CN108603851A - 缺陷检查装置 - Google Patents

缺陷检查装置 Download PDF

Info

Publication number
CN108603851A
CN108603851A CN201680081653.4A CN201680081653A CN108603851A CN 108603851 A CN108603851 A CN 108603851A CN 201680081653 A CN201680081653 A CN 201680081653A CN 108603851 A CN108603851 A CN 108603851A
Authority
CN
China
Prior art keywords
mentioned
sample
ultraviolet light
flaw detection
detection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680081653.4A
Other languages
English (en)
Other versions
CN108603851B (zh
Inventor
长谷川正树
小贯胜则
兼冈则幸
村越久弥
尾方智彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN108603851A publication Critical patent/CN108603851A/zh
Application granted granted Critical
Publication of CN108603851B publication Critical patent/CN108603851B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/29Reflection microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24475Scattered electron detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Abstract

本发明的目的在于提供能够实现潜伤等的高精度检测或者潜伤等的高速检测等的缺陷检查装置。为了实现该目的,提出了一种缺陷检查装置,其具备:试样支承部件,其对从电子源释放出的电子束所照射的试样进行支承;负电压施加电源,其用于形成针对上述电子束的减速电场,该电子束照射到由该试样支承部件支承的试样;摄像元件,其对由于上述减速电场而未到达上述试样就反射了的电子进行成像;紫外光源,其向上述试样照射紫外光;以及运算处理装置,其对基于由上述摄像元件得到的信号来生成的图像进行处理,该运算处理装置基于至少在两个照射条件下照射上述紫外光时得到的多个图像信号,判定上述试样的缺陷的种类。

Description

缺陷检查装置
技术领域
本发明涉及晶圆的缺陷检查方法以及缺陷检查装置,特别是涉及根据基于带电粒子照射而形成的图像来检查缺陷的方法以及装置。
背景技术
为了进行晶圆的缺陷检查,使用电子射线装置评价图像,该图像是检测通过对试样照射带电粒子束而得到的电子而由此形成的。在专利文献1中公开了根据基于照射电子束而得到的图像信号来检测缺陷的缺陷检查装置。在专利文献1中公开了一种装置,其通过将与所照射的电子射线的加速电压接近的负电压施加到晶圆,由此使照射到晶圆表面上的检查视场整体的电子射线在晶圆表面附近进行反转,通过电子透镜对反转后的电子进行成像而得到用于检查的电子图像。通过对反转的该电子(镜面电子)进行成像,能够形成图像。
另外,作为这种镜面电子显微镜的用途,在非专利文献1中说明了存在检测半导体结晶的缺陷的情况。在非专利文献1中说明了以下情况:在照射紫外线的状态下得到的镜面电子图像适合于检测SiC外延层的重叠缺陷。通过照射紫外线而在试样内部产生的电荷在SiC外延层的重叠缺陷部分被捕获并局部地带电,由此使表面的等势面变形。即使等势面稍微变形也使镜面电子图像产生浓淡,因此能够使用镜面电子显微镜高灵敏度地检测重叠缺陷。
在先技术文献
专利文献
专利文献1:日本专利第3534582号(对应美国专利USP6,979,823)
非专利文献
非专利文献1:M.Hasegawa and T.Ohno,J.Appl.Phys.,110,073507(2011)
发明内容
在半导体设备制造工序中,在研磨成镜面状的半导体晶圆上形成精细的电路。当在这样的晶圆上存在异物、划痕或者结晶缺陷、结晶的变质层等时,在电路图案的形成过程中产生缺陷、材质劣化,制造出的设备无法正常地进行动作或者动作的可靠性劣化而无法作为产品而完成。
在使用上述SiC的功率设备的情况下,与以往使用的半导体即Si相比绝缘击穿耐压等作为功率设备材料的各种特性良好,但是由于化学稳定性良好且较硬,因此难以加工和研磨成晶圆形状。
在SiC晶圆上形成设备图案之前,形成SiC外延层。晶圆通过机械研磨来完成镜面加工,但是还通过实施CMP(化学机械研磨)并去除通过机械研磨产生的加工变质层,由此需要在原子级别生成平坦且无结晶干扰的表面。然而,难以设定CMP处理的最佳时间,有时由机械研磨产生的加工变质区域残留于表面内部以及形成极细的划痕。在残留的加工变质区域的表面为平坦的情况下和划痕的大小较小的情况下,难以进行检测。以下,将这样的变质区域和划痕称为“潜伤”。
在残留有潜伤的晶圆表面上使外延层生长时,以潜伤为起点,有时在原子步骤中发生异常而形成较大的凹凸结构。当在表面产生了这种凹凸的表面上形成设备时,耐高压性明显下降,因此无法用作功率设备。因而,是否残留有潜伤的检查极其重要。
在非专利文献1所公开的基于照射紫外光的局部带电状态下,进行如专利文献1所公开的基于镜式显微镜的观察,由此能够使缺陷可视化,但是缺陷存在很多种类,在上述那样的镜式显微镜中,有时无法充分进行其识别。特别是,由于照射紫外光,有时不同种类的缺陷也被观察为相同种类。另一方面,紫外光照射为对缺陷的可视化的最佳方法,要求高灵敏度地检测缺陷以及提高识别缺陷的能力并存。另外,为了提高晶圆的生产性,还要求检查工序的高速化。
以下,提出了一种以潜伤等的高精度检测或者潜伤等的高速检测中的至少一个为目的的缺陷检查装置。
作为用于实现上述目的的一个方式,提出了一种缺陷检查装置,其具备:试样支承部件,其对从电子源释放出的电子束所照射的试样进行支承;负电压施加电源,其用于形成针对上述电子束的减速电场,该电子束照射到由该试样支承部件支承的试样;摄像元件,其使由于上述减速电场而未到达上述试样就反射了的电子进行成像;紫外光源,其向上述试样照射紫外光;以及运算处理装置,其对基于由上述摄像元件得到的信号而生成的图像进行处理,该运算处理装置基于至少在两个照射条件下照射上述紫外光时得到的多个图像信号,来判定上述试样的缺陷的种类。
根据上述结构,能够高精度地判断缺陷或者实现高速检测。
附图说明
图1是说明镜面电子显微镜检查装置的概要的图。
图2是说明由照射紫外线而产生的加工变质区域(潜伤)的带电的图。
图3是说明镜面电子显微镜的对比度形成原理的图。
图4是表示使用镜面电子显微镜的检查工序的流程图。
图5是说明由镜面电子显微镜得到的缺陷信息的显示例的图。
图6是说明改变紫外线的照射条件时的镜面电子显微镜面的变化的图。
图7是说明改变紫外线的照射条件时的镜面电子显微镜面的变化得图。
图8是说明改变紫外线的照射条件时的镜面电子显微镜面的变化的图。
图9是表示使用镜面电子显微镜的自动缺陷检查工序的流程图。
图10是表示使用镜面电子显微镜的自动缺陷检查工序的流程图。
图11是表示根据从镜面电子显微镜图像得到的信息来识别缺陷的种类的工序的流程图。
图12是表示包括镜面电子显微镜的缺陷检查系统的一例的图。
具体实施方式
作为晶圆检查技术,使用了将具有从可视至紫外的某一波长的光(以下,简称为光)照射到晶圆表面而检测到在表面散射的光的技术(光学散射式检查技术)和应用了暗场摄像等光学显微镜技术的检查装置。但是,由于半导体元件精细化的发展等,在这些现有的使用光的检查技术中,无法检测缺陷而对晶圆的质量管理带来障碍。
对形成SiC的外延层带来严重影响的晶圆表面内部的加工变质区域(潜伤)在以往的光学检查技术中无法进行检测且无法进行管理。因此,即使试图实现CMP处理的程序改进、高速化,由于不存在晶圆表面有无潜伤和存在密度等的评价单元,因此无法决定最佳的程序条件。其结果是,妨碍用于提高晶圆生产性的技术开发,从而无法降低SiC晶圆的单价。
以下说明的实施例涉及一种能够检测潜伤等的镜面电子显微镜,特别是涉及一种能够实现检查的高速化、高精度化的具备镜面电子显微镜的缺陷检查装置。形成外延层之前的SiC晶圆的杂质浓度与外延层本身的杂质浓度相比,高出大约一万倍至十万倍从而导电性高,因此认为即使通过照射紫外线使潜伤带电,也无法保持带电电荷。然而,通过发明人的研究可知:由于在潜伤的情况下其存在区域被限定为晶圆表面附近,因此即使晶圆的杂质浓度高也在观察所需的足够的时间保持局部带电。
在以下说明的实施例中,主要说明一种缺陷检查装置,其为镜面电子显微镜,其检测在照射紫外线的位置照射电子束而得到的镜面电子,获取在第一和第二至少两个条件下照射紫外线时的多个镜面电子显微镜图像,使用这些多个镜面电子图像来识别缺陷。更具体地说,关于镜面电子图像所出现的对比度发生变化的部位,将该镜面电子图像与改变了照射强度等紫外线的照射条件的图像进行比较,根据是否存在镜面电子图像的差异来确定缺陷种类。
根据上述结构,能够对外延层成长前的晶圆表面确定潜伤等,因此能够适当地评价CMP处理后的晶圆表面状态。通过进行这样的评价,能够实现CMP处理的优化,从而能够提高晶圆的生产性。
实施例1
使用图1来说明使用了镜面电子显微镜的检查装置。但是,在图1中省略用于真空排气的泵及其控制装置、排气系统配管、被检查晶圆的输送系统等。另外,为了便于说明,电子射线的轨道与实际轨道相比更为夸张。
首先,说明与电子射线照射有关的部分。从电子枪101释放出的照射电子射线100a一边由聚光透镜102会聚一边由分离器103偏转,形成与成为检查对象的晶圆104大致平行束的电子射线来进行照射。电子枪101使用光源径较小且能够得到较大的电流值、Zr/O/W型的肖特基电子源,但是也可以使用能够得到更高电流值的LaB6电子源或亮度更高的冷阴极电子源等的电子源。另外,电子枪101也可以是在电子源附近配置磁透镜的磁场叠加型电子枪。由电子枪控制装置105供给并控制电子枪101的引出电压、被引出的电子射线的加速电压以及电子源灯丝的加热电流等的电子枪的运转所需的电压和电流。在将肖特基电子源或冷阴极电子源使用于电子源的情况下,由于需要在电子枪101内保持10-6Pa以下这种超高真空,因此具备在维护时等用于维持真空的遮蔽阀。
图中,聚光透镜102被描述为一个透镜,但是也可以是为了得到平行度更高的照射电子射线而将多个透镜、多极子进行组合而得到的电子光学系统。将聚光透镜102调整为在物镜106的后焦点面使电子射线聚焦。物镜106为由多个电极构成的静电透镜或者磁透镜。
为了使朝向被检查晶圆104的照射电子射线与从被检查晶圆104返回的镜面电子射线进行分离而设置分离器103。在本实施例中,使用利用了E×B偏转器的分离器。E×B偏转器可以设定为使来自上方的电子射线进行偏转而使来自下方的电子射线直线传播。在该情况下,如图所示,供给照射电子射线的电子光学镜筒倾斜,使对反射的电子进行成像的电子光学镜筒竖立。另外,还能够使用仅利用了磁场的偏转器来作为分离器。在与电子射线的光轴垂直的方向上设置磁场,使照射电子射线向被检查晶圆104的方向进行偏转,来自被检查晶圆104的电子向与照射电子射线的射来方向正相反的方向进行偏转。在该情况下,照射电子射线镜筒的光轴与电子射线成像镜筒的光轴配置成以物镜的光轴为中心而左右对称。
在需要对由于分离器而使照射电子射线100a偏转时产生的像差进行校正的情况下,也可以追加配置像差校正器。另外,在分离器103为磁偏转器的情况下,设置辅助性线圈来进行校正。
由分离器103偏转后的照射电子射线100a通过物镜106形成为向被检查晶圆104表面垂直地入射的平行束的电子射线。如上所述,以在物镜106的后焦点100b处聚焦电子射线的方式调整照射系统聚光透镜102,因此能够对被检查晶圆104照射平行性高的电子射线。照射电子射线100a所照射的被检查晶圆104上的区域具有例如10000μm2等这样的面积。物镜106具备用于将镜面电子提升至被检查晶圆104表面上方的阳极。
在由移动台控制装置107控制的移动台108的上方经由绝缘部件设置有晶圆架109,在该晶圆架109上放置有被检查晶圆104。移动台108的驱动方式为正交的两个直线运动、或者将被检查晶圆104的中心设为旋转中心的旋转运动和向晶圆的半径方向的直线运动、或者它们的组合。另外,除此以外,除此以外,也可以追加上下方向的直线运动、倾斜方向的运动。移动台108通过这些运动使被检查晶圆104表面上的整面或者一部分位于电子射线照射位置即物镜106的光轴上。
为了在被检查晶圆104表面形成负电位,高压电源110(负电压施加电源)将与电子射线的加速电压大致相等的负电压施加到晶圆架109。由于通过施加到晶圆架109(试样支承部件)的负电压而形成的减速电场,照射电子射线100a在被检查晶圆104的跟前减速。对施加到晶圆架109的负电压进行细微调整,以便在与被检查晶圆104相撞之前使电子轨道向相反方向反转。由晶圆反射的电子成为镜面电子100c。
镜面电子100c通过物镜106或其它成像透镜进行聚焦,投影到摄像元件,由此被变换为图像信号。在本实施例中,分离器103为E×B偏转器,因此能够控制为对来自下方的电子射线不具有偏转作用,镜面电子100c在竖立的成像系统列方向上直线传播,该第一图像由中间电子透镜111、投影电子透镜112依次进行成像。
这些中间透镜111和投影透镜112为静电或者磁透镜。最终的电子图像由图像检测部113进行放大投影。在图1中,投影电子透镜112被描绘成一个电子透镜,但是为了进行高倍率的放大或图像失真的校正等,有时也由多个电子透镜或多极子构成。虽然在本图中并未记载,但是根据需要准备用于更详细地调整电子射线的偏转器或散光矫正器等。
来自紫外线光源113的紫外线由分光器114分光,通过紫外线光学元件115照射到被检查晶圆104。被检查晶圆104保持在真空中,因此通过由透射紫外线的材料(例如石英等)制作的窗分为大气侧与真空侧,将从紫外线光学元件115照射的紫外线隔着该窗进行照射。或者,也可以将紫外线光源113设置于真空内。在该情况下,不仅是基于分光器114的波长选择,还能够使用释放出特定发光波长的紫外光的固体元件等。将紫外线的照射波长例如设为与大于晶圆材料的带隙的能量对应的波长。另外,有时也根据材料的带隙内能级的状况,选择能量小于带隙能量的波长来作为使半导体材料内产生载带的波长。在紫外线光源113、分光器114、紫外线光学元件115之间通过光纤等传递紫外线。另外,也可以是使紫外线光源113、分光器114一体化后的结构。另外,在可以使紫外线光源113具备仅透射特定范围波长的滤波器的情况下,有时也不使用分光器114。
图像检测部116(摄像元件)将镜面电子100c的图像变换为电信号并发送至缺陷判定部117。图像检测部116作为一例有时由将电子射线变换为可见光的荧光板、拍摄荧光板的电子图像的照相机构成,另外,作为另一例还有时由检测电子的CCD元件等二维检测器构成。也可以具备使电子图像的强度或荧光的强度倍增的机构。
一边驱动移动台108,一边从图像检测部116输出晶圆104表面的各位置的镜面电子图像。
移动台108有时在进行各种拍摄时停止或者有时不停止并保持固定的速度而持续移动。在后者的情况下,图像检测部116进行时间延迟积分(TDI;TimeDelay Integration)方式的拍摄。由于不需要移动台108的加减速时间,因此能够高速地进行检查动作,但是需要使移动台108的移动速度与图像元件的信号传送速度(line rate)同步。
以上述TDI摄像动作的条件为代表,从检查装置控制部118输入输出各种装置各部的动作条件。向检查装置控制部118预先输入产生电子射线时的加速电压、电子射线偏转幅度和偏转速度、台移动速度、来自图像检测元件的图像信号取入时机、紫外线照射条件等各种条件,对移动台控制装置107、控制各电子光学元件的电子光学系统控制装置119、紫外线光源113和分光器114的控制系统等进行统一地控制。检查装置控制部118还有时分担作用由通过通信线路相结合的多个计算机构成。另外,设置有带监视器的输入输出装置120,可以由用户来进行检查装置的调整、动作条件的输入以及检查的执行等。
当由用户从带监视器的输入输出装置120输入检查的执行命令时,驱动移动台108而将在晶圆104上指定的检查开始位置移动至物镜106的中心正下方。在图像检测部116获取镜面电子图像之后,将移动台108移动设定值相对应的量并拍摄下一镜面电子图像,然后,重复执行直到到达设定于检查结束位置的摄像位置为止。有时也重复进行该动作直到晶圆104的大致整面的拍摄结束为止,但是有时也在检测晶圆104的固定面积之后,移动至其它位置,再次开始检查固定的面积。比检查晶圆104的大致整面的情况更优选的是上述镜面电子图像的TDI摄像。
接着,使用图2说明基于镜面电子显微镜的、残留于SiC晶圆表面的加工变质区域(潜伤)的检测原理。在本实施例中,使用并检测基于紫外线照射的加工变质区域的带电现象。在图2的(a)中示意性地示出未照射紫外线时的晶圆表面截面的状况。(1)为在平坦表面下部存在加工变质区域的情况,在图中例示为三角形状的加工变质区域。由于在该事例中表面不存在凹凸,因此无法通过现有的光学方法进行检测。(2)为表面例如存在划痕等凹形状,进而在其内部残留有加工变质区域的事例。(3)为表面存在凹形状且内部并未伴随存在加工变质区域的事例。在(2)和(3)中,在凹处宽度大于衍射界限的情况下,能够通过光学方法进行检测,但是无法辨别内部是否存在加工变质区域。在晶圆表面上同时示出照射电子反转的等势面。由于在(1)的事例中并不存在局部带电、表面的凹凸,因此等势面为平坦。在(2)、(3)的事例中,不存在局部带电,但是表面存在凹处,因此沿其形状而等势面也会凹陷。
在图2的(b)中例示了向这些缺陷部位照射紫外线时的电位变化。所照射的紫外线的波长比与晶圆材料的带隙能量(通常在用于晶圆的4H-SiC的情况下为3.4eV)对应的波长更短的波长较为合适。当照射紫外线时,在内部产生载带直到透射紫外线的深度为止。在n型半导体的情况下,电子被捕获于加工变质区域并局部带负电。
在p型半导体的情况下,为了捕获空穴而带正电。图的等势面表示在n型半导体的情况下加工变质区域带负电的情况。在(1)的事例中,产生局部负带电区域,等势面被向上推而成为凸形状。在(2)的事例中,表面呈v凹形状,但是基于负带电的上推效果更高,等势面仍然呈凸形状。在(3)的事例中,由于不存在带电的区域,因此不管是否存在紫外线的照射,等势面均保持凹陷形状。
镜面电子显微镜对上述等势面的凹凸进行明暗变换并进行图像化。使用图3说明其原理。图3的(a)示意性地示出表面存在凹凸的情况下的照射电子的轨道反转的样子。与表面形状相对应地,等势面发生变形。在镜面电子显微镜中,照射电子射线大致平行地照射到试样表面,在固定的等势面上轨道反转。在表面凹陷且等势面凹陷的情况下,电子射线以汇聚的方式反转。另一方面,在表面呈凸形状且等势面凸起的情况下,电子射线以发散的方式轨道反转。
轨道反转后的电子通过物镜形成电子图像。通过使物镜的聚焦面从试样表面偏离,可以将等势面的凹凸显示为电子图像的明暗。在图3中,如虚线所示,将聚焦面设定于表面的更上方处。此时,在等势面凹陷且电子射线汇聚的同时发生轨道反转的情况下,电子射线集中于聚焦面上,在电子图像上作为明亮点而出现。另一方面,在等势面凸起且电子射线发散的同时发生轨道反转的情况下,在聚焦面上电子密度降低,作为黑暗部分而出现于电子图像。
如果设为假设将聚焦面设定于试样表面的更下方处的光学条件,则与图3的情况相反地,成为等势面凸起则明亮、凹陷则暗淡的对比度而显现于电子图像。另外,如图3的(b)所示,即使在表面不存在凹凸也存在局部地带正电或者负电的区域的情况下,等势面也会凹陷或者凸起等,因此与表面的凹凸同样地,作为图像的明暗而显现于电子图像。此外,虽然针对通过物镜来调整聚焦面的位置的示例进行了说明,但是也可以将物镜的聚焦设为固定,使用后段的中间电子透镜或投影电子透镜来调整聚焦条件。
当使用图2的现象以及图3的镜面电子图像形成原理时,能够通过镜面电子显微镜面来辨别潜伤等缺陷。例如在图2的(a)那样的平坦的潜伤的情况下,在不照射紫外线的状态下在镜面电子图像中不会显现为明暗,但是当照射紫外线时等势面凸起而成为图3的(b)中的(2)的状况,在镜面电子图像中以暗淡的对比度显现。即,在照射紫外线的同时检测出黑暗对比度时,将停止照射紫外线或者减小强度等变化附加到紫外线照射条件,由此如果其暗淡的对比度消失或者变淡则可以判断为潜伤。
以下,将基于上述原理的、镜面电子显微镜检查装置的检查动作的流程在图4中示出。检查装置的各电子光学元件(电子枪101、聚光透镜102、分离器103、物镜106、中间电子透镜111、投影电子透镜112)、图像检测部116、紫外线照射系统等被设定为预先调整好的条件。
首先,在(1)的“检查条件的输入”步骤中,用户指定晶圆上的检查区域。在带监视器的输入输出装置120上除了显示检查区域的映图以外,还显示拍摄图像的预测张数和整个检查时间的预测值等,考虑为用户能够高效率地设定检查条件。针对由用户生成的检查区域、检查实施顺序等的各种条件被存储到检查装置控制部118,由用户调出这些条件,由此能够对多个晶圆实施相同检查动作。如果决定检查条件,则用户经由带监视器的输入输出装置120命令开始进行检查动作。如果检查装置控制部118接收到命令,则开始将晶圆投放(装载)到装置。
在(2)的“晶圆装载动作”步骤中,由用户指定的被检查晶圆104被载置于晶圆架109,晶圆架109设置于装置内的移动台108上。之后,移动台108移动至由用户预先指定的位置。同时,存储于检查装置控制部118的负电位通过高压电源110施加到晶圆架109。关于物镜106的结构要素中、用于在晶圆104上方形成电场的阳极,将根据情况在该步骤中进行施加,从而能够降低放电的风险。
在(3)的“摄像条件调整”步骤中,通过移动台108,移动至由用户指定的或者登记在检查装置控制部118中的实施摄像条件调整的晶圆位置。在该位置处照射电子射线和紫外线。开始照射紫外线既可以通过点亮光源来实施,也可以设置快门而通过打开快门来实施。照射电子射线通过解除消隐(未图示)或者电子枪101的遮蔽阀的打开动作来实施。镜面电子图像由图像检测部116取入并显示在带监视器的输入输出装置120中。用户一边观察所显示的镜面电子图像一边根据需要来调整向晶圆架109的供给负电压值、其它电子光学条件。
在(4)的“检查图像的获取”步骤中,按照用户在步骤(1)中设定的、移动至检查开始位置并在步骤(1)中输入的摄像坐标,一边通过来自移动台控制装置107的控制进行动作,一边通过图像检测部116获取镜面电子图像。通过电子光学系统控制装置119随时维持获取镜面电子图像所需的电子光学元件的条件。随时由缺陷判定部117对镜面电子图像进行图像解析,判断是否检测出特定形状的镜面电子图像对比度。该特定形状为用户预先登记到缺陷判定部117的形状,例如为条纹状、椭圆形等。这些形状被登记为如果残留有加工变质区域就能够得到的形状。
在(5)的“加工变质区域的判断”步骤中,当检测出在步骤(4)中推定为加工变质区域的镜面电子图像的对比度时,使移动台108停止并确定加工变质区域的种类。按照上述基本原理,对照射紫外线的强度等施加变化来实施该判断。根据是否发现由紫外线照射条件的变化引起的镜面电子图像的差来判定加工变质区域的种类。当结束判断缺陷种类时,将该移动台的位置、是否为加工变质区域的判断结果等记录到检查装置控制部118,再次返回至步骤(4)的检查图像获取模式。
图9是表示使用镜面电子显微镜图像来进行缺陷种类判定的更具体的工序的流程图。图9例示的处理内容作为控制电子显微镜的动作程序(制程程序)而存储到规定的存储介质。图12是表示包括运算处理装置1203的缺陷检查系统的一例的图,其中,该运算处理装置1203具备存储用于自动执行缺陷检查的制程程序的存储介质(存储器1206)。在图12例示的系统中包括:具备镜面电子显微镜主体1201以及控制镜面电子显微镜的控制装置1202的镜面电子显微镜1200、供给用于控制镜面电子显微镜1200的信号并且对由镜面电子显微镜得到的图像信号进行处理的运算处理装置1203、用于输入所需的信息的输入部和用于输出检查信息的输入输出装置1210、以及外部的检查装置1211。
在运算处理装置1203中包括将存储于存储器1203的动作程序传递至控制装置1202的制程程序执行部1204以及对由镜面电子显微镜获取到的图像信号进行处理的图像处理部1205。在图像处理部1205中包括:判定在图像数据中是否包含缺陷候选等的图像解析部1207、从缺陷候选中判定缺陷的种类的缺陷判定部1208、以及根据缺陷判定来判定是否执行使用了镜面电子显微镜图像的再次检查等的检查与否判断部1209。在图像解析部1207中,例如根据图像的二值化处理等来识别暗部和亮部,判断其暗部区域或者亮部区域的形状等。在形状判断中,例如当存在特定方向上较长且宽度窄的线状的亮度位移区域时,将该部分判断为缺陷候选。另外,在缺陷判定部1208中,按照图9、图11所示的流程来确定缺陷种类。并且,针对在检查与否判断部1209中根据缺陷候选信息来判定是否再次进行基于图像获取的检查的检查与否判断部1209的判断处理,使用图9的流程图来更加详细地说明。
图1、图12例示的镜面电子显微镜按照图9例示的流程图执行自动检查。首先,将试样(在本实施例的情况下SiC晶圆)导入到镜面电子显微镜的真空试样室(步骤901)。接着,根据存储于制程程序中的检查位置信息来控制移动台108,使检查对象位置与电子束的照射位置对准(步骤902)。在整面检查的情况下,以网罗晶圆整个区域的方式对电子束的照射位置进行位置对准。接着,对位置对准后的检查位置照射紫外光并且照射电子束,由此获取照射了紫外光的状态的图像(步骤903、904)。在图像解析部1207中,判定在得到的图像信号中是否存在具有对比度的规定形状区域(步骤905)。在本实施例的情况下,由于进行将线状的图案捕捉为缺陷的检查,因此尽管进行除了线状图案以外均不视为缺陷的判定,但是也可以不进行形状判定,而将存在带有对比度的区域的图像无遗漏地设为缺陷候选图像。另外,也可以将其它形状鉴别为缺陷候选。
接着,根据线状图案的明暗的判断结果,检查与否判断部1209在停止照射紫外光的基础上,进行照射电子束,由此进行图像生成(步骤906、907)或者作为图2的(3)例示的“非潜伤的划痕”而进行缺陷判定(步骤909)。图像解析部1207对在不照射紫外光的状态下获取的图像进行线状部位的亮度的判断(步骤908)。缺陷判定部1208使用如图2例示的现象,将线状部位位移为“暗→无对比度”的部分判断为“平坦的潜伤”,将位移为“暗→亮”的部分判断为“随着划痕产生的潜伤”(步骤909)。此外,在不管是否存在紫外光照射而线状部分均保持黑暗的情况下,也可以鉴别为未知缺陷或者并未适当地进行检查而产生错误。另外,也可以评价为“其它结晶应变”或者判断为“无潜伤”。另外,如果能够确定这样缺陷的种类,则也可以进行该判断。运算处理装置1203将所述判定信息(缺陷识别信息)和晶圆的坐标信息一并登记到存储器1206等(步骤910)。将上述处理持续到晶圆整面或者指定的检查对象位置的检查结束为止。
在本实施例中,为了实现检查的效率化、高速化,对“并非潜伤的划痕”进行跳过基于不进行照射紫外光的图像形成的检查工序的处理。通过采用本实施例所例示的判断算法,能够将“不照射紫外光的状态下的图像”的获取设为所需最小限度,从而能够实现检查的效率化、高速化。即,一边抑制图像获取的工时,一边能够享有基于照射紫外光的缺陷部位的可视化效果。
图10是表示针对晶圆整面或者所有指定检查位置来获取照射了紫外光的状态的图像以及不照射紫外光的状态的图像并判断缺陷种类的工序的流程图。步骤901~908、910为与图9所例示的流程图相同的处理。在步骤1001中,根据图11所例示的判定算法,判定缺陷种类。此外,在图10中说明了同时进行伴随光束照射的检查和缺陷解析的示例,但是对于晶圆整面或者所有指定检查位置,也可以首先获取照射了紫外光的状态的图像以及不照射紫外光的状态的图像并进行存储,使用所存储的信息,在后文中统一进行缺陷判定。
在图11所例示的解析处理工序中,首先解析照射了紫外光的状态下得到的图像,判别能够识别为其它部分的对比度区域的亮度(步骤1101)。在无法识别对比度区域的情况下,识别为不存在缺陷(步骤1103)。接着,解析未照射紫外光的状态下得到的图像,判断对比度区域的亮度(步骤1102)。根据其解析结果,将“暗→无对比度”判断为“平坦的潜伤”、将“暗→亮”判断为“随着划痕产生的潜伤”、将“亮→亮”判断为“非潜伤的划痕”、将除此以外的部分判断为“其它结晶应变”、“无潜伤”、未知缺陷或者无法检查(错误)(步骤1103)。
如上所述,不仅是亮度信息,还将与改变带电条件时的图像的变化有关的信息设为缺陷的判断基准,由此能够实现缺陷的高精度检测。
此外,也可以根据由光学式检查装置等外部的检查装置1211得到的缺陷的坐标信息,指定检查位置。
在图6中例示了形成外延层之前的n型4H-SiC晶圆的加工变质区域判定工序。图6的(a)是在图4的步骤(4)中镜面电子图像所出现的条纹状对比度的模型图。物镜的聚焦条件为设定在晶圆表面的上方,当等势面变形为凸状时,成为暗淡的对比度。图6的(a)那样的暗淡的条纹状的对比度表示加工变质区域有可能存在局部负带电的情况。
例如通过缺陷判定部117、图像解析部1207的图像处理来判断在镜面电子图像中是否出现暗淡对比度。检查装置控制部118使移动台107停止,转移到其对比度是由加工变质区域的负带电所形成还是平面上的凸形状的反映的判断作业。在图6中通过模型图示出的、加工变质区域的镜面电子图像伴随紫外线照射条件变化而发生变化为一例,根据加工变质区域的宽度、深度不同而各种各样。与要检测的加工变质区域的大小一致地由用户设定作为判断基准的镜面电子图像对比度的变化量。
通过关闭紫外线光源113的快门,能够停止向晶圆照射紫外线。在停止照射紫外线时,在如图6的(b)的镜面电子图像的模型图那样变换为明亮的对比度的情况下,判定为与图2的(a)、(b)中的(2)的事例对应的、表面具有的凹陷的条纹状的加工变质区域。另一方面,在如图6的(c)那样几乎看不到变化的情况下,判定为无加工变质区域。在缺陷判定部117中生成图6的(a)的镜面电子图像与图6的(b)或者(c)的差异图像,根据是否超过预先设定的差的似然度来进行紫外线停止前后的镜面电子图像的变化的判断。
如果结束拍摄由用户设定的检查范围的镜面电子图像,则检查装置控制部118在带监视器的输入输出装置120中将拍摄到加工变质区域的移动台的位置进行映图显示。图5示出带监视器的输入输出装置120的GUI(图形用户界面)中的显示例。仅提取显示加工变质区域的映图的部分来进行图示。在该GUI中,检查对照的晶圆尺寸显示在晶圆尺寸显示栏121中。在映图显示区域122中对显示结果与晶圆的外形一起显示。连续拍摄到的晶圆上的位置在观察位置显示123中示出。在本例中,示出将晶圆上呈十字形状并且在45度方向上观察右上方的四半圆的情况。通过加工变质区域存在位置显示124示出在步骤(5)的加工变质区域判断中判定为加工变质区域的位置。判定为不是加工变质区域的位置也通过显示125与加工变质区域区分显示。另外,也可以根据镜面电子图像对比度的差异、基于紫外线照射条件变化的差的大小,根据需要进一步进行分类而显示在映图显示区域112中。另外,也可以选择性地显示在照射紫外线过程中等势面为凸起的位置,作为有可能为加工变质区域的位置,明示于上述映图。
根据本实施例,在使用镜面电子显微镜的检查装置中,能够检测SiC晶圆的加工变质区域(潜伤)。
实施例2
在实施例1中,说明了通过打开和关闭照射紫外线光源的快门来进行紫外线照射、非照射的切换的示例。在本实施例中,捕捉通过改变紫外线照射强度而产生的镜面电子图像的变化来判定是否存在加工变质区域。
在图7中说明基于减小紫外线强度的加工变质区域的判定方法。与图6同样地,例示将形成外延层之前的n型4H-SiC晶圆设为对象的判定法。图7的(a)是在图4的步骤(4)中检查晶圆表面的过程中镜面电子图像所出现的条纹状的对比度的模型图。示出加工变质区域有可能存在局部负带电的情况。在本实施例中,变更紫外线光源113的紫外线强度设定,减小向晶圆的紫外线照射强度。在紫外线光源113本身不存在紫外线强度设定功能的情况下,附加使用了滤波器、光圈的调光机。
在减小紫外线照射强度时,在如图7的(b)的镜面电子图像的模型图那样条纹的粗细、明暗发生变化的情况下,判定为与图2的(a)、(b)的(2)的事例对应的、表面具有凹陷的条纹状的加工变质区域。另一方面,在如图7的(c)那样几乎看不到变化的情况下,判定为无加工变质区域。在缺陷判定部117中生成图7的(a)的镜面电子图像与图7的(b)或者(c)的差异图像,根据是否超过预先设定的差的似然度来判断紫外线停止前后的镜面电子图像的变化。
在图7中通过模型图示出的、加工变质区域的镜面电子图像随着紫外线照射条件变化而发生的变化为一例,根据加工变质区域的宽度、深度不同而多种多样。与要检测的加工变质区域的大小一致地由用户设定作为判断基准的镜面电子图像对比度的变化量。
根据本实施例,在使用镜面电子显微镜的检查装置中,能够检测SiC晶圆的加工变质区域(潜伤)。
实施例3
在目前的实施例中,说明了利用紫外线照射强度的变化来判定是否存在加工变质区域的检查装置。在本实施例中,说明基于通过改变照射紫外线的波长而得到的图像的位移的判定法。在图8中说明基于改变紫外线波长的加工变质区域的判定方法。与图6同样为形成外延层之前的n型4H-SiC晶圆的判定法。图8的(a)是在图4的步骤(4)中检查晶圆表面的过程中镜面电子图像所出现的条纹状的对比度的模型图。示出加工变质区域有可能存在局部负带电的情况。
在本实施例中,通过控制分光器114等,变更照射紫外线的波长。照射紫外线的波长从与高于4H-SiC的带隙的能量对应的波长变更为与低于带隙的能量对应的波长。与低于带隙的能量对应的波长的紫外线或者可见光无法在晶圆内产生载带,无法在加工变质区域内供给电荷。在变更照射紫外线的波长时,在如图8的(b)的镜面电子图像的模型图那样变化为明亮对比度的情况下,判定为与图2的(a)、(b)的(2)的事例对应的、表面具有凹陷的条纹状的加工变质区域。另一方面,在如图8的(c)那样几乎看不到变化的情况下,判定为无加工变质区域。在缺陷判定部117中生成图8的(a)的镜面电子图像与图8的(b)或者(c)的差异图像,根据是否超过预先设定的差的似然度来判断紫外线停止前后的镜面电子图像的变化。
在图8中通过模型图示出的、加工变质区域的镜面电子图像随着紫外线照射条件变化而发生的变化为一例,根据加工变质区域的宽度、深度不同而多种多样。与要检测的加工变质区域的大小一致地由用户设定作为判断基准的镜面电子图像对比度的变化量。
在本实施例中,通过分光器114的控制来变更照射紫外线的波长,但是也可以具备具有不同透射波长的多个滤波器,并机械地更换这些滤波器,由此变更照射紫外线波长。此时,由检查装置控制部118控制滤波器更换功能,能够自动地或者用户从带监视器的输入输出装置120更换滤波器。
根据本实施例,在使用镜面电子显微镜的检查装置中,能够检测SiC晶圆的加工变质区域(潜伤)。
实施例4
在目前的实施例中,当检测到等势面呈凸形状且与预先登记的形状类似的镜面电子图像的对比度时,使移动台107停止,使紫外线光源113的照射条件发生变化而判定是否为加工变质区域。在本实施例中,首先在第一紫外线照射条件下检查晶圆状的所设定的检查区域,将所有镜面电子图像记录到检查装置控制部118或者附属于该控制部的存储装置或介质。接着,在第二紫外线照射条件(包括紫外线照射停止)下再次检查所设定的检查区域,保存所有镜面电子图像。在此基础上,在各摄像位置相同的位置上对基于第一紫外线照射条件的图像与基于第二紫外线照射条件的图像进行比较。例如生成差异图像,将能观察到所允许的图像强度差以上的差的位置判定为加工变质区域,并通过映图进行显示。这些处理既可以通过检查装置控制部118进行,也可以另行装备图像解析装置而进行。
附图标记说明
100a:照射电子射线;100b:后焦点;100c:镜面电子射线;101:电子枪;102:聚光透镜;103:分离器;104:被检查晶圆;105:电子枪控制装置;106:物镜;107:移动台控制装置;108:移动台;109:晶圆架;110:高压电源;111:中间电子透镜;112:投影电子透镜;113:紫外线光源;114:分光器;115:紫外线光学元件;116:图像检测部;117:缺陷判定部;118:检查装置控制部;119:电子光学系统控制装置;120:带监视器的输入输出装置;121:晶圆尺寸显示栏;122:映图显示区域;123:观察位置显示;124:加工变质区域存在位置显示;125:显示。

Claims (10)

1.一种缺陷检查装置,其特征在于,该缺陷检查装置具备:
试样支承部件,其对从电子源释放出的电子束所照射的试样进行支承;
负电压施加电源,其用于形成针对上述电子束的减速电场,该电子束照射到由该试样支承部件支承的试样;
摄像元件,其对由于上述减速电场而未到达上述试样就反射了的电子进行成像;
紫外光源,其向上述试样照射紫外光;以及
运算处理装置,其对基于由上述摄像元件得到的信号而生成的图像进行处理,
该运算处理装置基于在至少两个照射条件下照射上述紫外光时得到的多个图像信号,来判定上述试样的缺陷的种类。
2.根据权利要求1所述的缺陷检查装置,其特征在于,
上述运算处理装置基于在照射上述紫外光的状态下得到的图像信号以及在不照射上述紫外光的状态下得到的图像信号,来判定上述缺陷的种类。
3.根据权利要求1所述的缺陷检查装置,其特征在于,
当在至少两个照射条件下照射上述紫外光时得到的多个图像之间存在预定的变化时,上述运算处理装置判定为上述试样上存在缺陷。
4.根据权利要求3所述的缺陷检查装置,其特征在于,
上述至少两个照射条件包括上述紫外光的照射状态和非照射状态。
5.根据权利要求3所述的缺陷检查装置,其特征在于,
上述至少两个照射条件包括上述紫外光强度不同的照射条件。
6.根据权利要求3所述的缺陷检查装置,其特征在于,
上述至少两个照射条件包括波长不同的照射条件。
7.根据权利要求1所述的缺陷检查装置,其特征在于,
所述缺陷检查装置具备使上述试样移动的移动台,
上述运算处理装置在照射上述紫外光的状态下,基于照射上述电子束时得到的图像信号,使上述移动台停止,并且在使上述紫外光的照射条件变化的状态下,判定是否进行基于上述电子束照射的图像信号获取。
8.根据权利要求1所述的缺陷检查装置,其特征在于,
上述运算处理装置基于从上述多个图像信号中提取的特征组合,判定上述缺陷的种类。
9.根据权利要求1所述的缺陷检查装置,其特征在于,
上述运算处理装置根据上述多个图像间的变化,判定上述缺陷的种类。
10.一种缺陷检查装置,其特征在于,该缺陷检查装置具备:
试样支承部件,其对从电子源释放出的电子束所照射的试样进行支承;
负电压施加电源,其用于形成针对上述电子束的减速电场,该电子束照射到由该试样支承部件支承的试样;
摄像元件,其对由于上述减速电场而未到达上述试样就反射了的电子进行成像;
紫外光源,其向上述试样照射紫外光;以及
运算处理装置,其对基于由上述摄像元件得到的信号而生成的图像进行处理,
该运算处理装置基于在第一照射条件下照射上述紫外光时得到的第一图像,来判定是改变上述紫外光的照射条件来获取第二图像还是转移到下一检查区域。
CN201680081653.4A 2016-03-16 2016-03-16 缺陷检查装置 Expired - Fee Related CN108603851B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058228 WO2017158742A1 (ja) 2016-03-16 2016-03-16 欠陥検査装置

Publications (2)

Publication Number Publication Date
CN108603851A true CN108603851A (zh) 2018-09-28
CN108603851B CN108603851B (zh) 2021-01-01

Family

ID=59851077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680081653.4A Expired - Fee Related CN108603851B (zh) 2016-03-16 2016-03-16 缺陷检查装置

Country Status (5)

Country Link
US (1) US20190079025A1 (zh)
JP (1) JP6788660B2 (zh)
CN (1) CN108603851B (zh)
DE (1) DE112016006427T5 (zh)
WO (1) WO2017158742A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112888531A (zh) * 2018-12-11 2021-06-01 本田技研工业株式会社 工件检查装置和工件检查方法
TWI748404B (zh) * 2019-05-21 2021-12-01 日商日立全球先端科技股份有限公司 荷電粒子束裝置
CN115079045A (zh) * 2022-06-10 2022-09-20 郴州恒维电子有限公司 一种前工序图像自动检测短断路装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7159011B2 (ja) 2018-11-08 2022-10-24 株式会社日立ハイテク 電子線装置
JP7150638B2 (ja) * 2019-02-27 2022-10-11 キオクシア株式会社 半導体欠陥検査装置、及び、半導体欠陥検査方法
JP7271358B2 (ja) * 2019-07-25 2023-05-11 株式会社日立ハイテク 電気特性を導出するシステム及び非一時的コンピューター可読媒体
JP7148467B2 (ja) * 2019-08-30 2022-10-05 株式会社日立ハイテク 荷電粒子線装置
WO2021106128A1 (ja) * 2019-11-28 2021-06-03 株式会社日立ハイテク 欠陥検査装置、及び方法
WO2022219667A1 (ja) * 2021-04-12 2022-10-20 株式会社日立ハイテク 欠陥検査装置
WO2024029060A1 (ja) * 2022-08-05 2024-02-08 株式会社日立ハイテク 試料測定装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630623A (zh) * 2003-05-09 2010-01-20 株式会社荏原制作所 基于带电粒子束的检查装置及采用了该检查装置的器件制造方法
WO2016002003A1 (ja) * 2014-07-01 2016-01-07 株式会社日立ハイテクノロジーズ 基板検査装置及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534582A (en) 1976-07-02 1978-01-17 Fuji Electric Co Ltd Ineffective power detecting system
JP3534582B2 (ja) 1997-10-02 2004-06-07 株式会社日立製作所 パターン欠陥検査方法および検査装置
JP2007280614A (ja) * 2006-04-03 2007-10-25 Hitachi High-Technologies Corp 反射結像型電子顕微鏡、及びそれを用いた欠陥検査装置
JP6295969B2 (ja) * 2015-01-27 2018-03-20 日立金属株式会社 単結晶炭化珪素基板、単結晶炭化珪素基板の製造方法、および単結晶炭化珪素基板の検査方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630623A (zh) * 2003-05-09 2010-01-20 株式会社荏原制作所 基于带电粒子束的检查装置及采用了该检查装置的器件制造方法
WO2016002003A1 (ja) * 2014-07-01 2016-01-07 株式会社日立ハイテクノロジーズ 基板検査装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAKI HASEGAW等: "Non-destructive observation of in-grown stacking faults in 4H-SiC epitaxial layer using mirror electron microscope", 《JOURNAL OF APPLIED PHYSICS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112888531A (zh) * 2018-12-11 2021-06-01 本田技研工业株式会社 工件检查装置和工件检查方法
TWI748404B (zh) * 2019-05-21 2021-12-01 日商日立全球先端科技股份有限公司 荷電粒子束裝置
CN115079045A (zh) * 2022-06-10 2022-09-20 郴州恒维电子有限公司 一种前工序图像自动检测短断路装置

Also Published As

Publication number Publication date
JP6788660B2 (ja) 2020-11-25
JPWO2017158742A1 (ja) 2019-02-28
CN108603851B (zh) 2021-01-01
DE112016006427T5 (de) 2018-10-31
WO2017158742A1 (ja) 2017-09-21
US20190079025A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
CN108603851A (zh) 缺陷检查装置
JP4248382B2 (ja) 荷電粒子ビームによる検査方法および検査装置
CN108603850A (zh) 缺陷检查方法以及缺陷检查装置
US7521679B2 (en) Inspection method and inspection system using charged particle beam
US6583634B1 (en) Method of inspecting circuit pattern and inspecting instrument
US9508611B2 (en) Semiconductor inspection method, semiconductor inspection device and manufacturing method of semiconductor element
TW200947497A (en) Sample observation method and apparatus, and inspection method and apparatus using the same
JP2007207688A (ja) ミラー電子顕微鏡およびミラー電子顕微鏡を用いた検査装置
US11193895B2 (en) Semiconductor substrate for evaluation and method using same to evaluate defect detection sensitivity of inspection device
US6797955B1 (en) Filtered e-beam inspection and review
US11107655B2 (en) Charged particle beam device
JP2002353279A (ja) 回路パターン検査方法とその装置
JP6714147B2 (ja) 荷電粒子線装置、及び荷電粒子線装置の調整方法
JP2004157135A (ja) 回路パターンの検査方法及び検査装置
WO2019058441A1 (ja) 荷電粒子線装置
JP2004014207A (ja) 半導体回路パターンの検査装置
WO2021106128A1 (ja) 欠陥検査装置、及び方法
WO2019138525A1 (ja) 欠陥検査装置および欠陥情報表示装置
CN114616643A (zh) 使用多波长电荷控制器的带电粒子检查系统和方法
CN114902369A (zh) 带电粒子检测系统的束流调节
JP2018106947A (ja) 電子線検査装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210101