种氧化亚硅/碳材料及其制备方法和应用
CN107863493A (zh) 一种锂电池负极极片的制备方法
KR20170051739A (ko) 보론이 도핑된 실리콘 옥사이드계 음극활물질과 그 제조방법 및 이를 이용한 리튬이차전지
CN109546076A (zh) 一种三明治结构型锂硫电池正极片的制备方法
CN111916680A (zh) 氟化聚合物修饰的电池电极的制备方法及在电池领域中的应用
CN108134132A (zh) 一种动力锂电池用微胶囊薄膜陶瓷固体电解质及制备方法
CN108390030A (zh) 一种面向SiO2/C负极的表面修饰方法
TWI620370B (zh) 全固態電池、固態電解質薄膜及製造方法
CN113224378B (zh) 一种锂电池、固态电解质及其制备方法和应用
CN115275363A (zh) 全固态薄膜锂离子电池及其制备方法
CN112968178B (zh) 一种锂负极及其制备方法、锂离子电池
CN103215554B (zh) BiFeO3钠离子电池阳极材料的制备方法
CN103199240A (zh) γ-Fe2O3钠离子电池阳极材料的制备方法
CN116682960A (zh) 透明全固态薄膜锂离子电池及其制备方法
KR20130021620A (ko) 산화아연 타겟 제조방법 및 이에 의해 제조된 산화아연 타겟
CN111105933B (zh) 一种高致密性、耐酸耐氧化的固态电容碳箔生产工艺
CN112928237A (zh) 一种硅氧复合材料、其制备方法和在电池中的应用
Shi et al. Solid electrolyte interphase in lithium-based batteries
CN110783557A (zh) 一种高性能硅基薄膜的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant