CN108629092A - 一种基于尺寸效应修正的涡轮盘分区可靠性分析方法 - Google Patents

一种基于尺寸效应修正的涡轮盘分区可靠性分析方法 Download PDF

Info

Publication number
CN108629092A
CN108629092A CN201810358704.4A CN201810358704A CN108629092A CN 108629092 A CN108629092 A CN 108629092A CN 201810358704 A CN201810358704 A CN 201810358704A CN 108629092 A CN108629092 A CN 108629092A
Authority
CN
China
Prior art keywords
turbine disk
model
probability
life
reliability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810358704.4A
Other languages
English (en)
Other versions
CN108629092B (zh
Inventor
王荣桥
胡殿印
胡如意
刘茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810358704.4A priority Critical patent/CN108629092B/zh
Publication of CN108629092A publication Critical patent/CN108629092A/zh
Application granted granted Critical
Publication of CN108629092B publication Critical patent/CN108629092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种基于尺寸效应修正的涡轮盘分区可靠性分析方法,步骤为:(1)简化涡轮盘模型,灵敏度分析获取涡轮盘关键几何尺寸,并测量涡轮盘关键几何尺寸得到相应的概率分布特征;(2)获取涡轮盘材料属性,建立涡轮盘SWT概率循环应力‑应变关系模型和应变‑寿命模型;(3)进行涡轮盘几何参数化建模,有限元分析,根据涡轮盘应力水平和温度分布情况划分区域,对步骤(2)建立的SWT概率循环应力‑应变关系模型和概率应变‑寿命模型进行拉丁超立方抽样获取涡轮盘各个划分区域随机输入变量和输出寿命之间的关系并构建响应面模型;通过Monte‑Carlo抽样法对各个划分区域的响应面模型抽样得到对应的寿命分布,最后得到涡轮盘的疲劳寿命和可靠性;(4)对涡轮盘寿命分布进行尺寸效应修正。

Description

一种基于尺寸效应修正的涡轮盘分区可靠性分析方法
技术领域
本发明是一种针对航空发动机涡轮盘结构寿命的可靠性设计方法,它是一种能够考虑材料、几何等因素分散性和尺寸效应的设计方法,属于航空航天发动机技术领域。
背景技术
航空发动机是一种极限产品,工作在高温、高压、高转速等的复杂载荷/环境下;发动机性能及安全性指标的提高,要求发动机重量轻、长寿命、高可靠性(如,安全飞行对发动机结构件则要求低的破坏概率,可达10-5-10-7次/飞行小时)。目前,现役和在役发动机的结构重(性能不过关)且不保证可靠。究其原因,在设计过程中,结构某些部位进行了偏保守的设计,会导致其它部位偏于危险,且危险不可控。这主要是由于未考虑设计输入随机性、未考虑寿命可靠性设计造成的。
传统的安全寿命设计常采用分散系数来反映结构的分散度,为保证安全,目前给定的分散系数偏大,造成结构冗余,给减重带来挑战。因此,涡轮叶盘结构寿命的可靠性设计是高功重比发动机必须采用的手段之一。
目前传统涡轮盘结构设计方法主要是以确定性设计为主,并结合部分实验内容,难以准确给出结构的实际寿命,量化结构的失效风险。
发明内容
本发明技术解决方案:克服现有技术的不足,提供一种基于尺寸效应修正的涡轮盘分区可靠性分析方法,能够给出准确的涡轮盘寿命和可靠性,量化结构的失效风险。
本发明技术解决方案:一种基于尺寸效应修正的涡轮盘分区可靠性分析方法,概括起来,主要包括:筛选涡轮盘关键几何尺寸、获取涡轮盘材料属性和建立涡轮盘SWT概率循环应力-应变模型和应变-寿命模型、基于区域的寿命可靠性分析、尺寸效应修正分析和组合风险评估几个部分。本发明不仅考虑了材料、几何等因素的分散性对疲劳寿命的影响,而且针对轮盘局部应力集中和轮盘与标准试样之间的体积差异,发展了考虑尺寸效应的寿命预测方法。
实现步骤如下:
(1)去掉原始涡轮盘模型上较小的倒角和凸台,简化涡轮盘模型;对简化后的涡轮盘模型所有几何尺寸进行拉丁超立方抽样,生成几何尺寸不相同的样本进行有限元分析,并以计算所得的最大等效应力值作为响应,构造响应面模型;然后在上述响应面模型的基础上计算涡轮盘所有几何尺寸的灵敏度,并按照灵敏度大小进行排序,在排序结果中选择灵敏度较大的四个几何尺寸作为涡轮盘关键几何尺寸进行最终概率分析,并测量涡轮盘模型关键几何尺寸得到相应的概率分布特征;
(2)通过材料性能数据手册获取涡轮盘材料高温合金GH720Li的材料属性弹性模量E和泊松比μ,并根据涡轮盘试验数据选择弹性模量E和泊松比μ的概率分布特征;同时基于涡轮盘试验数据利用线性异方差回归方法建立涡轮盘SWT概率循环应力-应变关系模型和应变-寿命模型;
(3)利用步骤(1)获得的涡轮盘关键几何尺寸及其随机分布特征,在UG软件上进行涡轮盘几何参数化建模并导入ANSYS中,设置涡轮盘的材料属性,确定涡轮盘的温度和转速,并根据涡轮盘的实际情况设置边界条件进行有限元分析,获得涡轮盘的应力应变分布;根据涡轮盘的应力和温度分布情况进行区域划分,将涡轮盘应力水平和温度相近的的部分划分为一个区域;将涡轮盘的关键几何尺寸及涡轮盘的材料属性弹性模量E和泊松比μ作为随机输入变量,涡轮盘的关键几何尺寸及涡轮盘的材料属性弹性模量E和泊松比μ的随机分布特征由步骤(1)和步骤(2)给出,利用步骤(2)建立的涡轮盘SWT概率循环应力-应变关系模型和应变-寿命模型,通过多次拉丁超立方抽样获得输入变量和输出寿命之间的关系,构建涡轮盘不同划分区域的响应面模型;最后在Isight软件中通过蒙特卡洛抽样法对各个划分区域的响应面模型抽样得到对应的寿命分布和可靠性,进一步利用串联原则得到整体涡轮盘的寿命分布及其可靠性;
(4)分别使用基于SWT参数的Weakest-Link方法和有效损伤参数(OEDP)概率分析方法,根据尺寸效应对疲劳寿命的影响,来评估轮盘的疲劳寿命及其可靠性。
本发明与现有技术相比的优点在于:本发明基于尺寸效应修正的涡轮盘分区可靠性分析方法,与传统涡轮叶盘结构确定性设计方法相比,全面考虑了材料和几何尺寸等随机因素的分散性和尺寸效应对涡轮盘疲劳寿命的影响,同时根据涡轮盘应力和温度分布情况对涡轮盘进行区域划分,获得了不同划分区域的寿命分布和可靠性,将涡轮盘不同划分区域作为串联系统得到了整个涡轮盘的寿命分布,能够给出准确的涡轮盘寿命和可靠性,量化结构的失效风险。
附图说明
图1为本发明的基于尺寸效应修正的涡轮盘分区可靠性分析方法的流程图。
具体实施方式
下面结合附图,对本发明基于尺寸效应修正的涡轮盘分区可靠性分析的技术方案做进一步说明。
考虑材料和几何尺寸等因素的分散性,并对涡轮盘进行区域划分和组合风险评估,结合涡轮盘结构寿命可靠性分析方法,其流程见图1。
(1)去掉涡轮盘上较小的倒角和凸台,简化涡轮盘模型;对简化后的涡轮盘所有几何尺寸进行拉丁超立方抽样,生成不同的几何尺寸样本进行有限元分析,并以涡轮盘最大等效应力作为输出响应,构造不包含交叉项的二次多项式作为响应面模型,其函数表达式为
其中:Z(x)为响应面方程,xi为随机变量;n为随机变量的数量;a、bi和ci为待定系数。
然后在上述响应面模型的基础上计算涡轮盘所有几何尺寸的灵敏度,并按照灵敏度大小进行排序,在结果中选择灵敏度较大的四个几何尺寸作为涡轮盘关键几何尺寸进行最终概率分析,并测量涡轮盘模型关键几何尺寸得到相应的概率分布特征。
(2)通过材料性能数据手册获得涡轮盘材料高合金GH729Li的材料属性弹性模量E和泊松比μ,并根据涡轮盘试验数据选择弹性模量E和泊松比μ的概率分布特征。
基于涡轮盘试验数据利用线性异方差回归方法建立涡轮盘SWT概率循环应力-应变关系模型和应变-寿命模型。
上述SWT概率循环应变-寿命模型的表达式为:
其中,Δεt为总应变范围,σ'f为疲劳强度系数,b为疲劳强度指数,ε'f为疲劳延性系数,c为疲劳延性指数,σmax为最大应力,Nf为疲劳循环数,模型通过最大应力来考虑平均应力对寿命的影响。
SWT模型可分为弹性和塑性两个部分
两边分别取对数
可得弹性部分的标准线性方程
ye=ae+bexe
bp=1/(b+c)可得塑性部分的标准线性方程
yp=ap+bpxp
假设对数寿命服从正态分布,则对数寿命y=lg(2Nf)和(其中Δε可为Δεe或Δεp)之间的关系可表示为
y=a+bx+uσ(x)
其中,a,b,σ0,θ,x0是待定参数,u:N(0,1)服从标准正态分布。大量试验研究结果表明,材料对数寿命x的分散性随着弹性(或者塑性)应变水平的降低而增大,因此,将对数寿命标准差σ表示为
σ(x)=σ0[1+θ(x-x0)]
其中,σ0表示对数寿命y在对数应变分量x0处的标准差,θ表示σ的线性变化率。
假设n次独立试验得到的样本为(x1,y1),(x2,y2)L(xn,yn),则a,b,σ0,θ的估计量计算公式为
其中ν为方差的自由度,当θ=0,ν=n-2,即退化成同方差情况;当θ≠0,ν=n-3。其他过程参量如下
I(xi,θ)=1+θ(xi-x0)
首先对式I(xi,θ)=1+θ(xi-x0)迭代求解,设是θ的预估值,当时,时,又由于θ还满足
-1/(xmax-x0)<θ≤0
其中xmax是xi中的最大值,所以可以方便地采用二分法求得θ,然后利用θ求解其他待定参量。
(3)利用步骤(1)获得的涡轮盘关键几何尺寸及其随机分布特征,在UG软件上进行涡轮盘几何参数化建模并导入ANSYS中,设置涡轮盘的材料属性,确定涡轮盘的温度和转速以及边界条件具体设置为(1)涡轮盘两侧扇区面设置周期对称;(2)涡轮盘安装边施加轴向及周向位移约束;(3)工作转速:380000r/min,然后进行有限元分析,获得涡轮盘的应力应变分布;根据涡轮盘的应力和温度分布情况进行区域划分,将涡轮盘应力水平和温度相近的的部分划分为一个区域;将涡轮盘的关键几何尺寸及涡轮盘的材料属性弹性模量E和泊松比μ作为随机输入变量,涡轮盘的关键几何尺寸及涡轮盘的材料属性弹性模量E和泊松比μ的随机分布特征由步骤(1)和步骤(2)给出,利用步骤(2)建立的涡轮盘SWT概率循环应力-应变关系模型和应变-寿命模型,通过多次拉丁超立方抽样获得输入变量和输出寿命之间的关系,构建涡轮盘不同划分区域的响应面模型;最后在Isight软件中通过蒙特卡洛抽样法对各个划分区域的响应面模型抽样得到对应的寿命分布和可靠性,进一步利用串联原则得到整体涡轮盘的寿命分布及其可靠性;
(4)尺寸效应修正:分别使用基于SWT参数的Weakest-Link方法和有效损伤参数(OEDP)概率分析方法,考虑了尺寸效应对疲劳寿命的影响,来评估轮盘的疲劳寿命。
基于SWT参数的Weakest-Link方法:
假设疲劳极限服从Weibull分布,给定寿命循环数Nf对应的特征疲劳极限可以通过Basquin方程获得
其中,m为Basquin指数。对于参考试样,给定有效应力幅对应的特征疲劳
寿命之间的关系可以表示为
其中特征疲劳寿命为变量,通过以上两式,得到以下关系
得到失效概率
其中,寿命分布指数bN和应力分布指数bσ的关系为
假设有损伤参数ΔW与材料的临界缺陷尺寸acrit满足在一定的范围内acrit∝ΔW-c,则有
其中,bW分别为参考疲劳试样的损伤参数分布指数和特征损伤参数。同样也可以得到有效损伤参数的表达式
因此,引入SWT参数,并采用三参数幂函数的形式作为确定性寿命模型。
令ΔW=ΔWSWT-ΔW0,ΔWSWT=Δεtσmax,有寿命模型表达式如下
NfΔWm=Nf(ΔWSWT-ΔW0)m=c
其中,c、m、ΔW0均为材料参数。
给定寿命循环数Nf对应的特征损伤参数得到
对于参考试样,给定有效损伤参数对应的特征疲劳寿命之间的关系可以表示为
从而可以得到以下关系
可得到失效概率
其中,寿命分布指数bN和损伤参数分布指数bW的关系为
基于SWT参数Weakest-Link方法中的材料参数包括SWT三参数幂函数寿命模型中的三个材料参数、寿命分布指数bN以及损伤参数分布指数bW
首先基于涡轮盘材料高温合金GH720Li光滑圆棒试验数据,通过最小二乘回归分析得到SWT三参数幂函数中的材料参数并建立寿命模型,获得寿命模型中的指数系数m后,进而获得损伤参数分布指数bW
Weakest-Link方法中疲劳寿命服从Weibull分布,需要针对试样数据进行Weibull分布参数估计值分析,来获得疲劳寿命分布指数。
首先对同载荷水平下试样的失效概率进行估计,假设同一载荷水平下有n个试样,将其从小到大排列为
N1≤N2≤L≤Nn
利用中位秩估计方法,第i个子样的失效概率估计值为
由于疲劳寿命服从Weibull双参数分布,其可靠度函数为
利用最小二乘法进行Weibull分布参数估计。对上式取两次自然对数可得
x=lnNf
则有
y=bNx+β
通过最小二乘法回归分析可以得到参数的估计值
结合GH720Li中心圆孔平板试样有限元分析结果数据和损伤参数分布指数bW计算得到有效损伤参数进而根据有效损伤参数和建立的SWT三参数幂函数寿命模型计算得到特征疲劳寿命最后根据中心圆孔平板试样的疲劳寿命Weibull分布函数预测失效概率取0.5时的中值寿命Np
有效损伤参数(OEDP)概率分析方法:将Weakest-Link方法中的有效损伤参数与GH720Li的SWT概率寿命模型相结合,建立新的非局部概率寿命分析方法。给定初始损伤参数分布指数bW,结合中心圆孔平板试样有限元分析结果数据采用式
计算得到有效损伤参数根据光滑圆棒试样建立SWT概率寿命模型,采用确定性形式与有效损伤参数直接计算得到中心圆孔平板试样的预测中值寿命Np;结合中心圆孔平板试样的试验寿命Ne求出预测精度指标寿命分散带ΔN,以寿命分散带ΔN最小为优化目标,在损伤参数分布指数bW可行的取值范围内进行优化,最终得到使得寿命分散带ΔN取最小值时的预测中值寿命Np和有效损伤参数根据有效损伤参数和SWT概率寿命模型,给出概率寿命分析结果。

Claims (5)

1.一种基于尺寸效应修正的涡轮盘分区可靠性分析方法,其特征在于实现步骤如下:
(1)简化涡轮盘模型,灵敏度分析获取涡轮盘关键几何尺寸,并测量涡轮盘关键几何尺寸得到相应的概率分布特征;
(2)获取涡轮盘材料属性弹性模量E和泊松比μ及其概率分布特征,基于涡轮盘试验数据利用线性异方差回归方法建立涡轮盘SWT概率循环应力-应变关系模型和应变-寿命模型;
(3)基于步骤(1)获得的涡轮盘关键几何尺寸及概率分布特征,进行涡轮盘几何参数化建模和有限元分析,根据涡轮盘应力水平和温度分布情况划分区域;利用步骤(2)建立的SWT概率循环应力-应变关系模型和概率应变-寿命模型通过拉丁超立方抽样获取涡轮盘各个划分区域随机输入变量和输出寿命之间的关系并构建响应面模型;通过蒙特卡洛(Monte-Carlo)抽样法对各个划分区域的响应面模型抽样得到对应的寿命分布和可靠性,进一步利用串联原则得到整体涡轮盘的寿命分布,得到涡轮盘的疲劳寿命和可靠性;
(4)利用基于SWT参数的Weakest-Link方法和有效损伤参数(OEDP)概率分析方法,根据涡轮盘尺寸效应对涡轮盘疲劳寿命的影响,获得涡轮盘的寿命分布,评估涡轮盘的疲劳寿命及其可靠性。
2.根据权利要求1所述的一种基于尺寸效应修正的涡轮盘可靠性分析方法,其特征在于:所述步骤(1)中,去掉原始涡轮盘模型上较小的倒角和凸台,简化涡轮盘模型;对简化后的涡轮盘模型所有几何尺寸进行拉丁超立方抽样,生成不同的几何尺寸样本进行有限元分析,并以计算所得的最大等效应力值作为响应,构造响应面模型;然后在上述响应面模型的基础上计算涡轮盘所有几何尺寸的灵敏度,并按照灵敏度大小进行排序,在排序结果中选择灵敏度较大的四个几何尺寸作为涡轮盘关键几何尺寸进行最终概率分析,并测量涡轮盘模型关键几何尺寸得到相应的概率分布特征。
3.根据权利要求1所述的一种基于尺寸效应修正的涡轮盘可靠性分析方法,其特征在于:所述步骤(2)中,线性异方差回归方法分析如下
对于
y=a+bx+uσ(x),u:N(0,1)
σ(x)=σ0[1+θ(x-x0)]
其中a,b,σ0,θ,x0是待定参数,n次独立试验得到的样本为(x1,y1),(x2,y2)L(xn,yn),则a,b,σ0,θ的估计量计算公式为
其中ν为方差的自由度,当θ=0,ν=n-2,即退化成同方差情况;当θ≠0,ν=n-3,其他过程参量如下
I(xi,θ)=1+θ(xi-x0)
首先对式I(xi,θ)=1+θ(xi-x0)迭代求解,设是θ的预估值,当时,时,θ还满足
-1/(xmax-x0)<θ≤0
其中xmax是xi中的最大值,采用二分法求得θ,然后利用θ求解其他待定参量。
4.根据权利要求1所述的一种基于尺寸效应修正的涡轮盘可靠性分析方法,其特征在于:所述步骤(2)中,所述SWT概率循环应变-寿命模型的表达式为
其中,Δεt为总应变范围,σ'f为疲劳强度系数,b为疲劳强度指数,ε'f为疲劳延性系数,c为疲劳延性指数,σmax为最大应力,Nf为疲劳循环数,模型通过最大应力来考虑平均应力对寿命的影响。
5.根据权利要求1所述的一种基于尺寸效应修正的涡轮盘可靠性分析方法,其特征在于:所述步骤(3)中,所述涡轮盘的边界条件具体包括:
(1)涡轮盘两侧扇区面设置周期对称;
(2)涡轮盘安装边施加轴向及周向位移约束;
(3)工作转速:380000r/min。
CN201810358704.4A 2018-04-20 2018-04-20 一种基于尺寸效应修正的涡轮盘分区可靠性分析方法 Active CN108629092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810358704.4A CN108629092B (zh) 2018-04-20 2018-04-20 一种基于尺寸效应修正的涡轮盘分区可靠性分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810358704.4A CN108629092B (zh) 2018-04-20 2018-04-20 一种基于尺寸效应修正的涡轮盘分区可靠性分析方法

Publications (2)

Publication Number Publication Date
CN108629092A true CN108629092A (zh) 2018-10-09
CN108629092B CN108629092B (zh) 2019-03-22

Family

ID=63694122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810358704.4A Active CN108629092B (zh) 2018-04-20 2018-04-20 一种基于尺寸效应修正的涡轮盘分区可靠性分析方法

Country Status (1)

Country Link
CN (1) CN108629092B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109408998A (zh) * 2018-11-08 2019-03-01 太原科技大学 基于样本持续增量快速获取应力谱进行疲劳寿命评估方法
CN110705106A (zh) * 2019-10-08 2020-01-17 上海无线电设备研究所 一种基于概率设计的力学可靠性分析方法
CN110763441A (zh) * 2019-07-02 2020-02-07 中国民航大学 基于单类最大向量角区域间隔的发动机涡轮盘检测方法
CN112177677A (zh) * 2020-09-25 2021-01-05 厦门大学 域扩展的带内环空腔的涡轮盘结构及其设计方法
CN112597687A (zh) * 2021-03-02 2021-04-02 北京航空航天大学 一种基于少样本学习的涡轮盘结构混合可靠性分析方法
CN114841032A (zh) * 2021-09-29 2022-08-02 杭州汽轮动力集团有限公司 一种燃气轮机热部件寿命稳健性的设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853317A (zh) * 2010-04-20 2010-10-06 北京航空航天大学 一种涡轮盘结构概率设计系统的构建方法
CN102682208A (zh) * 2012-05-04 2012-09-19 电子科技大学 基于Bayes信息更新的涡轮盘概率故障物理寿命预测方法
CN106354967A (zh) * 2016-09-09 2017-01-25 北京航空航天大学 一种涡轮盘结构设计分析一体化方法
CN106644783A (zh) * 2016-12-31 2017-05-10 北京航空航天大学 一种基于涡轮盘低循环疲劳裂纹扩展寿命预测方法
CN106844956A (zh) * 2017-01-19 2017-06-13 西安工业大学 一种航空发动机涡轮盘结构可靠性分析方法
CN107563054A (zh) * 2017-08-31 2018-01-09 北京航空航天大学 一种基于SWT参数的Weakest‑Link方法的涡轮盘概率寿命分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853317A (zh) * 2010-04-20 2010-10-06 北京航空航天大学 一种涡轮盘结构概率设计系统的构建方法
CN102682208A (zh) * 2012-05-04 2012-09-19 电子科技大学 基于Bayes信息更新的涡轮盘概率故障物理寿命预测方法
CN106354967A (zh) * 2016-09-09 2017-01-25 北京航空航天大学 一种涡轮盘结构设计分析一体化方法
CN106644783A (zh) * 2016-12-31 2017-05-10 北京航空航天大学 一种基于涡轮盘低循环疲劳裂纹扩展寿命预测方法
CN106844956A (zh) * 2017-01-19 2017-06-13 西安工业大学 一种航空发动机涡轮盘结构可靠性分析方法
CN107563054A (zh) * 2017-08-31 2018-01-09 北京航空航天大学 一种基于SWT参数的Weakest‑Link方法的涡轮盘概率寿命分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RONGQIAO WANG: "Zone-based reliability analysis on fatigue life of GH720Li turbine disk concerning uncertainty quantification", 《AEROSPACE SCIENCE AND TECHNOLOGY》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109408998A (zh) * 2018-11-08 2019-03-01 太原科技大学 基于样本持续增量快速获取应力谱进行疲劳寿命评估方法
CN109408998B (zh) * 2018-11-08 2023-01-03 太原科技大学 基于样本持续增量快速获取应力谱进行疲劳寿命评估方法
CN110763441A (zh) * 2019-07-02 2020-02-07 中国民航大学 基于单类最大向量角区域间隔的发动机涡轮盘检测方法
CN110705106A (zh) * 2019-10-08 2020-01-17 上海无线电设备研究所 一种基于概率设计的力学可靠性分析方法
CN112177677A (zh) * 2020-09-25 2021-01-05 厦门大学 域扩展的带内环空腔的涡轮盘结构及其设计方法
CN112177677B (zh) * 2020-09-25 2022-11-08 厦门大学 域扩展的带内环空腔的涡轮盘结构及其设计方法
CN112597687A (zh) * 2021-03-02 2021-04-02 北京航空航天大学 一种基于少样本学习的涡轮盘结构混合可靠性分析方法
CN114841032A (zh) * 2021-09-29 2022-08-02 杭州汽轮动力集团有限公司 一种燃气轮机热部件寿命稳健性的设计方法
CN114841032B (zh) * 2021-09-29 2024-03-22 杭州汽轮控股有限公司 一种燃气轮机热部件寿命稳健性的设计方法

Also Published As

Publication number Publication date
CN108629092B (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
CN108629092B (zh) 一种基于尺寸效应修正的涡轮盘分区可靠性分析方法
CN107563054B (zh) 一种基于SWT参数的Weakest-Link方法的涡轮盘概率寿命分析方法
CN107145641B (zh) 叶片振动疲劳概率寿命预测方法
US10025893B2 (en) Prediction of life consumption of a machine component
CN105956216B (zh) 大跨钢桥基于均匀温度响应监测值的有限元模型修正方法
CN102682208B (zh) 基于Bayes信息更新的涡轮盘概率故障物理寿命预测方法
CN103246821B (zh) 一种基于仿真的多应力小样本加速寿命试验方案设计优化方法
CN112906281B (zh) 一种基于拟蒙特卡洛抽样的涡轮盘裂纹扩展可靠性分析方法
CN109918833B (zh) 一种数值模拟可信度的定量分析方法
Wang et al. A Review of the Extrapolation Method in Load Spectrum Compiling.
CN103970965A (zh) 燃气涡轮发动机加速寿命试验试车方法
CN105550390B (zh) 一种多重判据的纤维增韧复合材料跨尺度热分析等效方法
CN108920836B (zh) 一种涡轮盘概率可靠性分析中几何尺寸概率统计特征分析方法
CN110532726B (zh) 一种基于贝叶斯校准的涡轮盘非局部概率寿命评估方法
CN107563053A (zh) 一种航空发动机轮盘疲劳寿命非局部概率设计方法
CN110703594A (zh) 一种航空发动机多变量孪生支持向量机的健康预测方法
CN108090613A (zh) 一种进近管制扇区管制员工作负荷预测方法
CN107451377B (zh) 一种面向航空发动机轮盘结构寿命分析的晶粒尺寸修正方法
CN112926698B (zh) 一种大型旋转装备振动预测与装配评价方法
CN102889993B (zh) 一种发动机油耗特性测试方法及系统
CN108599147B (zh) 基于正态指数平滑法与核密度估计的组合区间预测方法
CN116186459A (zh) 基于组合权重和广义幂均值的设备健康度评估方法、系统、介质、装置及层级化评估方法
PAN et al. Optimal design for accelerated degradation tests with several stresses based on Wiener process
CN113761800A (zh) 基于临界转速对应的轴系动力学参数模型缩比设计方法
CN109711559A (zh) 一种基于物理机理模型的燃气轮机部件健康管理系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant