WO2019138525A1 - 欠陥検査装置および欠陥情報表示装置 - Google Patents

欠陥検査装置および欠陥情報表示装置 Download PDF

Info

Publication number
WO2019138525A1
WO2019138525A1 PCT/JP2018/000554 JP2018000554W WO2019138525A1 WO 2019138525 A1 WO2019138525 A1 WO 2019138525A1 JP 2018000554 W JP2018000554 W JP 2018000554W WO 2019138525 A1 WO2019138525 A1 WO 2019138525A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
image
imaging
sample
mirror
Prior art date
Application number
PCT/JP2018/000554
Other languages
English (en)
French (fr)
Inventor
長谷川 正樹
則幸 兼岡
智彦 尾方
大平 健太郎
村越 久弥
勝則 小貫
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2018/000554 priority Critical patent/WO2019138525A1/ja
Publication of WO2019138525A1 publication Critical patent/WO2019138525A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method

Definitions

  • the present invention relates to a defect inspection apparatus for inspecting a defect of a wafer for manufacturing an electronic device, and a defect information display apparatus for displaying detected defect information.
  • SiC silicon carbide
  • CMP Chemical Mechanical Polishing
  • Patent Document 1 discloses an inspection technique that applies a mirror electron microscope that forms an image of mirror electrons as an inspection technique that is also sensitive to latent scratches and minute scratches on a wafer.
  • a charge is generated inside the substrate by irradiating the wafer with ultraviolet light, this charge is captured by the processing-deteriorated area and is locally charged to distort the equipotential surface of the surface.
  • the mirror electron microscope even a slight distortion of the equipotential surface generates light and shade in the mirror electron image, so that it is possible to detect a damaged area with high sensitivity.
  • the resolution of the optical system is several tens of nanometers, which is much higher than that of the optical inspection technology.
  • the field of view of the mirror electron microscope that is, the visual field width of the inspection image is about 100 ⁇ m, which is significantly smaller than the inspection device using an optical microscope . If the field of view is made larger than this, the peripheral image will be distorted due to the aberration of the electron optical system. Therefore, an inspection image obtained by a single scanning in the Y-axis direction with a mirror electron microscope is a band-shaped area having a width of about 100 ⁇ m. Therefore, if it is intended to inspect the entire surface of the wafer, the number of the band-like regions is, for example, approximately 1,500 if the inspection image field width is 100 ⁇ m and the inspection of the entire 6 inch wafer is assumed.
  • the number of bands may be about 150.
  • the number of scans has to be increased as compared with the optical inspection apparatus, and the inspection time is significantly increased accordingly, which causes an increase in inspection cost.
  • a defect inspection apparatus includes an electron optical system for irradiating a sample with an electron beam, an ultraviolet optical element for irradiating a sample with ultraviolet light, and an electron orbit inverted before the electron beam reaches the sample.
  • an electron optical system for irradiating a sample with an electron beam
  • an ultraviolet optical element for irradiating a sample with ultraviolet light
  • an electron orbit inverted before the electron beam reaches the sample Using a power supply for applying a voltage to the sample, a mirror electron imaging optical system for forming a mirror electron image by imaging mirror electrons reflected by the application of the voltage, and the obtained mirror electron image
  • the inspection device control unit, and a display unit for displaying the defect information detected by the defect determination unit, the inspection device control unit further comprising: The mirror electron image is acquired in the image pickup zone, and the mirror electron image is acquired in the second image pickup zone along the first direction by moving at a predetermined interval in the second direction perpendicular to the first direction.
  • a line having an inclination of the detected linear defect is superimposed and displayed on the image pickup position of the mirror electron image at which the linear defect is detected on the image of the sample shown, and the predetermined interval is the second of the imaging zone.
  • the display line is set larger than the width along the direction, and the display unit extrapolates the first line indicating the first linear defect detected in the first imaging band toward the second imaging band.
  • a second line indicating the second linear defect detected and displayed in the second imaging zone is displayed extrapolated toward the first imaging zone.
  • FIG. 7 is a diagram for explaining how a user sets a TDI imaging position.
  • FIG. 7 is a diagram for explaining how a user sets a TDI imaging position.
  • FIG. 7 is a diagram for explaining how a user sets a TDI imaging position.
  • FIG. 7 is a diagram for explaining how a user sets a TDI imaging position.
  • the latent scratches and scratches to be inspected by the mirror electronic inspection apparatus are generated by mechanical polishing or CMP, and are generally linear defects with a length of several mm and several tens of mm. Also, the longer these defects are, the greater the impact on device fabrication yield. Thus, in view of the fact that defects of relatively large size are to be inspected, latent scratches parallel to the Y axis are completely parallel to the inspection image field width even if the distance between the strip regions scanned with a mirror electron microscope is larger than the inspection image field width. It has been found in the inventors' research that it does not fail to detect latent scratches and scratches unless it exists.
  • the detection accuracy can be further improved by estimating the continuity with a latent scratch or a scratch in a mirror electronic image in the vicinity from the inclination of the latent scratch or scratch appearing in the mirror electronic image.
  • the inspection apparatus of the present embodiment will be described below.
  • the mirror electronic inspection apparatus will be described with reference to FIG. However, in FIG. 1, a pump for vacuum evacuation and its control device, exhaust system piping, a transfer system of a wafer to be inspected, and the like are omitted. Also, the trajectory of the electron beam is drawn exaggerating the actual trajectory for the purpose of explanation.
  • the irradiation electron beam 100a emitted from the electron gun 101 is deflected by the separator 103 while being converged by the condenser lens 102, and is irradiated as a substantially parallel beam of electron beams onto the wafer 104 to be inspected.
  • a Zr / O / W type Schottky electron source which has a small light source diameter and can obtain a large current value is used, but a LaB 6 electron source which can obtain a higher current value
  • An electron source such as a cathode electron source may be used.
  • the electron gun 101 may be a magnetic field superposition electron gun in which a magnetic lens is disposed in the vicinity of the electron source.
  • the voltage and current necessary for the operation of the electron gun such as the extraction voltage of the electron gun 101, the acceleration voltage of the extracted electron beam, and the heating current of the electron source filament, are supplied and controlled by the electron gun control device 105.
  • the electron gun control device 105 When a Schottky electron source or a cold cathode electron source is used for the electron gun 101, the inside of the electron gun 101 needs to be maintained at an ultra-high vacuum of 10 -6 Pa or less. A shielding valve is provided.
  • the condenser lens 102 is drawn as one lens, but it may be an electron optical system in which a plurality of lenses and multipoles are combined so as to obtain an irradiation electron beam with higher parallelism.
  • the condenser lens 102 is adjusted so that the electron beam is focused on the back focal plane 100 b of the objective lens 106.
  • the objective lens 106 is an electrostatic lens composed of a plurality of electrodes or a magnetic lens.
  • the separator 103 is installed to separate the irradiation electron beam directed to the inspection wafer 104 and the mirror electron beam returning from the inspection wafer 104.
  • a separator using an E ⁇ B deflector is used.
  • the E ⁇ B deflector can be set to deflect the electron beam coming from above and to make the electron beam coming from below go straight.
  • the electron optical lens barrel (irradiation electron beam lens barrel) for supplying the irradiation electron beam 100a is inclined, and an electron optical lens barrel (electron beam imaging lens barrel) for imaging the reflected electrons Stand upright. It is also possible to use a deflector using only a magnetic field as the separator.
  • a magnetic field is set in a direction perpendicular to the optical axis of the electron beam, the irradiation electron beam 100a is deflected in the direction of the inspection wafer 104, and the electron from the inspection wafer 104 comes in the direction of the irradiation electron beam 100a. And deflect in the opposite direction.
  • the optical axis of the irradiation electron beam barrel and the optical axis of the electron beam imaging barrel are arranged symmetrically about the optical axis of the objective lens. If it is necessary to correct the aberration generated when the irradiation electron beam 100a is deflected by the separator, an aberration corrector may be additionally provided.
  • the separator 103 is a magnetic field deflector, an auxiliary coil is provided for correction.
  • the irradiation electron beam 100 a deflected by the separator 103 is formed by the objective lens 106 into a parallel bundle of electron beams which are perpendicularly incident on the surface of the inspection wafer 104.
  • the irradiation system condenser lens 102 is adjusted so that the electron beam is focused on the back focal plane 100 b of the objective lens 106, it is possible to irradiate the inspection wafer 104 with a highly parallel electron beam.
  • the area on the inspection wafer 104 irradiated by the irradiation electron beam 100a has an area of, for example, 10000 ⁇ m 2 or the like.
  • the objective lens 106 is provided with an anode for pulling mirror electrons above the surface of the inspection wafer 104.
  • a wafer holder 109 b is placed on the moving stage 108 controlled by the moving stage control device 107 via an insulating member 109 a, and the inspection wafer 104 is placed thereon.
  • the drive system of the moving stage 108 is two linear motions orthogonal to each other. In addition to this, vertical linear motion or tilt motion may be added.
  • the movement stage 108 positions all or part of the surface of the inspection wafer 104 on the electron beam irradiation position, that is, the optical axis of the objective lens 106 by these movements.
  • a high potential power source 110 supplies a negative potential substantially equal to the acceleration voltage of the electron beam to the wafer holder 109b.
  • the output of the high-voltage power supply 110 is finely adjusted so that the irradiation electron beam 100a is decelerated by this negative potential before the inspection wafer 104 and the electron trajectory is reversed in the opposite direction before reaching the inspection wafer 104. deep.
  • the electrons reflected by the wafer become mirror electrons 100c.
  • the mirror electron 100 c forms a first image by the objective lens 106. Since the separator 103 is an E ⁇ B deflector, it can be controlled so as not to have a deflecting action on the electron beam which travels from below, and the mirror electron 100 c goes straight in the direction of the upright electron beam imaging lens barrel.
  • the 1 image is sequentially imaged by the intermediate electron lens 111 and the projection electron lens 112.
  • the intermediate electron lens 111 and the projection electron lens 112 are electrostatic or magnetic lenses.
  • the final electronic image is enlarged and projected to the image detection unit 116.
  • the projection electron lens 112 is drawn as one electron lens in FIG.
  • the projection electron lens 112 may be composed of a plurality of electron lenses and multipoles for high magnification expansion and correction of image distortion. Although not shown in the drawing, deflectors and astigmatism correctors for adjusting the electron beam in more detail are provided as needed.
  • the ultraviolet light from the ultraviolet light source 113 is dispersed by the spectroscope 114, and the inspection wafer 104 is irradiated by the ultraviolet optical element 115. Since the inspection wafer 104 is held in a vacuum, the air side and the vacuum side are divided by a window made of a material (for example, quartz etc.) that transmits ultraviolet light, and the ultraviolet light emitted from the ultraviolet optical element 115 is a window Irradiate over.
  • a material for example, quartz etc.
  • the ultraviolet light source 113 may be installed in a vacuum, but in this case, the space in the sample chamber is limited, so that the solid-state element having a specific emission wavelength as an ultraviolet light source instead of wavelength selection by the spectroscope 114 It is desirable to use
  • the irradiation wavelength of ultraviolet light is a wavelength corresponding to energy larger than the band gap of the wafer material. Alternatively, depending on the state of energy levels in the band gap of the material, a wavelength of energy smaller than the band gap energy may be selected as a wavelength for generating carriers in the semiconductor material.
  • the ultraviolet light source 113, the spectroscope 114, and the ultraviolet optical element 115 are connected by an optical fiber or the like to transmit ultraviolet light. Alternatively, the ultraviolet light source 113 and the spectroscope 114 may be integrated. Also, instead of the spectroscope 114, a filter that transmits only a wavelength within a specific range may be used as the ultraviolet light source 113.
  • the image detection unit 116 converts the image of the mirror electron 100 c into an electrical signal, and sends it to the defect determination unit 117.
  • the image detection unit 116 may be configured by a fluorescent plate that converts an electron beam into visible light and a camera that captures an electronic image of the fluorescent plate, and as another configuration example, a two-dimensional detector such as a CCD element that detects electrons You may consist of.
  • a mechanism for multiplying the intensity of the electronic image or the intensity of fluorescence may be provided.
  • a mirror electron image of each location on the surface of the inspection wafer 104 is output from the image detection unit 116 while driving the moving stage 108.
  • the moving stage 108 may stop during each imaging, or may continue to move at a constant speed without stopping. The latter has the advantage that the inspection time can be shortened.
  • the image detection unit 116 performs time delay integration (TDI) imaging.
  • TDI time delay integration
  • the moving speed of the moving stage 108 and the signal transfer speed (line rate) of the image element are synchronized, and since the time taken for acceleration and deceleration of the moving stage 108 is unnecessary, high-speed inspection operation becomes possible.
  • the operating conditions of various parts of the apparatus are input / output from the inspection apparatus control unit 118.
  • the inspection device control unit 118 has various conditions such as an acceleration voltage at the time of electron beam generation, a stage moving speed, an image signal acquisition timing from an image detection element, ultraviolet irradiation conditions, etc.
  • the movement stage control device 107, the electron optical system control device 119 that controls each electron optical element, the control system of the ultraviolet light source 113 and the spectroscope 114, and the like are input.
  • the inspection device control unit 118 may be configured by a plurality of computers that share roles and are coupled by a communication line.
  • FIG. 2 is a diagram for explaining an imaging condition from the start of the TDI imaging operation.
  • the area for acquiring the inspection image is the inspection target area 121 inside the wafer 104 excluding a certain width along the outer periphery of the inspection wafer 104.
  • the moving stage 108 is driven to move so that the imaging start position (star mark in FIG. 2) comes to the visual field position of the mirror electron microscope.
  • the wafer 104 is moved downward in the vertical direction (Y direction) from the imaging start position, and the range indicated by the TDI imaging moving range 122a is scanned.
  • TDI imaging it is necessary to move the stage in one direction at a substantially constant speed during imaging.
  • the moving stage 108 needs to be accelerated from the start of imaging until it reaches a predetermined speed, and the moving stage 108 needs to be decelerated from the state of moving at a predetermined speed to the end of imaging. Therefore, during acceleration / deceleration, an image is not acquired, and the range for actually capturing a mirror electron image is the range indicated by the TDI imaging band 123a within the moving range 122a at TDI imaging, and the TDI imaging band 123a It is set to include 121.
  • the inspection device control unit 118 determines the coordinates of the imaging start position of the moving stage 108, the acceleration region, the length of the TDI imaging band 123a (that is, the constant velocity movement range), the deceleration region, etc. when the user sets the inspection range. .
  • FIG. 2 also shows a conceptual diagram 200 of a mirror electron image captured in the TDI imaging band 123a.
  • the width of the TDI imaging band 123a is the same as the field of view of the mirror electron microscope. In this case, 100 ⁇ m is used as an example.
  • the mirror electronic image is output from the image detection unit 116, and the image is output by being divided into a plurality of images in a specified pixel arrangement.
  • N1 images from the mirror electron image 200-1 to the mirror electron image 200-N1 become images of the TDI imaging band 123a.
  • the mirror electron image is output as a square image, and images a 100 ⁇ m ⁇ 100 ⁇ m range on the inspection wafer 104.
  • the shape of the mirror electronic image is determined for the reason of design of the inspection apparatus, and there are various possibilities such as a rectangle, and it is not limited to a square.
  • These N1 mirror electron images are sent to the defect determination unit 117, where it is determined whether there is a defect such as a latent scratch or a scratch and the type thereof.
  • a defect such as a latent scratch or a scratch and the type thereof.
  • an example is shown in which the latent flaw 210 is imaged in the mirror electronic image 200-n1.
  • the defect determination unit 117 uses the image identification code of the mirror electron image 200-n1 as the information accompanying the mirror electron image 200-n1, the type of the defect, the size of the defect, and the latent defect or scratch if the defect is List slopes, etc.
  • the inspection apparatus control unit 118 adds the imaging position coordinates of each image, for example, the wafer coordinates of the center position of each mirror electron image, to this list to create a defect list. Note that the defect determination unit 117 may perform this operation entirely.
  • the extraction operation of defect information from the mirror electronic image may be sequentially performed during the inspection operation, or the mirror electronic image and the stage position coordinates at the time of imaging etc. are temporarily stored in the storage device, After the imaging process is completed, the information may be read from the storage device, the defect information may be extracted, and the defect list may be created.
  • FIG. 3 is a diagram showing the state of the second TDI imaging.
  • the second movement range of the moving stage is the TDI imaging movement range 122 b.
  • the imaging start position of the second operation is the position of the star in the upper end of the movement range 122b at the time of TDI imaging.
  • the stage position is on the upper side of the moving range 122a at the time of TDI imaging. Therefore, the imaging start position of the second TDI imaging is the second TDI to shorten the stage movement time. It is preferable to set the star position of the upper end of the moving range 122b at the time of imaging.
  • the imaging apparatus control unit 118 determines the imaging start position from the relationship between the X-direction movement distance L from the first TDI imaging band 123a determined by the inspection apparatus control unit 118 by the user's input and the inspection target area 121. calculate.
  • FIG. 3 also shows a conceptual diagram 201 of a mirror electron image captured in the TDI imaging band 123b.
  • N2 images from the mirror electron image 201-1 to the mirror electron image 201-N2 are sequentially output from the image detection unit 116.
  • the latent flaw 211 is imaged on the mirror electronic image 201-n2.
  • the inspection apparatus control unit 118 creates a defect list as illustrated in FIG. 5 from the defect information determined by the defect determination unit 117 from the mirror electronic image of each TDI imaging band 123.
  • the defect list 501 is created for each wafer to be inspected, and a wafer identification code 502 for identifying the wafer to be inspected, an image identification code 503 for which a defect is detected, an imaging position coordinate 504, a defect type 505, a defect size 506, If the defect is a latent scratch or scratch, its inclination 507 and other information 508 are listed.
  • a wafer identification code 502 for identifying the wafer to be inspected
  • an image identification code 503 for which a defect is detected
  • an imaging position coordinate 504 a defect type 505, a defect size 506, If the defect is a latent scratch or scratch, its inclination 507 and other information 508 are listed.
  • information necessary for display and analysis of defect information such as detailed feature quantities of defects, imaging conditions at TDI imaging, addresses of mirror electronic images corresponding to image identification codes, etc. can be stored. .
  • the start position in each TDI imaging movement range is alternately set up and down alternately in order to shorten the stage movement time as much as possible.
  • the TDI camera constituting the image detection unit 116 can not perform bidirectional imaging. All imaging in one direction may be performed if the above is convenient.
  • the distance L between TDI imaging movement ranges may be the same value over the entire surface of the wafer to be inspected, or if the position to be mainly inspected in the wafer manufacturing process is known in advance. The distance L may be set to change according to the position.
  • FIG. 6A is an example of a graphical user interface (GUI) displaying a defect map.
  • the GUI has a map display unit 601, a display defect selection unit 602 which is an operation screen for selecting information to be displayed on the map display unit 601, and an inspection position display selection unit 603.
  • information on latent scratches stored in the defect list 501 is displayed on the map display unit 601.
  • the map display unit 601 the inclination of the latent flaw is displayed on the imaging position coordinates of the image in which the latent flaw is detected.
  • the inclination of the latent flaw is represented by displaying a straight line 611 having the inclination 507 stored in the defect list 501.
  • the display range of the straight line 611 is a range that does not exceed a half range of the distance to the adjacent TDI imaging band 123 (the center line of the TDI imaging band is indicated by a dotted line 610) so as not to obscure the view.
  • the crossing point is made into one broken line as the binding point 613. It may be displayed (a figure). Alternatively, it may be displayed as a single curve (broken line) 614 using mathematical interpolation means such as spline interpolation (FIG. B).
  • the center line of each TDI imaging band is indicated by a dotted line 610, but the dotted line 610 can be selected to be displayed or not displayed in the inspection position display selection section 603.
  • the display "present” is selected.
  • the wafer size 604 is also displayed.
  • FIG. 6B An example of a screen when scratch is displayed on a GUI for displaying a defect map is shown in FIG.
  • the defect to be displayed on the map display unit 601 can be selected from the list of the display defect selection unit 602. Therefore, when the display defect selection unit 602 selects a scratch, the scratch of the image is detected at the image capture coordinate position where the scratch is detected. It is displayed as a straight line 621. As described in FIG. 6B, when straight lines 621 of adjacent TDI imaging bands intersect between TDI imaging bands, they may be represented as a single straight line or a curve.
  • the straight line 611 indicating the inclination of the latent scratch shown in FIG. 6A may be displayed with different colors and line types. Thus, if the latent defect and the scratch are simultaneously selected by the display defect selection unit 602, both inclinations are displayed in a distinguishable manner. By displaying the slope of the scratch as a straight line 621, it is possible to estimate the situation between TDI imaging bands that are not actually inspected.
  • the latent scratches and the scratches can be easily distinguished from the mirror electronic image. Since the scratch is a scratch (dent) formed on the wafer surface, the equipotential line formed immediately above the wafer is distorted in accordance with the concave shape of the scratch. As a result, the trajectory of the reflecting mirror electrons changes, and the contrast of the scratch becomes different from that of the surroundings. On the other hand, in the case of a latent scratch, although the wafer surface is flat, negative charge locally occurs in the crystal disturbed portion inside the wafer due to the irradiation of the ultraviolet light. This causes distortion on the equipotential lines formed directly above the wafer, but this distortion is equivalent to the case where the surface has a convex shape. Therefore, the change in contrast due to the latent flaw is in the opposite direction to the scratch. That is, under the condition that the scratch looks like a white line, the latent scratch looks like a black line, so both can be easily distinguished.
  • FIG. 1 An example of a screen when foreign matter is displayed on a GUI for displaying a defect map is shown in FIG.
  • the term "foreign matter" as used herein refers to a defect having a strong edge among defects having a shape that can be surrounded by a closed curve in a mirror electron image that is not a line crossing a field of view in a mirror electron image.
  • FIG. 1 An example is shown in FIG. The elliptical defect being imaged at the center is accompanied by a bright border 213 around the dark contrast 212. If this feature is defined as foreign matter, the defect determination unit 117 determines this image as foreign matter.
  • defect quantities such as the size in the X direction and Y direction of the defect and the area (such as the number of pixels) of the dark part are recorded in the defect list. It can be determined in advance so as to store feature quantities necessary for further detailed classification and accurate classification.
  • a marker 631 is displayed on the map display unit 601 of FIG. 8 at a point corresponding to the imaging coordinates of the mirror electronic image in which the foreign material is imaged.
  • the size of the marker 631 is made proportional to the area of the foreign particle image in the mirror electron image. Therefore, in the example of FIG. 8, it can be inferred that the small foreign matter has spread around the largest foreign matter.
  • the feature list extracted from the mirror electronic image is stored in the defect list without being limited to predefined defects (such as latent scratches, scratches, and foreign matter) determined by the defect determination unit 117.
  • the defect edit button 605 By pressing the defect edit button 605, a mirror electronic image having the feature amount is extracted by defining the feature amount to be confirmed (for example, dark contrast having a certain size or more and dark contrast without bordering) as a user-defined defect.
  • the user can cause the map display unit 601 to display the distribution of user-defined defects on the wafer.
  • the position of the foreign matter or the user-defined defect defined by the user-defined defect with the marker 631 corresponding to the feature amount, the distribution state of the foreign matter etc. between the TDI imaging zones not actually inspected. Can be estimated.
  • FIG. 10 shows an example of the hardware configuration of the monitor-equipped input / output device 120 for displaying a defect map.
  • the monitor input / output device 120 includes a processor 801, a main storage 802, an auxiliary storage 803, an input / output interface 804, a display interface 805, and a network interface 806, which are coupled by a bus 807.
  • the input / output interface 804 is connected to an input device 809 such as a keyboard or a mouse, and the display interface 805 is connected to a monitor 808 to realize a GUI.
  • a network interface 806 is an interface for connecting to the inspection apparatus control unit 118 and other networks.
  • the auxiliary storage 803 is usually composed of a non-volatile memory such as an HDD, a flash memory or a ROM, and stores a program executed by the monitor input / output device 120 and data to be processed by the program.
  • the main memory 802 is constituted by a RAM, and temporarily stores programs and data required for executing the programs according to an instruction of the processor 801.
  • the processor 801 executes the program loaded from the auxiliary storage 803 to the main storage 802.
  • the auxiliary storage 803 stores the defect list 811 created by the inspection device control unit 118.
  • a defect map generation program 812 for creating a defect map as shown in FIG. 6A, FIG. 7 and FIG. 8 using the defect list 811 is stored.
  • FIG. 11 shows a defect map generation processing flow executed by the defect map generation program 812.
  • data necessary for displaying a defect map is read out (step 901).
  • wafer information linked to the defect list 811 as well as the defect list 811, imaging condition information at the time of inspection, etc. can be read out as needed.
  • a wafer image is generated based on the data read out in step 901 (step 902).
  • the generated wafer image includes, for example, the wafer contour, the inspection target area, and the center line of the TDI imaging band (when the inspection position is displayed).
  • defect image data to be displayed on the wafer image is generated.
  • the defect images to be displayed are roughly classified into linear defects such as latent scratches and scratches and non-linear defects represented by foreign matter (step 904). If a latent scratch or a scratch is selected as the defect to be displayed, the process proceeds to step 905, and the corresponding defect data is extracted from the defect list 811. Based on the extracted defect data, a line image showing a line defect as described in FIGS. 6A, 6B and 7 is generated (step 906). On the other hand, if a non-linear defect such as a foreign matter is selected as the defect to be displayed, the process proceeds to step 907, and the corresponding defect data is extracted from the defect list 811. Based on the extracted defect data, an image showing a foreign substance as described in FIG. 8 is generated (step 906).
  • a marker having a size according to the feature amount of the foreign object is displayed at the photographing position coordinates on the wafer image. For example, the number of foreign particles in the mirror electron image, the sum or average of the area of the foreign particle image in the mirror electron image, or the total number or average of pixels of the foreign particle image in the mirror electron image is calculated as the feature amount. Depending on the size, markers of different sizes are selected as markers representing foreign material. Proceed to step 909. If there is another defect to be displayed which is selected, return to step 904 to generate the image. If not, proceed to step 910 to superimpose the defect image on the wafer image and display it on the monitor. .
  • the function of the data reading unit 821 of the defect map generation program 812 corresponds to step 901 of the processing flow
  • the function of the wafer image generation unit 822 corresponds to step 902 of the processing flow
  • the function of the defect image generation unit 825 is processing It corresponds to steps 904 to 910 of the flow.
  • the function of the linear defect image generation unit 823 corresponds to steps 905 to 906
  • the function of the foreign particle image generation unit 824 corresponds to steps 907 to 908.
  • FIGS. 12A to 12C show examples of input fields for setting the interval of the TDI imaging band.
  • the first input column (FIG. 12A) when the interval L of the TDI imaging band is equal, the value of the interval L is selected from the selection list 701 displayed by pressing the list display button 700.
  • the value of the interval L displayed in the selection list 701 shown in FIG. 12A is an example.
  • An input field for directly inputting values may be provided so that values not included in the selection list 701 can be input.
  • the second input field (FIG. 12B) is selected from the selection list 702 in the same manner as the first input field, but allows the user to intuitively grasp the accuracy or speed of the examination and select the interval L.
  • the inspection device control unit 118 stores in advance the value of the interval L in accordance with each selection, and the interval L is automatically input in accordance with the user's selection. For example, when “high accuracy inspection” is selected, L is 100 ⁇ m, L is 500 ⁇ m when "high speed inspection 1" is selected, L is 5000 ⁇ m when "high speed inspection 2" is selected, and so on.
  • the types and the number of inspection modes displayed in the selection list 702 shown in FIG. 12B are examples.
  • the third input field (FIG. 12C) is an example in which the user can freely determine the interval of the TDI imaging band.
  • the TDI imaging band input area 703 an image 704 indicating the wafer to be inspected and an image 705 indicating the inspection target area are displayed.
  • the user draws a scanning line 706 with an input device such as a mouse while looking at this image.
  • the inspection apparatus control unit 118 calculates the interval of the TDI imaging band from the drawing result. According to the value of the interval L set by the user by the method as described above, the inspection apparatus control unit 118 calculates the position coordinates of the moving stage 108 which is the start of each TDI imaging moving range. This allows the user to easily determine the scan position for TDI imaging.
  • defects such as latent scratches and scratches can be detected and evaluated in a short time on the wafer surface before the epitaxial layer growth. Since the wafer surface state after the CMP process can be evaluated quickly, the result can be fed back to the CMP process condition setting, and the productivity of the wafer can be improved.
  • the present invention is not limited to an embodiment, and can be variously changed in the range which does not deviate from the gist.
  • the mirror electron microscope may acquire the mirror electron image by repeating movement and stop of the stage for each imaging instead of TDI imaging.
  • the display of the defect map is not limited to the display on the monitor-equipped input / output device 120.
  • the inspection device control unit 118 may be connected to the network 150, and the defect list may be stored in the database 152 connected to the network 150 (see FIG. 1).
  • the defect map may be displayed on the monitor of the terminal 151 connected to the network 150 from the defect list stored in the database.
  • the terminal 151 includes hardware as shown in FIG.
  • 100a irradiation electron beam
  • 100b back focal plane
  • 100c mirror electron beam
  • 101 electron gun
  • 102 condenser lens
  • 103 separator
  • 104 inspection wafer
  • 105 electron gun control device
  • 106 objective lens
  • DESCRIPTION OF SYMBOLS 107 ... Moving stage control apparatus, 108 ... Moving stage, 109a ... Insulating member, 109b ... Wafer holder, 110 ... High voltage power supply, 111 ... Intermediate electronic lens, 112 ... Projection electronic lens, 113 ... Ultraviolet light source, 114 ... Spectroscope, 115 ...
  • Ultraviolet optical element 116 Image detection unit 117 Defect determination unit 118 Inspection device control unit 119 Electronic optical system control device 120 Monitored input / output device 121 Inspection target area 122 TDI imaging Moving range, 123 ... TDI imaging band, 150 ... network, 151 ... terminal, 152 ... database 200, 201: mirror electronic image, 501: defect list, 601: map display unit, 602: display defect selection unit, 603: inspection position display selection unit, 605: defect edit button, 801: processor, 802: main memory, 803 ... auxiliary memory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

ミラー電子式検査装置による試料の潜傷やスクラッチなどの欠陥の検出、評価を短時間で行うため、検査装置では第1の撮像帯123aにおいてミラー電子像を取得し、所定間隔Lだけ移動して第2の撮像帯123bにおいてミラー電子像を取得し、検査装置の欠陥判定部が線状欠陥を検出した場合、表示部120は、試料の画像に線状欠陥が検出されたミラー電子像の撮像位置に、検出された線状欠陥の傾きを有する線を重畳表示する。このとき、所定間隔Lは、撮像帯の幅よりも大きく設定されており、表示部は、第1の撮像帯において検出された線状欠陥を示す第1の線は第2の撮像帯に向けて外挿して表示し、第2の撮像帯において検出された線状欠陥を示す第2の線は、第1の撮像帯に向けて外挿して表示する。

Description

欠陥検査装置および欠陥情報表示装置
 本発明は、電子デバイス製造用ウェハの欠陥検査を行う欠陥検査装置、および検出した欠陥情報を表示する欠陥情報表示装置に関する。
 半導体デバイス製造では半導体ウェハ上に微細な回路を形成する。ワイドギャップ半導体基板は、従来用いられてきたシリコン半導体基板よりも異物や傷(スクラッチ)、あるいは結晶欠陥や結晶の変質層が多く存在しているのが実情である。例えば、近年パワーデバイス材料としての使用が広がりつつあるSiC(炭化ケイ素)は、化学的安定性に優れ、かつ、硬いためにウェハ形状への加工、研磨はより難しい材料である。このため、SiCバルクウェハは機械研磨で鏡面仕上げされた後、さらにCMP(化学機械研磨:Chemical Mechanical Polishing)を施し、機械研磨で生じた加工変質層を除去して、原子レベルで平坦かつ結晶擾乱の無い表面を作る。しかし、CMP処理の最適設定は難しく、機械研磨で生じた加工変質領域が表面内部に残存したり、ごく微細なスクラッチが研磨面に残存したりする。残存した加工変質領域の表面が平坦であったり、スクラッチの幅が照射波長に比べて十分小さかったりすると、一般的な光学的な検査技術では見つけることができないにもかかわらず、研磨面上に成長されるエピタキシアル層には、これらを起点にして、原子ステップに異常が生じ大きな凹凸構造(「ステップバンチ」と呼ばれる)が形成される。ステップバンチが生じたエピタキシアル層上にデバイスが形成されると、耐圧性が著しく低下し、パワーデバイスとして用いることができない。従って、潜傷(本出願ではウェハ表面に表れない結晶擾乱(変質層)をいう)やウェハ表面に微小なスクラッチが残存しているかどうか、半導体基板の検査を行うことは極めて重要である。
 ウェハの潜傷や微小なスクラッチにも感度を持つ検査技術として、ミラー電子を結像するミラー電子顕微鏡を応用した検査技術が特許文献1に開示されている。特許文献1によれば、ウェハに紫外線を照射することによって基板内部に電荷を発生させると、この電荷が加工変質領域部分に捕獲されて局所的に帯電し、表面の等電位面を歪ませる。ミラー電子顕微鏡ではわずかな等電位面の歪みでもミラー電子像に濃淡を発生させるため、加工変質領域の検出が高感度で可能となる。また、結像には電子線を用いるため、光学系の分解能は数10ナノメートルと光学式検査技術に比べはるかに高い。
国際公開第2016/002003号
 ミラー電子式検査装置は潜傷検出に高い感度を有する一方、ミラー電子顕微鏡の視野、すなわち、検査画像の視野幅は100μm程度の大きさであり、光学顕微鏡を用いた検査装置に比べて著しく小さい。これよりも視野を大きくすると、電子光学系の収差のため周辺の画像が歪んでしまうからである。従って、ミラー電子顕微鏡により1回のY軸方向の走査で得られる検査画像は、幅100μm程度の帯状の領域となる。このため、ウェハ全面を隈なく検査しようとすると、この帯状領域の本数は、例えば、検査画像視野幅を100μmとし、6インチウェハ全面の検査を仮定すれば、1500本近くになる。これに対して、検査画像視野幅1mm程度は取れる光学式検査装置の場合は、この帯の数は150本程度で済む。ミラー電子式検査装置では、光学式の検査装置に比べて走査回数が多くならざるを得ず、これに伴い検査時間が大幅に長くなるため、検査コストを上昇させる要因となっていた。
 本発明の一実施の態様である欠陥検査装置は、電子線を試料に照射する電子光学系と、試料に紫外線を照射する紫外線光学素子と、電子線が試料に到達する前に電子軌道が反転するよう、試料に電圧を印加する電源と、電圧の印加により反射されたミラー電子を結像してミラー電子像を取得するミラー電子結像光学系と、取得されたミラー電子像を用いて試料の欠陥を検出する欠陥判定部と、検査装置制御部と、欠陥判定部で検出された欠陥情報を表示する表示部とを有し、検査装置制御部は、第1の方向に沿った第1の撮像帯においてミラー電子像を取得し、第1の方向と垂直な第2の方向に所定間隔移動して第1の方向に沿った第2の撮像帯においてミラー電子像を取得し、表示部は、欠陥判定部が線状欠陥を検出した場合、表示部に表示される試料の画像に対して、線状欠陥が検出されたミラー電子像の撮像位置に、検出された線状欠陥の傾きを有する線を重畳表示し、所定間隔は、撮像帯の第2の方向に沿った幅よりも大きく設定されており、表示部は、第1の撮像帯において検出された第1の線状欠陥を示す第1の線は第2の撮像帯に向けて外挿して表示し、第2の撮像帯において検出された第2の線状欠陥を示す第2の線は、第1の撮像帯に向けて外挿して表示する。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 試料に対し潜傷やスクラッチなど欠陥の検出、評価を短時間で行うことができる。
ミラー電子顕微鏡検査装置の概略を説明する図。 第1回目のTDI撮像を説明する図。 第2回目のTDI撮像を説明する図。 ウェハ全面に対するTDI撮像を説明する図。 欠陥リストの例。 検査結果の表示例を説明する図。 表示例の変形例を説明する図。 検査結果の表示例を説明する図。 検査結果の表示例を説明する図。 異物が写ったミラー電子像の例。 モニタ付入出力装置のハードウェア構成例。 欠陥マップ生成処理フローを示す図。 TDI撮像位置をユーザーが設定する方法を説明する図。 TDI撮像位置をユーザーが設定する方法を説明する図。 TDI撮像位置をユーザーが設定する方法を説明する図。
 ミラー電子式検査装置が検査の対象とする潜傷やスクラッチは、機械研磨やCMPによって生成され、一般的にはその長さが数mm、数十mmに及ぶ線状の欠陥である。また、これらの欠陥が長ければ長いほどデバイス製造の歩留に与える影響は大きくなる。このように比較的大きなサイズの欠陥が検査対象であることを鑑みると、ミラー電子顕微鏡で走査する帯状領域の間隔を検査画像視野幅より大きくしても、完全にY軸に平行な潜傷が存在するというのでもない限り、潜傷やスクラッチを検出し損ねることはないことが、発明者らの研究で判明した。さらに、ミラー電子画像に現れた潜傷やスクラッチの傾きから、近隣のミラー電子像における潜傷やスクラッチとの連続性を推定すれば、さらに検出精度を上げることができる。以下、本実施例の検査装置について説明する。
 ミラー電子式検査装置について、図1を用いて説明する。但し、図1では真空排気用のポンプやその制御装置、排気系配管、被検査ウェハの搬送系などは省略している。また、電子線の軌道は、説明のため実際の軌道より誇張して描いている。
 まず、電子光学系について説明する。電子銃101から放出された照射電子線100aは、コンデンサレンズ102によって収束されながら、セパレータ103により偏向されて、検査対象となるウェハ104に略平行束の電子線となって照射される。電子銃101には、光源径が小さく大きな電流値が得られるZr/O/W型のショットキー電子源が用いられるが、より高い電流値が得られるLaB電子源や、より輝度の高い冷陰極電子源等の電子源を用いてもよい。また、電子銃101は、電子源近傍に磁界レンズを配する磁界重畳型電子銃であってもよい。電子銃101の引出電圧、引き出された電子線の加速電圧、および電子源フィラメントの加熱電流などの、電子銃の運転に必要な電圧と電流は電子銃制御装置105により供給、制御されている。電子銃101にショットキー電子源や冷陰極電子源が用いられる場合には、電子銃101内は10-6 Pa以下といった超高真空に維持される必要があるため、メンテナンス時等において真空維持のための遮蔽バルブが備えられている。
 図1では、コンデンサレンズ102は1つのレンズとして描かれているが、より平行度の高い照射電子線が得られる様に、複数のレンズや多極子を組み合わせた電子光学系であってもよい。コンデンサレンズ102は、対物レンズ106の後焦点面100bに電子線が集束するように調整されている。対物レンズ106は、複数の電極からなる静電レンズか、または、磁界レンズである。
 セパレータ103は、被検査ウェハ104に向かう照射電子線と、被検査ウェハ104から戻ってくるミラー電子線とを分離するために設置される。本実施例では、E×B偏向器を利用したセパレータを用いている。E×B偏向器は、上方から来た電子線を偏向し、下方から来た電子線を直進させるように設定できる。この場合、図1のように照射電子線100aを供給する電子光学鏡筒(照射電子線鏡筒)は傾斜され、反射された電子を結像する電子光学鏡筒(電子線結像鏡筒)は直立する。セパレータとして、磁界のみを用いた偏向器を使用することも可能である。具体的には、電子線の光軸に垂直な方向に磁界を設置し、照射電子線100aを被検査ウェハ104の方向へ偏向し、被検査ウェハ104からの電子は照射電子線100aの来る方向とは正反対の方向へ偏向する。この場合は、照射電子線鏡筒の光軸と電子線結像鏡筒の光軸とは、対物レンズの光軸を中心に左右対称の配置となる。セパレータによって照射電子線100aが偏向されるとき発生する収差を補正する必要がある場合は、収差補正器を追加配置してもよい。また、セパレータ103が磁界偏向器の場合は、補助的なコイルを設けて補正する。
 セパレータ103によって偏向された照射電子線100aは、対物レンズ106により、被検査ウェハ104表面に対し垂直に入射する平行束の電子線に形成される。前述のように、対物レンズ106の後焦点面100bに電子線が集束されるように、照射系コンデンサレンズ102が調整されるので、平行性の高い電子線を被検査ウェハ104に対して照射できる。照射電子線100aが照射する被検査ウェハ104上の領域は、例えば10000μm等といった面積を有する。対物レンズ106は、被検査ウェハ104表面上方にミラー電子を引き上げるための陽極を備えている。
 移動ステージ制御装置107によって制御される移動ステージ108の上に、絶縁部材109aを介してウェハホルダ109bが設置され、その上に被検査ウェハ104が載置される。移動ステージ108の駆動方式は、直交する二つの直進運動である。これに加えて、上下方向の直進運動や、傾き方向の運動が追加されてもよい。移動ステージ108はこれらの運動により、被検査ウェハ104表面上の全面あるいは一部分を、電子線照射位置すなわち対物レンズ106の光軸上に位置させる。
 被検査ウェハ104表面に負電位を形成するため、電子線の加速電圧とほぼ等しい負電位がウェハホルダ109bに高圧電源110により供給される。照射電子線100aが、この負電位によって被検査ウェハ104の手前で減速され、被検査ウェハ104に到達する前に反対方向に電子軌道が反転する様に、高圧電源110の出力を微調整しておく。ウェハで反射された電子は、ミラー電子100cとなる。
 ミラー電子を結像するミラー電子結像光学系について説明する。ミラー電子100cは対物レンズ106により第1の像を形成する。セパレータ103はE×B偏向器であるので、下方から進行した電子線に対しては偏向作用を持たないように制御でき、ミラー電子100cは直立した電子線結像鏡筒方向に直進し、第1の像は中間電子レンズ111、投影電子レンズ112によって順次結像される。これらの中間電子レンズ111及び投影電子レンズ112は、静電または磁界レンズである。最終的な電子像は画像検出部116に拡大投影される。図1では投影電子レンズ112は1つの電子レンズとして描かれているが、高い倍率の拡大や像歪みの補正などのために複数の電子レンズや多極子で構成される場合もある。本図には記されていないが、電子線をより詳細に調整するための偏向器や非点補正器などが必要に応じて装備されている。
 紫外線光源113からの紫外線は分光器114により分光され、紫外線光学素子115により被検査ウェハ104に照射される。被検査ウェハ104は真空中に保持されているため、紫外線を透過する材料(例えば石英など)で作成された窓で大気側と真空側とを分け、紫外線光学素子115から発せられた紫外線を窓越しに照射する。あるいは、紫外線光源113を真空内に設置してもよいが、その場合は試料室内の空間が限られることから、分光器114による波長選択ではなく、紫外線光源として特定の発光波長を有した固体素子などを用いることが望ましい。紫外線の照射波長は、ウェハ材料のバンドギャップより大きなエネルギーに対応する波長とする。または、材料のバンドギャップ内のエネルギー準位の状況によっては、半導体材料内にキャリアを発生させる波長として、バンドギャップエネルギーより小さいエネルギーの波長を選ぶ場合もある。紫外線光源113、分光器114、紫外線光学素子115の間は、光ファイバーなどで繋ぎ、紫外線が伝達される。または、紫外線光源113、分光器114を一体化した構成としてもよい。また、分光器114に代えて、紫外線光源113に特定の範囲の波長のみを透過するフィルターを用いてもよい。
 画像検出部116はミラー電子100cの像を電気信号に変換し、欠陥判定部117に送る。画像検出部116は、電子線を可視光に変換する蛍光板と、蛍光板の電子像を撮像するカメラとにより構成してもよく、別の構成例として、電子を検出するCCD素子といった2次元検出器から構成してもよい。電子像の強度や蛍光の強度を増倍する機構を備えていてもよい。
 被検査ウェハ104表面の各場所のミラー電子像は、移動ステージ108を駆動しながら、画像検出部116から出力される。移動ステージ108は各撮像時に停止する場合と、停止しないで一定の速度を保って移動を続ける場合とがある。後者は検査時間を短くできる利点がある。この場合、画像検出部116は時間遅延積分(TDI:Time Delay Integration)型の撮像を行う。移動ステージ108の移動速度と画像素子の信号転送速度(ラインレート)とを同期され、移動ステージ108の加減速にかかる時間が不要のため、高速の検査動作が可能となる。
 TDI撮像動作の条件をはじめ、様々な装置各部の動作条件は、検査装置制御部118から入出力される。検査装置制御部118には、モニタ付入出力装置120を介してユーザーから予め電子線発生時の加速電圧、ステージ移動速度、画像検出素子からの画像信号取り込みタイミング、紫外線照射条件等々の諸条件が入力されており、移動ステージ制御装置107、各電子光学素子を制御する電子光学系制御装置119、紫外線光源113や分光器114の制御系、などを総括的に制御する。検査装置制御部118は、役割を分担し通信回線で結合された複数の計算機から構成される場合もある。
 図1に示したミラー電子顕微鏡を用いた検査装置によりTDI撮像を行い被検査ウェハ全面の潜傷分布を検査し表示するまでの過程を以下に説明する。
 図2はTDI撮像動作のスタート時からの撮像状況を説明する図である。検査画像を取得する領域は、被検査ウェハ104の外周に沿った一定の幅を除外した、ウェハ104内側の検査対象領域121である。被検査ウェハ104が検査装置にロードされると、移動ステージ108が駆動し、撮像開始位置(図2中の星印)がミラー電子顕微鏡の視野位置に来るように移動する。撮像開始位置からウェハ104を縦方向(Y方向)の下向きに移動させ、TDI撮像時移動範囲122aの示す範囲を走査する。TDI撮像では撮像中はステージをほぼ一定の速度で一方向に移動させる必要がある。しかし、撮像開始から所定の速度に達するまで移動ステージ108は加速する必要があり、また、所定の速度で移動している状態から撮像終了まで移動ステージ108は減速する必要がある。そのため、加減速中には画像を取得せず、実際にミラー電子像を撮像する範囲は、TDI撮像時移動範囲122aのうち、TDI撮像帯123aの示す範囲となり、TDI撮像帯123aは検査対象領域121を含むように設定される。移動ステージ108の撮像開始位置の座標、加速領域、TDI撮像帯123aの長さ(すなわち定速移動範囲)、減速領域などは、ユーザーが検査範囲を設定したときに検査装置制御部118が決定する。
 TDI撮像帯123aでは検査画像となるミラー電子像が取得される。図2にはTDI撮像帯123aにおいて撮像されるミラー電子像の概念図200を合わせて示している。ここでTDI撮像帯123aの幅はミラー電子顕微鏡視野と同一とする。この場合は例として、100μmとしている。ミラー電子像は画像検出部116から出力されるが、画像は指定されたピクセル配置で複数の画像に分けて出力される。図2では、ミラー電子像200-1からミラー電子像200-N1までのN1枚の画像がTDI撮像帯123aの画像となる。ここではミラー電子像は正方形の画像として出力され、被検査ウェハ104上の100μm×100μmの範囲を撮像している。なお、ミラー電子像の形は検査装置設計上の理由により定められ、長方形など様々な可能性があり、正方形に限定されるものではない。これらN1枚のミラー電子像は、欠陥判定部117に送られ潜傷やスクラッチなどの欠陥の有無とその種類が判定される。ここでは、ミラー電子像200-n1において潜傷210が撮像された例を示している。欠陥判定部117は、ミラー電子像200-n1に付随する情報として、ミラー電子像200-n1の画像識別コード、欠陥の種類、欠陥の大きさ、欠陥が潜傷やスクラッチである場合にはその傾き、などをリスト化する。検査装置制御部118はこのリストに各画像の撮像位置座標、例えば、各ミラー電子像の中心位置のウェハ座標を加えて欠陥リストを作成する。なお、この操作を全て欠陥判定部117で行う構成としてもよい。また、ミラー電子画像から欠陥情報の抽出操作は、検査動作途中で逐次実施してもよいし、あるいはミラー電子画像や撮像時のステージ位置座標などを一旦記憶装置に保存し、被検査ウェハ全面に対する撮像処理が終了した後に、記憶装置からこれらの情報を読み出して、欠陥情報を抽出し欠陥リストを作成してもよい。
 上記の動作で第1回目のTDI撮像動作が終了する。図3は第2回目のTDI撮像の状況を示した図である。第2回目に移動ステージが移動する範囲は、TDI撮像時移動範囲122bである。第2回目動作の撮像開始位置はTDI撮像時移動範囲122b上端の星印の位置としている。第1回目のTDI撮像終了時は、ステージ位置はTDI撮像時移動範囲122aの上側にあるため、ステージ移動時間を短くするためには第2回目のTDI撮像の撮像開始位置は第2回目のTDI撮像時移動範囲122bの上端の星印位置にするのがよい。撮像開始位置は、ユーザーの入力により検査装置制御部118が決定した第1回目のTDI撮像帯123aからのX方向の移動距離Lと、検査対象領域121との関係から、検査装置制御部118が算出する。
 第2回目動作の撮像開始位置から移動ステージ108はY方向の上方向に加速を始め、ほぼ一定速度で移動し、TDI撮像帯123bのミラー電子像のTDI撮像を被検査ウェハ104に対して下方向に行っていく。図3には、TDI撮像帯123bにおいて撮像されるミラー電子像の概念図201を合わせて示している。TDI撮像帯123bの上から、ミラー電子像201-1からミラー電子像201-N2までのN2枚の画像が画像検出部116から順次出力される。この例ではミラー電子像201-n2に潜傷211が撮像されている。これらの画像は第1回目のTDI撮像動作での説明と同様、欠陥判定部117で処理され、欠陥リストが作成される。
 上述のTDI撮像動作をX方向に移動しながら、図4に示すように検査対象領域121の右端に達するまで繰り返す。本実施例ではTDI撮像帯123の幅をlとすると、移動距離Lは幅lよりも大きくなるように設定されている。すなわち、隣接するTDI撮像帯123の間には未撮像領域が残存しており、いわば検査対象領域121をX方向に間引きながら検査を行っている。先に述べたように、検査装置制御部118は、欠陥判定部117が各TDI撮像帯123のミラー電子像から判定した欠陥情報から、図5に例示するような欠陥リストを作成する。欠陥リスト501は、被検査ウェハ毎に作成され、被検査ウェハを特定するウェハ識別コード502、欠陥が検出された画像識別コード503、撮像位置座標504、欠陥の種類505、欠陥の大きさ506、欠陥が潜傷やスクラッチの場合にはその傾き507、その他の情報508を一覧とする。その他の情報としては、欠陥の詳細な特徴量や、TDI撮像時の撮像条件、画像識別コードに対応するミラー電子像のアドレスなど、欠陥情報の表示や解析に必要な情報を格納することができる。
 なお、本実施例ではステージ移動時間をできるだけ短くするように、各TDI撮像移動範囲でのスタート位置を上下交互に設定したが、画像検出部116を構成するTDIカメラが双方向に撮像できないなど設計上の都合があれば、全て一方向の撮像となってもよい。また、TDI撮像時移動範囲間の距離Lは、被検査ウェハ全面に亘って同じ値としてもよいし、予めウェハの製造過程で重点的に検査すべき位置が判明しているような場合には、位置に合わせて距離Lを変更するように設定してもよい。
 欠陥リスト501を元に、被検査ウェハ104の欠陥マップをモニタ付入出力装置120に表示する。図6Aは、欠陥マップを表示したGUI(Graphical User Interface)の一例である。GUIはマップ表示部601、マップ表示部601に表示する情報を選択する操作画面である表示欠陥選択部602及び検査位置表示選択部603を有している。ここでは、表示欠陥選択部602において「潜傷」が選択されることにより、マップ表示部601には欠陥リスト501に格納された潜傷の情報が表示されている。具体的には、マップ表示部601では、潜傷が検出された画像の撮像位置座標に潜傷の傾きを表示している。潜傷の傾きは、欠陥リスト501に格納された傾き507を持った直線611を表示することによって表している。
 直線611の表示範囲は、見難くならないように、隣接するTDI撮像帯123(TDI撮像帯の中心線が点線610で示されている)までの間隔の半分の範囲を超えない範囲としている。これに対して、図6Bに示すように、各直線611a,611bを外挿して隣接のTDI撮像帯までの領域で交差する場合は、その交差した点を結束点613として、1本の折れ線として表示してもよい(a図)。あるいは、スプライン補間など数学的な補間手段を用いて1本の曲線(破線)614として表示してもよい(b図)。
 図6Aのマップ表示部601には、各TDI撮像帯の中心線が点線610で示されているが、点線610は、検査位置表示選択部603において表示、非表示を選択することができる。ここでは表示「有」が選択されている。また、ウェハ識別コードに基づき特定される情報に基づき、ウェハサイズ604についても表示されている。
 このように、潜傷の傾きを直線611で表示することにより、実際には検査していないTDI撮像帯の間の状況を推定することができる。
 欠陥マップを表示するGUIにスクラッチを表示した場合の画面例を図7に示す。マップ表示部601に表示する欠陥は、表示欠陥選択部602の一覧から選択できるので、表示欠陥選択部602でスクラッチを選択すれば、スクラッチが検出された画像撮像座標位置に、スクラッチの傾きを示した直線621として表示される。図6Bで説明したように、隣接するTDI撮像帯の直線621がTDI撮像帯の間で交差する場合は、1本の直線あるいは曲線として表してもよい。
 図6Aに示した潜傷の傾きを示す直線611とは色や線種を変えて表示してもよい。これにより、表示欠陥選択部602で潜傷とスクラッチを同時に選択すれば、両方の傾きが識別可能に表示される。スクラッチの傾きを直線621で表示することにより、実際には検査していないTDI撮像帯の間の状況を推定することができる。
 なお、潜傷とスクラッチとはミラー電子像からは容易に区別することができるものである。スクラッチはウェハ表面にできた傷(へこみ)であるため、ウェハ直上に形成された等電位線はスクラッチの凹形状にあわせて歪む。これにより、反射するミラー電子の軌道が変化し、スクラッチのコントラストは周囲と異なるものとなる。一方、潜傷の場合、ウェハ表面は平坦であるが、紫外線が照射されることによりウェハ内部の結晶擾乱部分に局所的にマイナス帯電が生じる。これはウェハ直上に形成された等電位線に対して歪みをもたらすが、この歪みは表面に凸形状がある場合と等価な歪み方となる。このため、潜傷に起因するコントラストの変化は、スクラッチとは逆方向になる。すなわち、スクラッチが白い線状に見える条件では、潜傷は黒い線状に見えるので、両者は容易に区別することができる。
 欠陥マップを表示するGUIに異物を表示した場合の画面例を図8に示す。ここでの「異物」とは、ミラー電子像において視野を横断するような線状ではない、ミラー電子像において閉じた曲線で囲うことができる形状を持った欠陥の中で、強い縁取りを伴う欠陥をいう。例を図9に示す。中心に撮像されている楕円形の欠陥は、暗いコントラスト212の周辺に明るい縁取り213を伴っている。この特徴を異物として定義しておけば、欠陥判定部117はこの像を異物と判定する。異物の場合は、欠陥のX方向、Y方向のサイズや、暗い部分の面積(ピクセル数など)などの特徴量を欠陥リストに記録する。さらに詳細な分類や正確な分類を行うため必要な特徴量を格納するよう、予め定めておくことができる。
 図8のマップ表示部601には、異物が撮像されているミラー電子像の撮像座標に対応する点に、マーカー631を表示している。マーカー631の大きさは、ミラー電子像における異物像の面積に比例するようにする。したがって、図8の例では、最も大きい異物の周りに小さい異物が広がった状態になっていると推測できる。マーカー631の大きさや色、形、1枚のミラー電子像に撮像されている異物の数や、これらのミラー電子像上の面積(ピクセル数でもよい)の総和などを、欠陥リスト上の異物に関するその他の特徴量に合わせて変化させて表示してもよい。
 潜傷、スクラッチ、異物のほかに、ユーザーの定義する欠陥(例えば、異物に類似した、視野を横断するような線状ではない欠陥)をマップに追加することも可能である。この場合、欠陥リストには欠陥判定部117で判定する予め定義された欠陥(潜傷、スクラッチ、異物等)に限定することなく、ミラー電子像から抽出される特徴量を保存しておく。欠陥編集ボタン605を押して、確認したい特徴量(例えば、一定以上の大きさを有し、縁取りを伴わない暗いコントラスト)をユーザー定義欠陥として定義することにより、当該特徴量を有するミラー電子像を抽出し、ユーザーは自ら定義したユーザー定義欠陥のウェハ上での分布状況をマップ表示部601に表示させることができる。これにより、異物、あるいはユーザー定義欠陥が定義したユーザー定義欠陥の位置を、特徴量に応じたマーカー631で表示することにより、実際には検査していないTDI撮像帯の間の異物等の分布状況を推定することができる。
 図10に欠陥マップを表示するモニタ付入出力装置120のハードウェア構成例を示す。モニタ付入出力装置120は、プロセッサ801、主記憶802、補助記憶803、入出力インタフェース804、表示インタフェース805、ネットワークインタフェース806を含み、これらはバス807により結合されている。入出力インタフェース804は、キーボードやマウス等の入力装置809と接続され、表示インタフェース805は、モニタ808に接続され、GUIを実現する。ネットワークインタフェース806は検査装置制御部118やその他ネットワークと接続するためのインタフェースである。補助記憶803は通常、HDD、フラッシュメモリあるいはROMなどの不揮発性メモリで構成され、モニタ付入出力装置120が実行するプログラムやプログラムが処理対象とするデータ等を記憶する。主記憶802はRAMで構成され、プロセッサ801の命令により、プログラムやプログラムの実行に必要なデータ等を一時的に記憶する。プロセッサ801は、補助記憶803から主記憶802にロードしたプログラムを実行する。
 補助記憶803には、検査装置制御部118で作成された欠陥リスト811が記憶されるものとする。また、欠陥リスト811を用いて、図6A、図7、図8に示したような欠陥マップを作成する欠陥マップ生成プログラム812が記憶されている。
 図11に欠陥マップ生成プログラム812により実行される欠陥マップ生成処理フローを示す。まず、欠陥マップを表示するために必要なデータを読み出す(ステップ901)。読み出すデータは欠陥リスト811の他、欠陥リスト811にリンクされるウェハ情報、検査時の撮像条件情報などを必要に応じて読み出すことができる。ステップ901で読み出したデータに基づき、ウェハ画像を生成する(ステップ902)。生成されるウェハ画像は例えば、ウェハ輪郭、検査対象領域、TDI撮像帯の中心線(検査位置表示有の場合)を含む。表示欠陥選択部602における表示させる欠陥の選択を受け(ステップ903)、ウェハ画像上に表示する欠陥画像データを生成する。表示される欠陥画像は大きく潜傷やスクラッチのような線状欠陥と、異物に代表される非線状欠陥とに大別される(ステップ904)。表示する欠陥として潜傷やスクラッチが選択された場合は、ステップ905に進み、欠陥リスト811より該当する欠陥データを抽出する。抽出した欠陥データに基づき、図6A、図6B及び図7にて説明したような、線状欠陥を示す線画像を生成する(ステップ906)。一方、表示する欠陥として異物のような非線状欠陥が選択された場合は、ステップ907に進み、欠陥リスト811より該当する欠陥データを抽出する。抽出した欠陥データに基づき、図8にて説明したような、異物を示す画像を生成する(ステップ906)。先に説明したように、異物の場合は、ウェハ画像上の撮影位置座標に、異物の特徴量に応じた大きさを有するマーカーを表示する。例えば、特徴量として、ミラー電子像における異物の数密度、ミラー電子像における異物像の面積の総和あるいは平均値、またはミラー電子像における異物像の総ピクセル数あるいは平均値を算出し、これの大きさに応じて異なる大きさのマーカーを、異物を表すマーカーとして選択する。ステップ909に進み、他に選択されている表示すべき欠陥があれば、ステップ904に戻ってその画像を生成し、なければステップ910に進み、ウェハ画像に欠陥画像を重畳し、モニタに表示する。
 なお、欠陥マップ生成プログラム812のデータ読出部821の機能は処理フローのステップ901に該当し、ウェハ画像生成部822の機能は処理フローのステップ902に該当し、欠陥画像生成部825の機能は処理フローのステップ904~910に該当する。特に線状欠陥画像生成部823の機能はステップ905~906、異物画像生成部824の機能はステップ907~908に該当する。
 次に、図12A~Cを用いてTDI撮像位置をユーザーが設定する方法を説明する。いずれも、TDI撮像帯の間隔を設定する入力欄の例を示している。第1の入力欄(図12A)は、TDI撮像帯の間隔Lが等間隔である場合で、リスト表示ボタン700を押下して表示された選択リスト701の中から間隔Lの値を選択する。なお、図12Aに示される選択リスト701に表示される間隔Lの値は例示である。選択リスト701にない値を入力できるように、直接値を入力する入力欄を設けてもよい。
 第2の入力欄(図12B)は、第1の入力欄と同様に選択リスト702から選択するが、ユーザーが検査の精度または速度を直感的に把握して間隔Lを選べるようにしている。予め検査装置制御部118は各選択にあわせた間隔Lの値を記憶しており、ユーザーの選択に合わせて自動的に間隔Lが入力される。たとえば、「高精度検査」を選択するとLは100μm、「高速検査1」を選択するとLは500μm、「高速検査2」を選択するとLは5000μm、などと記憶させておく。なお、図12Bに示される選択リスト702に表示される検査モードの種類や数は例示である。
 第3の入力欄(図12C)は、TDI撮像帯の間隔を任意にユーザーが決められるようにした例である。TDI撮像帯入力エリア703には、被検査ウェハを示す画704と、検査対象領域を示す画705とが表示されている。ユーザーはこの画を見ながら、マウスなどの入力装置で走査線706を描画する。この描画結果から検査装置制御部118は、TDI撮像帯の間隔を計算する。以上のような方法でユーザーにより設定された間隔Lの値にしたがって、検査装置制御部118は各TDI撮像移動範囲のスタートとなる移動ステージ108の位置座標を計算する。これにより、ユーザーは容易にTDI撮像のための走査位置を決定することができる。
 このように、エピタキシアル層成長前のウェハ表面に対し潜傷やスクラッチなど欠陥の検出、評価を短時間で行うことができる。CMP処理後のウェハ表面状態を迅速に評価することができることで、その結果をCMP処理条件設定にフィードバックでき、ウェハの生産性を上げることができるようになる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、ミラー電子顕微鏡がTDI撮像でなく、各撮像ごとにステージの移動と停止を繰り返してミラー電子像を取得してもよい。また、欠陥マップの表示はモニタ付入出力装置120への表示に限られない。例えば、検査装置制御部118をネットワーク150に接続し、欠陥リストをネットワーク150に接続されるデータベース152に格納してもよい(図1参照)。データベースに格納された欠陥リストからネットワーク150に接続される端末151のモニタに欠陥マップを表示するようにしてもよい。端末151が図10に示したようなハードウェアを備え、データベース152に格納された欠陥リストを読み込むことにより、容易に実現することができる。この場合、データベース152にさらに、同じ被検査ウェハについて前後の工程での欠陥情報を蓄積することにより、検出された欠陥について、前後のプロセスとの関係も含めて検討することが可能になり、プロセスの改善を進めやすくすることが期待できる。
100a…照射電子線、100b…後焦点面、100c…ミラー電子線、101…電子銃、102…コンデンサレンズ、103…セパレータ、104…被検査ウェハ、105…電子銃制御装置、106…対物レンズ、107…移動ステージ制御装置、108…移動ステージ、109a…絶縁部材、109b…ウェハホルダ、110…高圧電源、111…中間電子レンズ、112…投影電子レンズ、113…紫外線光源、114…分光器、115…紫外線光学素子、116…画像検出部、117…欠陥判定部、118…検査装置制御部、119…電子光学系制御装置、120…モニタ付入出力装置、121…検査対象領域、122…TDI撮像時移動範囲、123…TDI撮像帯、150…ネットワーク、151…端末、152…データベース、200,201…ミラー電子像、501…欠陥リスト、601…マップ表示部、602…表示欠陥選択部、603…検査位置表示選択部、605…欠陥編集ボタン、801…プロセッサ、802…主記憶、803…補助記憶。

Claims (14)

  1.  電子線を試料に照射する電子光学系と、
     前記試料に紫外線を照射する紫外線光学素子と、
     前記電子線が前記試料に到達する前に電子軌道が反転するよう、前記試料に電圧を印加する電源と、
     前記電圧の印加により反射されたミラー電子を結像してミラー電子像を取得するミラー電子結像光学系と、
     取得された前記ミラー電子像を用いて前記試料の欠陥を検出する欠陥判定部と、
     検査装置制御部と、
     前記欠陥判定部で検出された欠陥情報を表示する表示部とを有し、
     前記検査装置制御部は、第1の方向に沿った第1の撮像帯において前記ミラー電子像を取得し、前記第1の方向と垂直な第2の方向に所定間隔移動して前記第1の方向に沿った第2の撮像帯において前記ミラー電子像を取得し、
     前記表示部は、前記欠陥判定部が線状欠陥を検出した場合、前記表示部に表示される前記試料の画像に対して、前記線状欠陥が検出されたミラー電子像の撮像位置に、検出された前記線状欠陥の傾きを有する線を重畳表示し、
     前記所定間隔は、前記撮像帯の前記第2の方向に沿った幅よりも大きく設定されており、
     前記表示部は、前記第1の撮像帯において検出された第1の線状欠陥を示す第1の線は前記第2の撮像帯に向けて外挿して表示し、前記第2の撮像帯において検出された第2の線状欠陥を示す第2の線は、前記第1の撮像帯に向けて外挿して表示する欠陥検査装置。
  2.  請求項1において、
     前記表示部は、外挿された前記第1の線と外挿された前記第2の線とが交差する場合には、前記交差する点を結束点とする折れ線として表示する欠陥検査装置。
  3.  請求項1において、
     前記表示部は、外挿された前記第1の線と外挿された前記第2の線とが交差する場合には、前記第1の線と前記第2の線とを補間する曲線として表示する欠陥検査装置。
  4.  請求項1において、
     前記線状欠陥は、前記試料の表面に表れない結晶擾乱、または前記試料の表面に存するスクラッチである欠陥検査装置。
  5.  請求項1において、
     前記ミラー電子結像光学系は前記撮像帯において時間遅延積分型の撮像を行う欠陥検査装置。
  6.  請求項1において、
     前記表示部は、前記欠陥判定部が異物を検出した場合、前記表示部に表示される前記試料の画像に対して、前記異物が検出されたミラー電子像の撮像位置に、検出された前記異物の特徴量に応じたマーカーを重畳表示する欠陥検査装置。
  7.  請求項6において、
     前記特徴量は、前記異物が検出されたミラー電子像における前記異物の数密度、前記異物の像の面積の総和または平均値、及び前記異物の像の総ピクセル数または平均値の少なくともいずれかとする欠陥検査装置。
  8.  請求項1において、
     前記所定間隔は、前記試料における位置に応じて異なる間隔が設定される欠陥検査装置。
  9.  請求項1において、
     前記所定間隔は、前記試料の検査の精度または速度の異なるモードに応じて異なる間隔が設定される欠陥検査装置。
  10.  欠陥検査装置により試料の検査を行い、検出した欠陥情報を一覧とした欠陥リストを欠陥マップとして表示する欠陥情報表示装置であって、
     プロセッサと、
     メモリと、
     前記メモリに読み込まれ、前記プロセッサにより実行される欠陥マップ生成プログラムとを有し、
     前記欠陥マップ生成プログラムは、前記試料の画像を生成する試料画像生成部と前記欠陥リストに含まれる欠陥情報に基づき、前記試料の画像に重畳表示される欠陥画像を生成する欠陥画像生成部とを有し、
     前記欠陥リストは前記試料の複数の撮像帯において撮像したミラー電子像から検出した欠陥情報の一覧であり、前記試料の隣接する前記撮像帯の間には未撮像領域を有しており、
     前記欠陥画像生成部は、線状欠陥の表示が選択された場合、前記試料の画像に対して、前記線状欠陥が検出されたミラー電子像の撮像位置に重畳表示される、検出された前記線状欠陥の傾きを有し、前記未撮像領域に向けて外挿される線を生成する欠陥情報表示装置。
  11.  請求項10において、
     前記欠陥画像生成部は、第1の撮像帯において検出された第1の線状欠陥を示す外挿された第1の線と前記第1の撮像帯に隣接する第2の撮像帯において検出された第2の線状欠陥を示す外挿された第2の線とが交差する場合、前記交差する点を結束点とする折れ線を生成する、または前記第1の線と前記第2の線とを補間する曲線を生成する欠陥情報表示装置。
  12.  請求項10において、
     前記線状欠陥は、前記試料の表面に表れない結晶擾乱、または前記試料の表面に存するスクラッチである欠陥情報表示装置。
  13.  請求項10において、
     前記欠陥画像生成部は、異物の表示が選択された場合、前記試料の画像に対して、前記異物が検出されたミラー電子像の撮像位置に重畳表示される、検出された前記異物の特徴量に応じたマーカーを生成する欠陥情報表示装置。
  14.  請求項13において、
     前記特徴量は、前記異物が検出されたミラー電子像における前記異物の数密度、前記異物の像の面積の総和または平均値、及び前記異物の像の総ピクセル数または平均値の少なくともいずれかとする欠陥情報表示装置。
PCT/JP2018/000554 2018-01-12 2018-01-12 欠陥検査装置および欠陥情報表示装置 WO2019138525A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000554 WO2019138525A1 (ja) 2018-01-12 2018-01-12 欠陥検査装置および欠陥情報表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000554 WO2019138525A1 (ja) 2018-01-12 2018-01-12 欠陥検査装置および欠陥情報表示装置

Publications (1)

Publication Number Publication Date
WO2019138525A1 true WO2019138525A1 (ja) 2019-07-18

Family

ID=67218524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000554 WO2019138525A1 (ja) 2018-01-12 2018-01-12 欠陥検査装置および欠陥情報表示装置

Country Status (1)

Country Link
WO (1) WO2019138525A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048152A (ja) * 1996-07-31 1998-02-20 Ishikawajima Harima Heavy Ind Co Ltd 微細線状欠陥の検出方法及びその装置
US6812461B1 (en) * 2002-11-07 2004-11-02 Kla-Tencor Technologies Corporation Photocathode source for e-beam inspection or review
WO2017158744A1 (ja) * 2016-03-16 2017-09-21 株式会社 日立ハイテクノロジーズ 欠陥検査方法及び欠陥検査装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048152A (ja) * 1996-07-31 1998-02-20 Ishikawajima Harima Heavy Ind Co Ltd 微細線状欠陥の検出方法及びその装置
US6812461B1 (en) * 2002-11-07 2004-11-02 Kla-Tencor Technologies Corporation Photocathode source for e-beam inspection or review
WO2017158744A1 (ja) * 2016-03-16 2017-09-21 株式会社 日立ハイテクノロジーズ 欠陥検査方法及び欠陥検査装置

Similar Documents

Publication Publication Date Title
JP6788660B2 (ja) 欠陥検査装置
JP6588152B2 (ja) 欠陥検査方法及び欠陥検査装置
US7903867B2 (en) Method and apparatus for displaying detected defects
US7532328B2 (en) Circuit-pattern inspection apparatus
JP3996774B2 (ja) パターン欠陥検査方法及びパターン欠陥検査装置
JP5164754B2 (ja) 走査型荷電粒子顕微鏡装置及び走査型荷電粒子顕微鏡装置で取得した画像の処理方法
US20080073533A1 (en) Inspection system and inspection method
JP5655084B2 (ja) 荷電粒子ビーム顕微鏡
TWI836541B (zh) 非暫時性電腦可讀媒體及用於監測檢測系統中之束的系統
JP4253576B2 (ja) パターン欠陥検査方法及び検査装置
US20050230618A1 (en) Defect inspection apparatus, program, and manufacturing method of semiconductor device
JP6145133B2 (ja) 荷電粒子線装置
JP6957633B2 (ja) 評価用半導体基板およびそれを用いた検査装置の欠陥検出感度評価方法
WO2019058440A1 (ja) 荷電粒子線装置
WO2020166049A1 (ja) 欠陥検査装置、及び欠陥検査方法
JP2000286310A (ja) パターン欠陥検査方法および検査装置
CN108231513B (zh) 用于操作显微镜的方法
WO2019138525A1 (ja) 欠陥検査装置および欠陥情報表示装置
JP2009259878A (ja) 荷電粒子線装置
JP4028864B2 (ja) パターン欠陥検査方法および検査装置
JP6714147B2 (ja) 荷電粒子線装置、及び荷電粒子線装置の調整方法
JP2011076960A (ja) 電子顕微鏡における薄膜試料位置認識装置
WO2021106128A1 (ja) 欠陥検査装置、及び方法
JP5500868B2 (ja) 走査電子顕微鏡、および走査電子顕微鏡における像表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP