CN108636419A - 一种钒酸铋-镁铁氧体复合光催化剂、制备方法及其应用 - Google Patents

一种钒酸铋-镁铁氧体复合光催化剂、制备方法及其应用 Download PDF

Info

Publication number
CN108636419A
CN108636419A CN201810208029.7A CN201810208029A CN108636419A CN 108636419 A CN108636419 A CN 108636419A CN 201810208029 A CN201810208029 A CN 201810208029A CN 108636419 A CN108636419 A CN 108636419A
Authority
CN
China
Prior art keywords
pucherite
mgfe
magnesium ferrite
bivo
ferrite composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810208029.7A
Other languages
English (en)
Inventor
马爱琼
马孝瑜
高云琴
张由子
侯星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN201810208029.7A priority Critical patent/CN108636419A/zh
Publication of CN108636419A publication Critical patent/CN108636419A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钒酸铋‑镁铁氧体复合光催化剂、制备方法及其应用,所述光催化剂包括m‑BiVO4基体,在所述m‑BiVO4基体表面分散有MgFe2O4;所述MgFe2O4与所述m‑BiVO4基体的质量比为5~20︰95~80。采用低温自蔓延溶胶‑凝胶法结合煅烧法制备出单斜钒酸铋/镁铁氧体复合光催化材料,并利用模拟可见光对制备出的材料进行光催化性能的测试,通过降解生物难降解有机污染物亚甲基橙来证明该材料优越的光催化性能。该材料属于无机光催化材料,光催化活性高,在环境保护方面有很好的应用前景。该方法具有单斜钒酸铋形貌可控,尖晶石型镁铁氧体与单斜钒酸铋复合良好,分散均匀,形成了有效的p‑n异质结的优点。

Description

一种钒酸铋-镁铁氧体复合光催化剂、制备方法及其应用
技术领域
本发明属无机材料制备技术领域,涉及一种光催化剂、制备方法及其应用,特指一种钒酸铋-镁铁氧体复合光催化剂、制备方法及其应用。
背景技术
近年来,半导体光催化在水污染处理上表现突出,一直处于环境治理研究的前沿。它的优点是效率高、成本低、选择性广泛、反应温度需求低、能源需求小以及对污染物降解彻底等[1-4]
其中,单斜钒酸铋(m-BiVO4)凭借其禁带宽度较窄(2.45eV),化学稳定性好、制备成本低、可直接利用可见光、无毒环保等显著优点而受到广泛关注[5],在光催化氧化降解有机染料废水等方面具有广阔的应用前景。
但是,单斜钒酸铋光催化剂存在两个主要缺陷:一是光生电子和空穴容易复合导致其光催化效率低,二是分离回收困难使其应用受到限制。制备具有合适能带结构的单斜钒酸铋基复合光催化材料,可以提高单斜钒酸铋的光催化性能。镁铁氧体(MgFe2O4)具有和单斜钒酸铋匹配的能带结构,具有磁性,容易分离回收。因此我们提出一种单斜钒酸铋/镁铁氧体复合光催化材料的制备方法,旨在改善单斜钒酸铋的光催化性能。
参考文献:
[1]王健.ZnO纳米材料及核壳结构的制备和光催化性能研究[D].中国科学院大学,2016,06.
[2]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2005,8.
[3]Fujishima,Hondak.Electrochemical photolysis of water at asemiconductor electrode[J].Nature,1972,(238):37-38.
[4]姜妍彦,李景刚,宁桂玲等.尖晶石型CuAl2O4纳米粉体的制备及其可见光催化性能[J].硅酸盐学报,2006,34(9):1084-1087.
[5]Chongfei Yu,Shuying Dong,Jin Zhao,etal.Preparation andcharacterization of sphere-shaped BiVO4/reduced graphene oxide photocatalystfor an augmented natural sunlight photocatalytic activity[J].Journal ofAlloys and Compounds,2016,677:219-227.
发明内容
本发明的第一个目的在于提出一种钒酸铋-镁铁氧体复合光催化剂,能够改善单斜钒酸铋的光催化性能。
本发明的第二个目的是提供一种钒酸铋-镁铁氧体复合光催化剂的制备方法,具有合成简单、降解效率高的特点。
本发明的第三个目的是提供一种钒酸铋-镁铁氧体复合光催化剂用于光催化降解有机染料的应用。
为达到上述目的,本发明采用的技术方案是:
一种钒酸铋-镁铁氧体复合光催化剂,所述光催化剂包括m-BiVO4基体,在所述m-BiVO4基体表面分散有MgFe2O4
所述MgFe2O4与所述m-BiVO4基体的质量比为5~20︰95~80。
可选的,所述光催化剂的制备方法包括:将MgFe2O4与m-BiVO4基体经过溶胶-凝胶原位负载法得到混合凝胶,混合凝胶经干燥固化得到前驱体粉末,前驱体粉末再经高温煅烧即得。
可选的,所述的溶胶-凝胶原位负载法为将m-BiVO4基体制备成前驱体溶液,MgFe2O4分散在前驱体溶液中得到混合凝胶。
可选的,将MgFe2O4超声分散分散在前驱体溶液中,超声分散的时间为20~45min;
所述的混合凝胶经干燥固化得到前驱体粉末的干燥温度为60~90℃;
所述的高温煅烧的煅烧温度为450~600℃,煅烧时间为3~6h。
一种钒酸铋-镁铁氧体复合光催化剂制备方法,包括将MgFe2O4纳米粉体与m-BiVO4基体经过溶胶-凝胶原位负载法得到混合凝胶,混合凝胶经干燥固化得到前驱体粉末,前驱体粉末再经高温煅烧即得。
可选的,所述的溶胶-凝胶原位负载法为将m-BiVO4基体制备成前驱体溶液,MgFe2O4纳米粉体分散负载在前驱体溶液中得到混合凝胶;
所述的混合凝胶经干燥固化得到前驱体粉末;
将MgFe2O4超声分散在前驱体溶液中,超声分散的时间为20~45min;
所述的混合凝胶经干燥固化得到前驱体粉末的干燥温度为60~90℃;
所述的高温煅烧的煅烧温度为450~600℃,煅烧时间为3~6h。
可选的,所述的前驱体液的制备采用溶胶-凝胶法,前驱体溶液的制备原料为硝酸铋、柠檬酸、乙二醇水溶液、偏钒酸铵;
硝酸铋、柠檬酸、乙二醇水溶液的用量比为5.5~11.5g︰15~25g︰20~50ml;
偏钒酸铵与乙二醇溶液的用量比为1.05~4.35g︰20~50ml。
乙二醇水溶液中的乙二醇与水的体积比为1︰2。
可选的,所述的MgFe2O4纳米粉体采用自蔓延溶胶-凝胶结合高温煅烧法制备得到,包括将硝酸铁、硝酸镁、乙二醇水溶液和柠檬酸原料混合后得到凝胶,凝胶采用低温自蔓延燃烧得到MgFe2O4前驱体粉末,将所得前驱体粉末煅烧得到MgFe2O4纳米粉体;
硝酸铁、硝酸镁与乙二醇溶液的用量比为18.05~27.45g︰3.98~11.35g︰10~30ml;
柠檬酸与乙二醇溶液的用量比为40.13~60.65g︰30~50ml;
乙二醇水溶液中的乙二醇与水的体积比为1︰2。
可选的,所述低温自蔓延燃烧的温度为160~220℃;
所述煅烧的温度为700~900℃,升温速率为2.5~5℃/min,保温时间为5h。
所述的钒酸铋-镁铁氧体复合光催化剂或者所述的钒酸铋-镁铁氧体复合光催化剂制备方法制备得到的钒酸铋-镁铁氧体复合光催化剂用于光催化降解有机染料的应用。
本发明的技术效果为:
(1)本发明描述了一种高分散的可回收的单斜钒酸铋/镁铁氧体复合光催化材料及其应用,m-BiVO4是一种性能优异的可见光催化剂,MgFe2O4纳米粉体的引入体现了其与m-BiVO4的半导体耦合作用,可以有效促进光生电子空穴分离,提高可见光催化效率,使得本发明制备的高分散复合光催化材料在短时间内即可达到很高的催化效率,最高可达78%。同时MgFe2O4纳米粉体具有磁性,方便粉体分离回收利用,降低了其使用成本。
(2)在制备MgFe2O4纳米粉体与m-BiVO4前驱体液的过程中,由于采用了自蔓延溶胶-凝胶法,并以乙二醇与去离子水作为复合分散剂,使得所制备的粉体分散性更好,纯度更高。
(3)在制备单斜钒酸铋/镁铁氧体复合光催化材料时,由于采用了原位负载复合结合煅烧法,使得MgFe2O4纳米粉体在m-BiVO4前驱体液中分散均匀,复合良好,光催化效果更佳。
附图说明
图1为实施例1所制备MgFe2O4样品的XRD图谱;
图2为实施例1所制备单斜钒酸铋镁铁氧体复合光催化材料的XRD图谱;
图3为实施例1所制备MgFe2O4样品的SEM与EDS分析图;
图4为实施例1所制备的单斜钒酸铋/镁铁氧体复合光催化材料对亚甲基橙的光催化5次循环实验;
图5为实施例1~4所制备的单斜钒酸铋/镁铁氧体合光催化材料光催化降解亚甲基橙的降解效果图;
图6为本发明的单斜钒酸铋/镁铁氧体复合光催化材料光催化降解亚甲基橙的机理示意图。
具体实施方式
本发明所述的有机染料包括亚甲基橙、亚甲基蓝、罗丹明B等常见的有机染料。
下面结合具体实施实例对本发明做进一步说明:
实施例1:
步骤1:溶胶-凝胶技术制备m-BiVO4前驱体液:按乙二醇与去离子水的体积比为1︰2配制乙二醇溶液,称取五水合硝酸铋9.7g、柠檬酸15.37g,溶入25ml乙二醇水溶液中,不断搅拌得到溶液A;称取偏钒酸铵2.34g溶入溶入25ml乙二醇水溶液中不断搅拌得到溶液B。在持续搅拌的条件下将溶液B以30滴/分的速率逐滴加入溶液A中,并用氨水调节pH值等于9,水浴加热搅拌蒸发部分溶剂得到m-BiVO4前驱体液。
步骤2:自蔓延溶胶-凝胶结合高温煅烧法制备MgFe2O4纳米粉体。按乙二醇与去离子水的体积比为1︰2配制乙二醇溶液,称取将九水合硝酸铁20.2g、六水合硝酸镁6.41g溶于25ml乙二醇水溶液中,溶解搅拌均匀,得到溶液A;称取46.65g一水柠檬酸溶于35ml乙二醇水溶液中搅拌均匀得到溶液B,在持续搅拌条件下将溶液B以30滴/分的速率逐滴加入溶液A中,用氨水调节pH值等于2,静置陈化得到湿凝胶,将湿凝胶置于恒温干燥箱中于200℃低温自蔓延燃烧得到MgFe2O4前驱体粉末,将所得前驱体粉末在高温炉内以升温速率4℃/min升至900℃煅烧5h后随炉自然冷却得到MgFe2O4纳米粉体。
步骤3:制备单斜钒酸铋/镁铁氧体复合光催化材料:将步骤2中所制备的MgFe2O4纳米粉体按15wt%的加入量加入到步骤1所制备的m-BiVO4前驱体液中,超声振动分散30min在80℃恒温搅拌均匀得到凝胶。置于恒温干燥箱中于200℃低温自蔓延燃烧得到前驱体粉末。将前驱体粉末置于高温炉内550℃煅烧4h后冷却至室温,洗涤、烘干得到单斜钒酸铋/镁铁氧体复合光催化材料。
步骤4:称取0.15g步骤3中的单斜钒酸铋/镁铁氧体复合光催化材料加入到100ml浓度为10-5mol/L的亚甲基橙溶液中,磁力搅拌器遮光搅拌30min达到吸附-脱附平衡,打开氙光灯源进行光催化反应,每20min取样一次,每次取10ml离心分离得上清液,用紫外可见分光光度计测量上清液的吸光度,通过吸光度换算为浓度变化,120min后得到本实施例所制备的材料对亚甲基橙的降解率为78%。
实验结果:
图1为实施例1所制备的镁铁氧体的XRD衍射图谱,从图中可以看出MgFe2O4的特征衍射峰2θ=35.47°、30.12°、62.60°与标准卡片(JCPDS No.36-0398)相对应,说明镁铁氧体成功制备。
图2为实施例1所制备的单斜钒酸铋/镁铁氧体复合光催化材料XRD衍射图谱,从图中可以看出,m-BiVO4的特征衍射峰位于2θ=28.97°、30.53°、18.99°,相应的衍射晶面为(121),(040),(011),与单斜钒酸铋标准卡片(m-BiVO4,JCPDS No.14-0688)相对应。由于MgFe2O4的加入量较少,因此,其衍射峰强度相对较弱,但是,其三个特征衍射峰位置没有变化,这说明,MgFe2O4与m-BiVO4成功复合,单斜钒酸铋镁铁氧体复合光催化材料制备成功。
图3为实施例1所制备的MgFe2O4纳米粉体的SEM与EDS分析图,由图可知,所制备的MgFe2O4纳米粉体晶型发育较完整,能谱分析表明,其原子个数比符合MgFe2O4的化学计量关系。
实施例1中的单斜钒酸铋/镁铁氧体复合光催化材料循环使用效果如图4所示。由图可见,催化剂在经过5次重复使用后,其催化活性几乎没有减退,一方面说明催化剂具有很好的稳定性,另一方面说明此复合光催化材料在工业废水等污染治理方面有一定的潜在应用价值。
实施例2:
步骤1:溶胶-凝胶技术制备m-BiVO4前驱体液:按乙二醇与去离子水的体积比为1︰2.5配制乙二醇溶液,称取五水合硝酸铋6.7g、柠檬酸15g溶入20ml乙二醇水溶液中,不断搅拌得到溶液A;偏钒酸铵1.05g溶入溶入20ml乙二醇水溶液中不断搅拌得到溶液B。在持续搅拌的条件下将溶液B以30滴/分的速率逐滴加入溶液A中,并用氨水调节pH值等于7,水浴加热搅拌蒸发部分溶剂得到m-BiVO4前驱体液。
步骤2:自蔓延溶胶-凝胶结合高温煅烧法制备MgFe2O4纳米粉体。按乙二醇与去离子水的体积比为1︰2配制乙二醇溶液,称取将九水合硝酸铁18.05g、六水合硝酸镁3.98g溶于10ml乙二醇水溶液中,溶解搅拌均匀,得到溶液A;称取40.13g一水柠檬酸溶于30ml乙二醇水溶液中搅拌均匀得到溶液B,在持续搅拌条件下将溶液B以20滴/分的速率逐滴加入溶液A中,用氨水调节pH值等于3,静置陈化得到湿凝胶,将湿凝胶置于恒温干燥箱中于160℃低温自蔓延燃烧得到CaFe2O4前驱体粉末,将所得前驱体粉末在高温炉内以升温速率5℃/min升至700℃煅烧4h后随炉自然冷却得到MgFe2O4纳米粉体。
步骤3:制备单斜钒酸铋/镁铁氧体复合光催化材料:将步骤2中所制备的MgFe2O4纳米粉体按5wt%的加入量加入到步骤1所制备的m-BiVO4前驱体液中,超声振动分散20min在60℃恒温搅拌均匀得到凝胶。置于恒温干燥箱中于180℃低温自蔓延燃烧得到前驱体粉末。将前驱体粉末置于高温炉内450℃煅烧3h后冷却至室温,洗涤、烘干得到单斜钒酸铋/镁铁氧体复合光催化材料。
步骤4:称取0.15g步骤3中的单斜钒酸铋/镁铁氧体复合光催化材料加入到100ml浓度为10-5mol/L的亚甲基橙溶液中,磁力搅拌器遮光搅拌30min达到吸附-脱附平衡,打开氙光灯源进行光催化反应,每20min取样一次,每次取10ml离心分离得上清液,用紫外可见分光光度计测量上清液的吸光度,通过吸光度换算为浓度变化,120min后得到本实施例所制备的材料对亚甲基橙的降解率为53%。
实施例3:
步骤1:溶胶-凝胶技术制备m-BiVO4前驱体液:按乙二醇与去离子水的体积比为1︰2配制乙二醇溶液,称取五水合硝酸铋8.54g、柠檬酸19g,溶入35ml乙二醇水溶液中,不断搅拌得到溶液A;偏钒酸铵3.52g溶入溶入35ml乙二醇水溶液中不断搅拌得到溶液B。在持续搅拌的条件下将溶液B以30滴/分的速率逐滴加入溶液A中,并用氨水调节pH值等于8.5,水浴加热搅拌蒸发部分溶剂得到m-BiVO4前驱体液。
步骤2:自蔓延溶胶-凝胶结合高温煅烧法制备MgFe2O4纳米粉体。按乙二醇与去离子水的体积比为1︰2配制乙二醇溶液,称取将九水合硝酸铁22.52g、六水合硝酸镁8.36g溶于20ml乙二醇水溶液中,溶解搅拌均匀,得到溶液A;称取50.25g一水柠檬酸溶于40ml乙二醇水溶液中搅拌均匀得到溶液B,在持续搅拌条件下将溶液B以35滴/分的速率逐滴加入溶液A中,用氨水调节pH值等于4,静置陈化得到湿凝胶,将湿凝胶置于恒温干燥箱中于180℃低温自蔓延燃烧得到CaFe2O4前驱体粉末,将所得前驱体粉末在高温炉内以升温速率4℃/min升至800℃煅烧4h后随炉自然冷却得到MgFe2O4纳米粉体。
步骤3:制备单斜钒酸铋/镁铁氧体复合光催化材料:将步骤2中所制备的MgFe2O4纳米粉体按10wt%的加入量加入到步骤1所制备的m-BiVO4前驱体液中,超声振动分散35min在75℃恒温搅拌均匀得到凝胶。置于恒温干燥箱中于200℃低温自蔓延燃烧得到前驱体粉末。将前驱体粉末置于高温炉内520℃煅烧4.5h后冷却至室温,洗涤、烘干得到单斜钒酸铋/镁铁氧体复合光催化材料。
步骤4:称取0.15g步骤3中的单斜钒酸铋/镁铁氧体复合光催化材料加入到100ml浓度为10-5mol/L的亚甲基橙溶液中,磁力搅拌器遮光搅拌30min达到吸附-脱附平衡,打开氙光灯源进行光催化反应,每20min取样一次,每次取10ml离心分离得上清液,用紫外可见分光光度计测量上清液的吸光度,通过吸光度换算为浓度变化,120min后得到本实施例所制备的材料对亚甲基橙的降解率为59%。
实施例4:
步骤1:溶胶-凝胶技术制备m-BiVO4前驱体液:按乙二醇与去离子水的体积比为1︰2配制乙二醇溶液,称取五水合硝酸铋11.5g、柠檬酸23.95g溶入48ml乙二醇水溶液中,不断搅拌得到溶液A;偏钒酸铵4.34g溶入溶入45ml乙二醇水溶液中不断搅拌得到溶液B。在持续搅拌的条件下将溶液B以30滴/分的速率逐滴加入溶液A中,并用氨水调节pH值等于9.5,水浴加热搅拌蒸发部分溶剂得到m-BiVO4前驱体液。
步骤2:自蔓延溶胶-凝胶结合高温煅烧法制备MgFe2O4纳米粉体。按乙二醇与去离子水的体积比为1︰2配制乙二醇溶液,称取将九水合硝酸铁27.45g、六水合硝酸镁11.35g溶于30ml乙二醇水溶液中,溶解搅拌均匀,得到溶液A;称取58.74g一水柠檬酸溶于50ml乙二醇水溶液中搅拌均匀得到溶液B,在持续搅拌条件下将溶液B以45滴/分的速率逐滴加入溶液A中,用氨水调节pH值等于3,静置陈化得到湿凝胶,将湿凝胶置于恒温干燥箱中于200℃低温自蔓延燃烧得到CaFe2O4前驱体粉末,将所得前驱体粉末在高温炉内以升温速率3.5℃/min升至850℃煅烧4h后随炉自然冷却得到MgFe2O4纳米粉体。
步骤3:制备单斜钒酸铋镁铁氧体复合光催化材料:将步骤2中所制备的MgFe2O4纳米粉体按20wt%的加入量加入到步骤1所制备的m-BiVO4前驱体液中,超声振动分散45min在80℃恒温搅拌均匀得到凝胶。置于恒温干燥箱中于190℃低温自蔓延燃烧得到前驱体粉末。将前驱体粉末置于高温炉内580℃煅烧6h后冷却至室温,洗涤、烘干得到单斜钒酸铋/镁铁氧体复合光催化材料。
步骤4:称取0.15g步骤3中的单斜钒酸铋/镁铁氧体复合光催化材料加入到100ml浓度为10-5mol/L的亚甲基橙溶液中,磁力搅拌器遮光搅拌30min达到吸附-脱附平衡,打开氙光灯源进行光催化反应,每20min取样一次,每次取10ml离心分离得上清液,用紫外可见分光光度计测量上清液的吸光度,通过吸光度换算为浓度变化,120min后得到本实施例所制备的材料对亚甲基橙的降解率为64%。
对比结果及机理分析:
图5为实施例1~4所制备样品的光催化降解效率图。说明:在制备复合光催化材料过程中,MgFe2O4与m-BiVO4的用量比为15︰85时,所制备的复合光催化剂具有最好的催化效果,并且降解速率高,在2h内对亚甲基橙的降解率达到78%。MgFe2O4的加入量过少,体现不出MgFe2O4的优良性质,导致光生电子和空穴不能有效分离,光催化降解效果不理想;MgFe2O4加入量过多,将会包裹在m-BiVO4表面,无法发挥m-BiVO4的光催化活性,无法建立有效的异质结,使得光催化效果下降。
单斜钒酸铋/镁铁氧体复合光催化材料的催化机理如图6所示。在可见光照射下,一方面,MgFe2O4与m-BiVO4吸收可见光,其价带上的电子吸收光子获得能量跃迁到导带上;另一方面,由于CaFe2O4的导带与价带位置低于m-BiVO4,因此,光生电子受激跃迁到m-BiVO4的导带上,光生电子空穴从m-BiVO4的价带位置跃迁到MgFe2O4的价带位置,形成了有效地p-n异质结,使复合体系的电子空穴对复合几率显著降低提高光催化活性,从而对目标污染物的降解效率大幅度提高。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的前提下,本领域技术人员能够做出的任何显而易见的改进、替换或变型属于本发明的保护范围。

Claims (10)

1.一种钒酸铋-镁铁氧体复合光催化剂,其特征在于,所述光催化剂包括m-BiVO4基体,在所述m-BiVO4基体表面分散有MgFe2O4
所述MgFe2O4与所述m-BiVO4基体的质量比为5~20︰95~80。
2.根据权利要求1所述的钒酸铋-镁铁氧体复合光催化剂,其特征在于,所述光催化剂的制备方法包括:将MgFe2O4与m-BiVO4基体经过溶胶-凝胶原位负载法得到混合凝胶,混合凝胶经干燥固化得到前驱体粉末,前驱体粉末再经高温煅烧即得。
3.根据权利要求2所述的钒酸铋-镁铁氧体复合光催化剂,其特征在于,所述的溶胶-凝胶原位负载法为将m-BiVO4基体制备成前驱体溶液,MgFe2O4分散在前驱体溶液中得到混合凝胶。
4.根据权利要求3所述的钒酸铋-镁铁氧体复合光催化剂,其特征在于,将MgFe2O4超声分散在前驱体溶液中,超声分散的时间为20~45min;
所述的混合凝胶经干燥固化得到前驱体粉末的干燥温度为60~90℃;
所述的高温煅烧的煅烧温度为450~600℃,煅烧时间为3~6h。
5.一种钒酸铋-镁铁氧体复合光催化剂制备方法,其特征在于,包括将MgFe2O4纳米粉体与m-BiVO4基体经过溶胶-凝胶原位负载法得到混合凝胶,混合凝胶经干燥固化得到前驱体粉末,前驱体粉末再经高温煅烧即得。
6.根据权利要求5所述的钒酸铋-镁铁氧体复合光催化剂制备方法,其特征在于,所述的溶胶-凝胶原位负载法为将m-BiVO4基体制备成前驱体溶液,MgFe2O4纳米粉体分散在前驱体溶液中得到混合凝胶;
将MgFe2O4超声分散在前驱体溶液中,超声分散的时间为20~45min;
所述的混合凝胶经干燥固化得到前驱体粉末的干燥温度为60~90℃;
所述的高温煅烧的煅烧温度为450~600℃,煅烧时间为3~6h。
7.根据权利要求6所述的钒酸铋-镁铁氧体复合光催化剂制备方法,其特征在于,所述的前驱体液的制备采用溶胶-凝胶法,前驱体溶液的制备原料为硝酸铋、柠檬酸、乙二醇水溶液、偏钒酸铵;
硝酸铋、柠檬酸、乙二醇水溶液的用量比为5.5~11.5g︰15~25g︰20~50ml;
偏钒酸铵与乙二醇溶液的用量比为1.05~4.35g︰20~50ml。
乙二醇水溶液中的乙二醇与水的体积比为1︰2。
8.根据权利要求6所述的钒酸铋-镁铁氧体复合光催化剂制备方法,其特征在于,所述的MgFe2O4纳米粉体采用自蔓延溶胶-凝胶结合高温煅烧法制备得到,包括将硝酸铁、硝酸镁、乙二醇水溶液和柠檬酸原料混合后得到凝胶,凝胶采用低温自蔓延燃烧得到MgFe2O4前驱体粉末,将所得前驱体粉末煅烧得到MgFe2O4纳米粉体;
硝酸铁、硝酸镁与乙二醇溶液的用量比为18.05~27.45g︰3.98~11.35g︰10~30ml;
柠檬酸与乙二醇溶液的用量比为40.13~60.65g︰30~50ml;
乙二醇水溶液中的乙二醇与水的体积比为1︰2。
9.根据权利要求8所述的钒酸铋-镁铁氧体复合光催化剂制备方法,其特征在于,所述低温自蔓延燃烧的温度为160~220℃;
所述煅烧的温度为700~900℃,升温速率为2.5~5℃/min,保温时间为5h。
10.根据权利要求1-4任一权利要求所述的钒酸铋-镁铁氧体复合光催化剂或者根据权利要求5-9任一权利要求所述的钒酸铋-镁铁氧体复合光催化剂制备方法制备得到的钒酸铋-镁铁氧体复合光催化剂用于光催化降解有机染料的应用。
CN201810208029.7A 2018-03-14 2018-03-14 一种钒酸铋-镁铁氧体复合光催化剂、制备方法及其应用 Pending CN108636419A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810208029.7A CN108636419A (zh) 2018-03-14 2018-03-14 一种钒酸铋-镁铁氧体复合光催化剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810208029.7A CN108636419A (zh) 2018-03-14 2018-03-14 一种钒酸铋-镁铁氧体复合光催化剂、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN108636419A true CN108636419A (zh) 2018-10-12

Family

ID=63744170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810208029.7A Pending CN108636419A (zh) 2018-03-14 2018-03-14 一种钒酸铋-镁铁氧体复合光催化剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108636419A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112108156A (zh) * 2019-06-20 2020-12-22 天津城建大学 一种Ag纳米颗粒修饰的MgFe2O4纳米棒复合薄膜的制备方法
CN116371427A (zh) * 2023-03-14 2023-07-04 西安建筑科技大学 一种S型异质结Bi2S3/Bi2MoO6复合光催化材料、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480384A (zh) * 2013-09-18 2014-01-01 重庆大学 一种锶铁氧体负载的钒酸铋复合光催化剂的制备方法
JP5892478B2 (ja) * 2013-06-20 2016-03-23 Toto株式会社 BiVO4粒子およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892478B2 (ja) * 2013-06-20 2016-03-23 Toto株式会社 BiVO4粒子およびその製造方法
CN103480384A (zh) * 2013-09-18 2014-01-01 重庆大学 一种锶铁氧体负载的钒酸铋复合光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马孝瑜等: "溶胶-凝胶法制备尖晶石型ZnFe2O4粉体的研究", 《人工晶体学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112108156A (zh) * 2019-06-20 2020-12-22 天津城建大学 一种Ag纳米颗粒修饰的MgFe2O4纳米棒复合薄膜的制备方法
CN112108156B (zh) * 2019-06-20 2023-05-02 天津城建大学 一种Ag纳米颗粒修饰的MgFe2O4纳米棒复合薄膜的制备方法
CN116371427A (zh) * 2023-03-14 2023-07-04 西安建筑科技大学 一种S型异质结Bi2S3/Bi2MoO6复合光催化材料、制备方法及应用

Similar Documents

Publication Publication Date Title
CN104128184B (zh) 一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂及其制备方法
CN108543536A (zh) 一种钒酸铋-铁酸钙复合光催化剂、制备方法及其应用
CN108636420A (zh) 一种钒酸铋-锌铁尖晶石复合光催化剂、制备方法及其应用
CN106732524A (zh) 一种α/β‑氧化铋相异质结光催化剂及其制法和用途
CN102847546B (zh) 一种SnO2/BiOCl异质结光催化剂的制备方法
CN109939643A (zh) α-Fe2O3掺杂生物炭的制备方法及其应用
CN107715906B (zh) 一种氮化碳/钛酸锌/氧化钛三明治状直接z型异质结复合光催化剂的制备方法
CN105170157A (zh) 一种钕掺杂铁酸铋纳米光催化剂及其制备方法
CN110116001A (zh) 铁酸铜光-芬顿催化磁性复合材料及其制备方法
CN108671937A (zh) 一种锰铜复合氧化物催化剂的制备方法及其应用
CN106807411B (zh) 一种铁酸镧掺杂溴化银复合光催化剂的制备方法
CN105195198A (zh) 一种mpg-C3N4/Bi0.9Nd0.1VO4复合光催化剂及其制备方法和应用
CN108940332A (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN102963930A (zh) 一种可见光下具有光催化性能的BiVO4 的制备方法
CN107890880A (zh) 一种纳米多孔石墨相氮化碳/偏钛酸锰复合光催化剂的制备方法
CN108636419A (zh) 一种钒酸铋-镁铁氧体复合光催化剂、制备方法及其应用
CN105148972A (zh) 可见光条件下还原水中硝态氮的新型催化剂的制备方法及其应用
CN102989444B (zh) 一种铈离子掺杂三氧化钨催化剂及其制备方法及其应用
CN107673390A (zh) 一种玲珑球状纳米氧化钇的制备方法
CN102489329B (zh) 一种用于可见光催化还原水制氢的催化体系及其制备方法
CN104096555A (zh) 一种稀土掺杂二氧化硅-二氧化钛光催化材料的制备方法
CN107185544A (zh) 一种介孔负载型催化剂CuO‑LaCoO3的制备方法
CN105776311A (zh) 一种氧化铜纳米材料的制备方法
CN103433023B (zh) 一种Gd掺杂BiVO4光催化剂及其制备方法和应用
CN103113955A (zh) 一种用于生物油化学链制氢的纳米级多孔铁基载氧体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181012

WD01 Invention patent application deemed withdrawn after publication