CN108620105A - 复合光催化剂MxP/硫铟锌及其制备方法与应用 - Google Patents

复合光催化剂MxP/硫铟锌及其制备方法与应用 Download PDF

Info

Publication number
CN108620105A
CN108620105A CN201810421855.XA CN201810421855A CN108620105A CN 108620105 A CN108620105 A CN 108620105A CN 201810421855 A CN201810421855 A CN 201810421855A CN 108620105 A CN108620105 A CN 108620105A
Authority
CN
China
Prior art keywords
znin
catalyst
source
composite photo
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810421855.XA
Other languages
English (en)
Other versions
CN108620105B (zh
Inventor
苏文悦
贺奕杉
王绪绪
付贤智
王心晨
陈旬
戴文新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201810421855.XA priority Critical patent/CN108620105B/zh
Publication of CN108620105A publication Critical patent/CN108620105A/zh
Application granted granted Critical
Publication of CN108620105B publication Critical patent/CN108620105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种复合光催化剂MxP/硫铟锌及其制备方法与应用,该复合光催化剂由硫铟锌(ZnIn2S4)和非晶态合金(MxP)复合构成,以非贵金属无机盐和次磷酸盐溶液与ZnIn2S4充分混合,在惰性气氛中,利用ZnIn2S4的可见光响应特性,在光照下将零价的磷和非贵金属M共同沉积到ZnIn2S4表面形成非晶态合金MxP,制得的MxP/ZnIn2S4复合材料与ZnIn2S4相比,其可见光催化分解水产氢活性显著提高。本发明方法无需引入还原剂,成本低廉,环境友好,简单易行,易于大规模推广。

Description

复合光催化剂MxP/硫铟锌及其制备方法与应用
技术领域
本发明涉及一种可见光响应的高效稳定的低成本光催化材料及其制备方法和应用,具体涉及一种复合光催化剂MxP/硫铟锌及其制备方法与应用。
背景技术
近年来,硫铟锌(ZnIn2S4)因在可见光催化降解有机污染物,分解水制氢、制氧等方面具有良好的效果,作为一种重要的可见光响应的光催化材料备受关注。但是ZnIn2S4光生电子空穴易复合,光生载流子寿命较短导致光催化效率较低,影响其在光催化领域的实际应用前景。大量研究表明,贵金属修饰改性是一种有效提高光催化剂活性的方式,但是贵金属的储量低、成本高,极大的限制了它们的大规模应用。因此,有必要开发价廉易得的、可减少或取代贵金属的光催化助剂材料,发展简单环保、易于大规模推广的ZnIn2S4基复合材料的制备方法。
发明内容
本发明的目的在于提供一种光沉积法制备低成本的可见光响应的新型高效复合光催化剂MxP/ZnIn2S4(M为Co,Ni,Fe等非贵金属)和工艺简单、环境友好、易于规模化生产MxP/ZnIn2S4的制备方法和应用。
本发明的复合光催化剂MxP/ZnIn2S4,应用于可见光催化分解水制氢,具有电荷分离效率高、催化活性高和稳定性好的优点。
为实现上述目的,本发明采用如下技术方案:
复合光催化剂MxP/ZnIn2S4(M为Co,Ni,Fe等非贵金属)是由硫铟锌(ZnIn2S4)和钴磷、镍磷、铁磷等非晶态合金MxP组成的复合材料,硫铟锌和非晶态合金(MxP)的摩尔百分比为:
硫铟锌(ZnIn2S4) 10~90%;
非晶态合金(MxP) 10~90%。
本发明用价廉易得的非晶态合金MxP(M=Co,Ni,Fe等非贵金属)为助催化剂,用光沉积法制备MxP/ZnIn2S4复合光催化剂:将非贵金属无机盐和次磷酸盐溶液与ZnIn2S4充分混合,在惰性气氛中,利用ZnIn2S4的可见光响应特性,光照下将零价的磷和金属M共同沉积到ZnIn2S4表面形成非晶态合金MxP,制得MxP/ZnIn2S4复合材料,其形成机理是利用ZnIn2S4光响应产生的光生载流子的还原和氧化反应,所述MxP/ZnIn2S4复合材料与ZnIn2S4相比,可见光催化分解水产氢的活性显著提高。
本发明所述的复合光催化剂MxP/ZnIn2S4的制备方法具体包括如下步骤:
(1)水热法制备ZnIn2S4
在硫源溶液中边搅拌边依次滴加铟源溶液和锌源溶液,继续搅拌30~120min,将混合溶液移入高压反应釜中100~200℃恒温反应12~24h,自然冷却至室温,沉淀用乙醇和水交替离心洗涤,洗涤至离子浓度<10ppm,然后将沉淀于40~120℃干燥6~24h,研磨,得到黄色的ZnIn2S4粉末;
(2)光沉积法制备MxP/ZnIn2S4
将非贵金属无机盐配成非贵金属盐溶液;将次磷酸盐配成磷源溶液;
将制得的ZnIn2S4粉末分散于去离子水中,加入非贵金属盐溶液,搅拌5~10min,加入磷源溶液,搅拌5~10min,先通入惰性气体30~60min,然后用紫外-可见光对样品光照特定时间,整个光照过程都是在惰性气氛下进行的,结束光照后,沉淀用水和乙醇交替离心洗涤,洗涤至离子浓度<10ppm,然后将沉淀于40~120℃干燥6~24h,研磨,得到复合光催化剂MxP/ZnIn2S4,记为MxP/ZnIn2S4-t(t代表光沉积时间/min)。
步骤(1)中,所述硫源溶液是将作为硫源的化合物固体溶于溶剂中制得;所述铟源溶液是将作为铟源的化合物固体溶于溶剂中制得;所述锌源溶液是将作为锌源的化合物固体溶于溶剂中制得。
步骤(1)中,所述硫源是硫脲、硫代乙酰胺、硫化钠中的一种;所述铟源是氯化铟、硝酸铟、硫酸铟中的一种;所述锌源是氯化锌、醋酸锌、硝酸锌中的一种;所述硫源浓度是0.01~2mol/L;所述铟源浓度是0.01~1mol/L;所述锌源浓度是0.01~0.5mol/L;所述溶剂是去离子水、乙二醇、乙醇中的一种或两种。
步骤(2)中,所述非贵金属无机盐是氯化物、硝酸盐、硫酸盐中的一种;所述磷源是次磷酸钠、次磷酸钾、次磷酸铵中的一种;所述非贵金属盐溶液浓度为0.01~1mol/L;所述磷源溶液浓度为0.01~2mol/L。
步骤(2)中,所述惰性气体是氮气或氩气,光源是波段为200~1000nm的紫外-可见光的一种,所述光沉积时间为0~60min。
步骤(1)中,所述锌源与硫源的摩尔比为1:10~1:60,所述铟源与硫源的摩尔比为1:10~1:30;步骤(2)中,所述非贵金属无机盐与ZnIn2S4的质量比为0.1:1~5:1;所述磷源与ZnIn2S4的质量比为0.5:1~5:1。
所述的复合光催化剂MxP/ZnIn2S4应用于可见光催化分解水制氢。
本发明的显著优点在于:
(1)本发明提供了一种用价廉易得的非晶合金MxP(M=Co,Ni,Fe等金属)代替昂贵的贵金属为助催化剂、构建可见光响应的低成本高效光催化材料的策略。
(2)本发明提供了一种利用光催化材料本身的光响应特性,通过光沉积简捷高效地负载MxP(M=Co,Ni,Fe等)非晶态合金助催化剂的方法,该方法操作简单,成本低廉,对环境友好,没有苛刻的操作环境要求,有利于大规模推广。
(3)本发明制备的MxP/ZnIn2S4(M=Co,Ni,Fe等)光催化剂,能将太阳能转换为化学能,具有较好的可见光催化分解水产氢活性。
附图说明
图1是本发明实施例1中光沉积法制备的复合光催化剂CoxP/ZnIn2S4的X射线衍射图(XRD)。
图2是实施例1中复合光催化剂CoxP/ZnIn2S4的扫描电镜(SEM),透射电镜(TEM)以及能谱图(EDX)。
图3是实施例1中复合光催化剂CoxP/ZnIn2S4的各元素分布图(Mapping)。
图4是CoxP/ZnIn2S4复合样品和铂化样品(Pt/ZnIn2S4)以及未复合的CoxP和ZnIn2S4光催化分解水产氢性能对比图。
具体实施方式:
本发明的复合光催化剂是CoxP/ZnIn2S4复合样品,应用于可见光催化分解水制氢,该光催化剂的制备方法为光沉积复合法,具体步骤如下:
(1)水热法制备ZnIn2S4
将作为硫源的化合物固体溶于溶剂中制得硫源溶液;将作为铟源的化合物固体溶于溶剂中制得铟源溶液;将作为锌源的化合物固体溶于溶剂中制得锌源溶液;在硫源溶液中边搅拌边依次滴加铟源溶液和锌源溶液,继续搅拌30~120min,将混合溶液移入高压反应釜中100~200℃恒温反应12~24h,自然冷却至室温,沉淀用乙醇和水交替离心洗涤,洗涤至离子浓度<10ppm,然后将沉淀40~120℃干燥6~24h,研磨,得到黄色的ZnIn2S4样品粉末。
(2)光沉积法制备MxP/ZnIn2S4
将钴、镍或铁等其它非贵金属的无机盐配成非贵金属盐溶液;将次磷酸盐配成磷源溶液;将制得的ZnIn2S4分散于去离子水中,加入非贵金属盐溶液,搅拌5~10min,加入磷源溶液,搅拌5~10min,先通入惰性气体30~60min,然后用紫外-可见光对样品光照特定时间,整个光照过程都是在惰性气氛下进行的,结束光照后,沉淀用水和乙醇交替离心洗涤,洗涤至离子浓度<10ppm,然后将沉淀于40~120℃干燥6~24h,研磨,得复合光催化剂MxP/ZnIn2S4-t(t代表光沉积时间/min)。
以上所述硫源是硫脲、硫代乙酰胺、硫化钠中的一种;所述铟源是氯化铟、硝酸铟、硫酸铟中的一种;所述锌源是氯化锌、醋酸锌、硝酸锌中的一种;所述硫源浓度是0.01~2mol/L;所述铟源浓度是0.01~1mol/L;所述锌源浓度是0.01~0.5mol/L;所述溶剂是去离子水、乙二醇、乙醇中的一种或两种。
所述非贵金属无机盐是氯化物、硝酸盐、硫酸盐中的一种;所述磷源是次磷酸钠、次磷酸钾、次磷酸铵中的一种;所述非贵金属盐溶液浓度为0.01~1mol/L;所述磷源溶液浓度为0.01~2mol/L。
所述锌源与硫源的摩尔比为1:10~1:60,所述铟源与硫源的摩尔比为1:10~1:30;所述非贵金属无机盐与ZnIn2S4的质量比为0.1:1~5:1;所述磷源与ZnIn2S4的质量比为0.5:1~5:1。
所述的搅拌是磁力搅拌,搅拌速度为400~1000rad/min;所述惰性气体是氮气或氩气,所述光源是波段为200~1000nm的紫外-可见光的一种,所述光沉积时间为0~60min。
实施例1
复合光催化剂CoxP/ZnIn2S4的制备
(1)称取0.204g氯化锌(ZnCl2)、0.88g氯化铟(InCl3)和0.451g硫代乙酰胺(CH3CSNH2)分别溶于20mL的去离子水中,在硫代乙酰胺溶液中依次滴加氯化锌溶液和氯化铟溶液,继续搅拌60min,将混合溶液移入高压反应釜中200℃恒温反应24h,自然冷却至室温,沉淀用乙醇和水交替洗涤离心至离子浓度<10ppm,60℃干燥12h,研磨,得到黄色的ZnIn2S4样品粉末;
(2)称取0.1g ZnIn2S4超声分散于1mL水中,加入0.1mol/L CoCl2·6H2O溶液2mL,搅拌5min,然后加入0.2mol/L NaH2PO2溶液7mL,在Ar气氛下搅拌30min,用300W氙灯做为光源光照5min,结束光照,混合溶液冷却至室温,离心洗涤至离子浓度<10ppm,60℃干燥12h,研磨,得到复合光催化剂CoxP/ZnIn2S4
图1是负载CoxP前后ZnIn2S4样品的XRD图谱,由图可知,样品于2θ值为21.6°、27.7°、30.4°和47.2°等处出现的衍射峰,分别对应于六方晶型ZnIn2S4(JCPDS:89-3962)的(003)、(011)、(012)和(110)晶面,由2θ为27.7°的(011)晶面衍射峰的半峰宽算得ZnIn2S4的平均晶粒大小约为45.3nm,没有检测到CoxP的特征衍射峰,可能是由于CoxP的负载量太少而未达到仪器的检测限。
图2是实施例1制备的CoxP/ZnIn2S4样品的电镜以及能谱图,由图2(a)可知,CoxP/ZnIn2S4样品的形貌呈为纳米片组成的直径为2~5um的多级分层牡丹花状微米球状,样品表面出现颗粒状物质可能是CoxP堆积所致。通过高倍透射电镜图2(c)可以观察到ZnIn2S4的晶格条纹,其中间距为0.32nm的晶格条纹,对应于六方晶相ZnIn2S4的(011)晶面的面间距,而CoxP为非晶态,未观察到其晶格条纹。由能谱图2(d)可以看出样品含有Zn、In、S、Co和P五种元素。
图3是CoxP/ZnIn2S4样品的Mapping图,图3b、3c、3d、3e和3f分别显示样品表面Zn、In、S、Co、P等元素的分布情况,各元素的Mapping图都配色均匀,说明CoxP均匀地分布在ZnIn2S4表面。
实施例2
CoxP/ZnIn2S4复合样品的光催化分解水产氢性能
将实施例1条件下制得的CoxP/ZnIn2S4复合样品用作光催化剂分解水制氢,光解水制氢的反应是在一个常压密封的循环体系中进行,反应器为一个体积为250mL的可见光催化分解水制氢标准反应器,采用300W氙灯光源(加420nm的滤光片),称取20mg样品于反应器中,然后加入90mL H2O和10mL乳酸,并通过磁力搅拌器搅拌均匀。光照前整个反应体系先用机械泵抽真空,然后充入高纯Ar,重复此过程3次,除尽体系中空气,打开搅拌器和气体循环泵,吸附30min平衡后开灯,光照一定时间气相产物通过气体循环泵打入六通阀,由在线色谱检测分析。样品的光解水产氢情况如图4所示,由图可知CoxP的负载显著增强了ZnIn2S4样品的光催化产氢活性,光照3h后,CoxP/ZnIn2S4的平均产氢速率达到7.84mmol h-1g-1,是ZnIn2S4样品的44倍,铂化样品1wt%Pt/ZnIn2S4的1.1倍,而用硼氢化钠作为引发剂合成的CoxP非晶态对照样品未测得有产氢活性,表明CoxP等廉价易得的类金属非晶态合金助剂的助催化效果可媲美Pt等贵金属,为减少或取代贵金属助催化剂的研发指明了一个方向。
实施例3
复合光催化剂NixP/ZnIn2S4的制备
(1)称取醋酸锌、硝酸铟和硫化钠分别溶于乙醇中,在硫化钠乙醇溶液中依次滴加醋酸锌乙醇溶液和硝酸铟乙醇溶液,继续搅拌30min,将混合溶液移入高压反应釜中100℃恒温反应24h,自然冷却至室温,沉淀用乙醇和水交替洗涤离心至离子浓度<10ppm,40℃干燥24h,研磨,得到黄色的ZnIn2S4样品粉末;
其中,醋酸锌浓度是0.01~0.5mol/L、硝酸铟浓度是0.01~1mol/L,硫化钠浓度是0.01~2mol/L;
醋酸锌与硫化钠的摩尔比为1:10~1:60,硝酸铟与硫化钠的摩尔比为1:10~1:30;
(2)称取ZnIn2S4超声分散于水中,加入0.2mol/L NiCl2·6H2O溶液,搅拌10min,然后加入0.4mol/L KH2PO2溶液,其中,NiCl2与ZnIn2S4的质量比为0.1:1~5:1;KH2PO2与ZnIn2S4的质量比为0.5:1~5:1;
在Ar气氛下搅拌45min,用300W氙灯做为光源光照10min,结束光照,混合溶液冷却至室温,离心洗涤至离子浓度<10ppm,40℃干燥24h,研磨,得到复合光催化剂NixP/ZnIn2S4
实施例4
复合光催化剂FexP/ZnIn2S4的制备
(1)称取硝酸锌、硫酸铟和硫脲分别溶于乙二醇中,在硫脲乙二醇溶液中依次滴加硝酸锌乙二醇溶液和硫酸铟乙二醇溶液,继续搅拌120min,将混合溶液移入高压反应釜中200℃恒温反应12h,自然冷却至室温,沉淀用乙醇和水交替洗涤离心至离子浓度<10ppm,120℃干燥6h,研磨,得到黄色的ZnIn2S4样品粉末;
其中,硝酸锌浓度是0.01~0.5mol/L、硫酸铟浓度是0.01~1mol/L,硫脲浓度是0.01~2mol/L;
硝酸锌与硫脲的摩尔比为1:10~1:60,硫酸铟与硫脲的摩尔比为1:10~1:30;
(2)称取ZnIn2S4超声分散于水中,加入1mol/L FeCl2·6H2O溶液,搅拌10min,然后加入1mol/L次磷酸铵溶液,其中,FeCl2与ZnIn2S4的质量比为0.1:1~5:1;次磷酸铵与ZnIn2S4的质量比为0.5:1~5:1;
在Ar气氛下搅拌60min,用300W氙灯做为光源光照20min,结束光照,混合溶液冷却至室温,离心洗涤至离子浓度<10ppm,120℃干燥6h,研磨,得到复合光催化剂FexP/ZnIn2S4
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

1.复合光催化剂MxP/ZnIn2S4,M为非贵金属,其特征在于:所述复合光催化剂是由ZnIn2S4和非晶态合金MxP组成的复合材料,ZnIn2S4和非晶态合金MxP的摩尔百分比为:
ZnIn2S4 10~90%;
非晶态合金MxP 10~90%。
2.根据权利要求1所述的复合光催化剂MxP/ZnIn2S4,其特征在于:所述非贵金属为Co,Ni或Fe。
3.一种如权利要求1或2所述的复合光催化剂MxP/ZnIn2S4的制备方法,其特征在于:利用ZnIn2S4的光响应特性,通过一步光沉积法合成。
4.根据权利要求3所述的复合光催化剂MxP/ZnIn2S4的制备方法,其特征在于:所述制备方法的具体步骤如下:
(1)水热法制备ZnIn2S4
在硫源溶液中边搅拌边依次滴加铟源溶液和锌源溶液,继续搅拌30~120 min,将混合溶液移入高压反应釜中100~200℃恒温反应12~24 h,自然冷却至室温,沉淀用乙醇和水交替离心洗涤,洗涤至离子浓度<10 ppm,然后将沉淀于40~120℃干燥6~24 h,研磨,得到ZnIn2S4粉末;
(2)光沉积法制备MxP/ZnIn2S4
将非贵金属无机盐配成非贵金属盐溶液;将次磷酸盐配成磷源溶液;
将制得的ZnIn2S4粉末分散于去离子水中,加入非贵金属盐溶液,搅拌5~10 min,加入磷源溶液,搅拌5~10 min,先通入惰性气体30~60 min,然后用紫外-可见光对样品光照特定时间,整个光照过程都是在惰性气氛下进行的,结束光照后,沉淀用水和乙醇交替离心洗涤,洗涤至离子浓度<10 ppm,然后将沉淀于40~120℃干燥6~24 h,研磨,得到复合光催化剂MxP/ZnIn2S4
5.根据权利要求4所述的复合光催化剂MxP/ZnIn2S4的制备方法,其特征在于:步骤(1)中,所述硫源溶液是将作为硫源的化合物固体溶于溶剂中制得;
所述铟源溶液是将作为铟源的化合物固体溶于溶剂中制得;
所述锌源溶液是将作为锌源的化合物固体溶于溶剂中制得。
6.根据权利要求5所述的复合光催化剂MxP/ZnIn2S4的制备方法,其特征在于:步骤(1)中,所述硫源是硫脲、硫代乙酰胺、硫化钠中的一种;所述铟源是氯化铟、硝酸铟、硫酸铟中的一种;所述锌源是氯化锌、醋酸锌、硝酸锌中的一种;所述硫源浓度是0.01~2 mol/L;所述铟源浓度是0.01~1 mol/L;所述锌源浓度是0.01~0.5 mol/L;所述溶剂是去离子水、乙二醇、乙醇中的一种或两种。
7.根据权利要求4所述的复合光催化剂MxP/ZnIn2S4的制备方法,其特征在于:步骤(2)中,所述非贵金属无机盐是氯化物、硝酸盐、硫酸盐中的一种;所述磷源是次磷酸钠、次磷酸钾、次磷酸铵中的一种;所述非贵金属盐溶液浓度为0.01~1 mol/L;所述磷源溶液浓度为0.01~2 mol/L。
8.根据权利要求4所述的复合光催化剂MxP/ZnIn2S4的制备方法,其特征在于:步骤(2)中,所述惰性气体是氮气或氩气,所述紫外-可见光的波长为200~1000 nm,所述光照时间为0~60 min。
9.根据权利要求4所述的复合光催化剂MxP/ZnIn2S4的制备方法,其特征在于:步骤(1)中,所述锌源与硫源的摩尔比为1:10~1:60,所述铟源与硫源的摩尔比为1:10~1:30;
步骤(2)中,所述非贵金属无机盐与ZnIn2S4的质量比为0.1:1~5:1;所述磷源与ZnIn2S4的质量比为0.5:1~5:1。
10.一种如权利要求1所述的复合光催化剂MxP/ZnIn2S4或如权利要求3所述的方法制备的复合光催化剂MxP/ZnIn2S4的应用,其特征在于:所述的复合光催化剂MxP/ZnIn2S4应用于可见光催化分解水制氢。
CN201810421855.XA 2018-05-04 2018-05-04 复合光催化剂MxP/硫铟锌及其制备方法与应用 Active CN108620105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810421855.XA CN108620105B (zh) 2018-05-04 2018-05-04 复合光催化剂MxP/硫铟锌及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810421855.XA CN108620105B (zh) 2018-05-04 2018-05-04 复合光催化剂MxP/硫铟锌及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN108620105A true CN108620105A (zh) 2018-10-09
CN108620105B CN108620105B (zh) 2021-02-12

Family

ID=63695500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810421855.XA Active CN108620105B (zh) 2018-05-04 2018-05-04 复合光催化剂MxP/硫铟锌及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN108620105B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109261169A (zh) * 2018-10-31 2019-01-25 长江大学 可见光响应的高效复合光催化剂α-Fe2O3/In2S3的制备方法
CN109821562A (zh) * 2019-04-09 2019-05-31 淮北师范大学 一种MoP-Zn3In2S6复合纳米材料的制备方法
CN111013608A (zh) * 2019-12-31 2020-04-17 福州大学 一种金属镍修饰的硫铟锌光催化剂及其制备方法与应用
CN111036249A (zh) * 2019-12-23 2020-04-21 华南理工大学 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用
CN114160165A (zh) * 2021-12-13 2022-03-11 中国矿业大学 一种高熵合金/NiIn2S4复合光催化剂制备方法
CN114917959A (zh) * 2022-06-14 2022-08-19 攀枝花学院 Ni-ZIS/MIL-101催化剂及其制备方法
CN115424866A (zh) * 2022-09-01 2022-12-02 杭州电子科技大学 一种二维六方相、菱形相ZnIn2S4复合同质结光电极的制备方法
CN115739119A (zh) * 2022-11-08 2023-03-07 浙江工业大学 一种负载铜粒子的硫锌铟复合材料及其制备方法和应用
CN116099550A (zh) * 2022-11-08 2023-05-12 浙江工业大学 一种非贵金属铜修饰碳基复合材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086802A1 (en) * 2002-10-31 2004-05-06 Gibson Gary A. Two-dimensional materials and methods for ultra-high density data storage and retrieval
CN101805136A (zh) * 2010-03-11 2010-08-18 许昌学院 在ito导电玻璃上原位制备纳米网状硫铟锌三元化合物光电薄膜的化学方法
CN101927173A (zh) * 2010-02-01 2010-12-29 黑龙江省科学院石油化学研究院 一种分解硫化氢制氢气和硫的光催化剂及其制备方法
CN102407147A (zh) * 2011-09-19 2012-04-11 湖南理工学院 ZnIn2S4-石墨烯复合光催化剂的制备方法与应用
CN105854910A (zh) * 2016-05-20 2016-08-17 宁夏大学 一种CoP/CdS复合光催化剂及其制备和应用
US20170225153A1 (en) * 2016-02-05 2017-08-10 National Taiwan University Of Science And Technology Photocatalyst powder and hydrogen producing system
CN107115876A (zh) * 2017-02-27 2017-09-01 江南大学 一种无定型磷化钴/硫化镉纳米棒复合催化剂的简便制备方法
CN107138173A (zh) * 2017-05-10 2017-09-08 江南大学 一种无定型磷化镍/类石墨烯碳氮化合物复合催化剂的简便制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086802A1 (en) * 2002-10-31 2004-05-06 Gibson Gary A. Two-dimensional materials and methods for ultra-high density data storage and retrieval
CN101927173A (zh) * 2010-02-01 2010-12-29 黑龙江省科学院石油化学研究院 一种分解硫化氢制氢气和硫的光催化剂及其制备方法
CN101805136A (zh) * 2010-03-11 2010-08-18 许昌学院 在ito导电玻璃上原位制备纳米网状硫铟锌三元化合物光电薄膜的化学方法
CN102407147A (zh) * 2011-09-19 2012-04-11 湖南理工学院 ZnIn2S4-石墨烯复合光催化剂的制备方法与应用
US20170225153A1 (en) * 2016-02-05 2017-08-10 National Taiwan University Of Science And Technology Photocatalyst powder and hydrogen producing system
CN105854910A (zh) * 2016-05-20 2016-08-17 宁夏大学 一种CoP/CdS复合光催化剂及其制备和应用
CN107115876A (zh) * 2017-02-27 2017-09-01 江南大学 一种无定型磷化钴/硫化镉纳米棒复合催化剂的简便制备方法
CN107138173A (zh) * 2017-05-10 2017-09-08 江南大学 一种无定型磷化镍/类石墨烯碳氮化合物复合催化剂的简便制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG WEI等: ""Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation"", 《BEILSTEIN J. NANOTECHNOL.》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109261169A (zh) * 2018-10-31 2019-01-25 长江大学 可见光响应的高效复合光催化剂α-Fe2O3/In2S3的制备方法
CN109261169B (zh) * 2018-10-31 2021-04-27 长江大学 可见光响应的高效复合光催化剂α-Fe2O3/In2S3的制备方法
CN109821562A (zh) * 2019-04-09 2019-05-31 淮北师范大学 一种MoP-Zn3In2S6复合纳米材料的制备方法
CN109821562B (zh) * 2019-04-09 2021-08-24 淮北师范大学 一种MoP-Zn3In2S6复合纳米材料的制备方法
CN111036249A (zh) * 2019-12-23 2020-04-21 华南理工大学 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用
CN111013608A (zh) * 2019-12-31 2020-04-17 福州大学 一种金属镍修饰的硫铟锌光催化剂及其制备方法与应用
CN114160165A (zh) * 2021-12-13 2022-03-11 中国矿业大学 一种高熵合金/NiIn2S4复合光催化剂制备方法
CN114160165B (zh) * 2021-12-13 2024-02-27 中国矿业大学 一种高熵合金/NiIn2S4复合光催化剂制备方法
CN114917959A (zh) * 2022-06-14 2022-08-19 攀枝花学院 Ni-ZIS/MIL-101催化剂及其制备方法
CN114917959B (zh) * 2022-06-14 2023-06-23 攀枝花学院 Ni-ZIS/MIL-101催化剂及其制备方法
CN115424866A (zh) * 2022-09-01 2022-12-02 杭州电子科技大学 一种二维六方相、菱形相ZnIn2S4复合同质结光电极的制备方法
CN115424866B (zh) * 2022-09-01 2024-04-05 杭州电子科技大学 一种二维六方相、菱形相ZnIn2S4复合同质结光电极的制备方法
CN115739119A (zh) * 2022-11-08 2023-03-07 浙江工业大学 一种负载铜粒子的硫锌铟复合材料及其制备方法和应用
CN116099550A (zh) * 2022-11-08 2023-05-12 浙江工业大学 一种非贵金属铜修饰碳基复合材料及其制备方法和应用
CN115739119B (zh) * 2022-11-08 2024-05-10 浙江工业大学 一种负载铜粒子的硫锌铟复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108620105B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN108620105A (zh) 复合光催化剂MxP/硫铟锌及其制备方法与应用
Zhao et al. Gear-shaped mesoporous NH2-MIL-53 (Al)/CdS PN heterojunctions as efficient visible-light-driven photocatalysts
Li et al. Noble-metal-free MOF derived hollow CdS/TiO2 decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution
Akbarzadeh et al. Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants
Chen et al. Electron-rich interface of Cu-Co heterostructure nanoparticle as a cocatalyst for enhancing photocatalytic hydrogen evolution
CN111729675B (zh) ZIF-67衍生的Co3S4与ZnIn2S4形成的复合光催化剂的制备方法及应用
Guo et al. Review on the advancement of SnS 2 in photocatalysis
CN103480398B (zh) 一种微纳结构石墨烯基复合可见光催化材料及其制备方法
CN106622322B (zh) 一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法
CN104324733B (zh) 无贵金属高活性光解水制氢催化剂的制备方法
Lv et al. Fabrication of magnetically recyclable yolk-shell Fe 3 O 4@ TiO 2 nanosheet/Ag/gC 3 N 4 microspheres for enhanced photocatalytic degradation of organic pollutants
CN107737593B (zh) 一种TiO2纳米管负载的双金属催化剂的制备方法
CN107754822A (zh) 一种基于CdSe/BiOCl复合光催化剂的制备及其应用
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
Qi et al. Comparison of Pt and Ag as co-catalyst on g-C3N4 for improving photocatalytic activity: experimental and DFT studies
CN108636436A (zh) 有效构筑z型三元异质结光催化剂的制备方法
CN111036249A (zh) 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用
Zhang et al. Electroless-hydrothermal construction of nickel bridged nickel sulfide@ mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production
Liu et al. CoNi bimetallic alloy cocatalyst-modified TiO2 nanoflowers with enhanced photocatalytic hydrogen evolution
CN110302809A (zh) 一种负载型光催化剂及其制备方法
CN110280276A (zh) 负载型光催化剂NiSe2/CdS的制备方法及其应用
Zhang et al. Efficient charge separation of photo-Fenton catalyst: Core-shell CdS/Fe3O4@ N-doped C for enhanced photodegradation performance
Liu et al. Nano-flower S-scheme heterojunction NiAl-LDH/MoS 2 for enhancing photocatalytic hydrogen production
Li et al. Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications
Liu et al. CdS nanoparticles with highly exposed (1 1 1) facets decorated on Pt/TiO2 nanotubes for highly efficient photocatalytic H2 evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant