CN108602668A - 提高氢气加载比率的方法 - Google Patents

提高氢气加载比率的方法 Download PDF

Info

Publication number
CN108602668A
CN108602668A CN201780007749.0A CN201780007749A CN108602668A CN 108602668 A CN108602668 A CN 108602668A CN 201780007749 A CN201780007749 A CN 201780007749A CN 108602668 A CN108602668 A CN 108602668A
Authority
CN
China
Prior art keywords
transition metal
hydrogen
film
desorption
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780007749.0A
Other languages
English (en)
Inventor
D·R·伯吉斯
M·R·格林沃尔德
B·W·巴比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ai Ai Intellectual Property Holdings Ltd
Original Assignee
Ai Ai Intellectual Property Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ai Ai Intellectual Property Holdings Ltd filed Critical Ai Ai Intellectual Property Holdings Ltd
Publication of CN108602668A publication Critical patent/CN108602668A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3225Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating involving a post-treatment of the coated or impregnated product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了提高过渡金属中氢气的加载比率的方法和设备。阻塞金属结构表面上的解吸位点增加了吸收和解吸过程达到平衡时氢/氘分压。阻塞的解吸位点的数量越多,可以达到越高的平衡压力以获得更高的氢加载比率。此外,由于在晶界处发生氢解吸,因此减少晶界有利于降低氢解吸速率。还公开了增加晶粒尺寸以减小晶界的方法和设备。

Description

提高氢气加载比率的方法
优先权声明
本申请要求2016年1月21日提交的题为“提高氢(氘)气加载到过渡金属中的方法”的美国临时申请号62/281,392,以及2016年6月1日提交的题为“提高氢(氘)气加载的方法”的美国临时申请号62/344,009的优先权,其内容通过引用并入本文。
技术领域
本发明涉及将氢/氘气加载到过渡金属中。
背景技术
大多数过渡金属具有吸附大量氢气并将氢气储存在金属晶格中的能力。所述吸附过程分为两步,首先吸附,然后吸收。在吸附过程中,氢分子吸附到过渡金属的表面。吸附后,每个吸附的氢分子解离成两个氢原子。然后,解离的氢原子被吸收到金属晶格的主体(bulk)中。
几种过渡金属,例如钯、镍等已经广泛用于储存氢的工业应用中。在正常条件下,钯或镍可以吸收氢气达到一定的限度。例如,钯可以达到0.7-0.8(氢原子/金属原子)的加载比率。
通常,一块金属中的气体加载比率可以通过金属的质量变化或气体中的压力变化来确定。为了使氢加载超过0.8的比率或达到超过1.0的加载比率,需要特殊的条件或需要特别长的时间。例如,仅在10,000千帕斯卡的压力下,钯可以达到0.9的加载比率。
发明内容
本申请公开了用于实现高氢气加载比率(例如高于0.9)的方法和设备,而不需要借助特别高的压力或温度。
本公开内容涉及提高氢气加载到过渡金属中。本文中术语“氢气”是指包含一种或多种氢同位素的气体或气体混合物,例如氕、氘或氚。
在一些实施方案中,通过预处理金属表面可以在一块过渡金属中实现提高氢加载比率。因为氢原子即使在吸收之后也可以从金属晶格中逸出,因此减少吸收的氢原子可以逸出的表面积能够提高氢加载比率。在一些实施方案中,通过使解吸位点失活来减少过渡金属表面上的解吸面积。例如,可以通过在过渡金属的表面上沉积薄膜来使解吸位点失活。具有沉积薄膜的过渡金属具有减少的解吸面积,并且减少的解吸面积降低了氢气的解吸速率。薄膜可以是金属或半金属的。在一个实施方案中,薄膜的厚度为1至5个单层厚。单层是一个分子厚的层。
在一些实施方案中,提高过渡金属中氢气的加载比率的方法包括通过在过渡金属的表面上沉积薄膜来减少解吸面积。沉积在过渡金属表面上的薄膜使所述表面上的解吸位点失活。
在一些实施方案中,可通过降低过渡金属中的总晶界(total grain boundaries)来减少过渡金属表面上的解吸面积。例如,通过增加过渡金属中的平均晶粒尺寸可以减小过渡金属中的总晶界。因此,提高过渡金属中氢气的加载比率的另一种方法是增加过渡金属中的晶粒尺寸。
在一个实施方案中,通过在一块玻璃上沉积过渡金属的薄膜,可以增加过渡金属中的平均晶粒尺寸。沉积方法用于制造金属涂层或薄膜。沉积方法的实例包括物理气相沉积(PVD)、化学气相沉积(CVD)等。在PVD中,一块金属线或板通过物理过程(比如溅射)转化成蒸汽。在溅射沉积工艺中,惰性气体(比如氩)的离子以足够的能量朝向金属板(溅射靶)加速以从板逐出金属原子。逐出的金属原子或离子在力场下加速到达基底并沉积在基底上。在一个实施方案中,通过在预定压力和预定温度下退火过渡金属来增加过渡金属中的平均晶粒尺寸。在另一个实施方案中,通过在预定温度和预定压力下将过渡金属的定向金属薄膜蒸发到定向基底上来增加过渡金属中的平均晶粒尺寸。金属薄膜中的定向晶粒的面内尺寸优选大于所述薄膜的厚度。在一个实施方案中,预定压力为0.1至1帕斯卡,预定温度为200℃至1000℃。在另一个实施方案中,预定压力为1×10-4至1×10-6帕斯卡,预定温度为150℃至250℃。在一些实施方案中,退火是增加晶粒尺寸的优选方法。退火引发晶粒生长。当晶粒尺寸增长时,晶粒较少,因此总晶界较小,这导致可用于解吸加载氢的表面积减小。在一些实施方案中,可以组合溅射沉积和退火的方法。过渡金属中的平均晶粒尺寸由于退火而增加,并且过渡金属的解吸面积由于溅射沉积而降低。在一些实施方案中,为了改善过渡金属中氢气的加载比率,将定向金属薄膜在150℃至250℃的预定温度和1×10-4至1×10-6帕斯卡的预定压力下蒸发到定向基底上。所述定向基底可以是定向银基底。基底上的金属薄膜包括定向的晶粒,其面内尺寸(in-plane dimension)大于所述薄膜的厚度。在一个实施方案中,所述薄膜可以是一至五个单层厚。在一些实施方案中,过渡金属可以是钯。在一些实施方案中,可以实现1.0或更高的氢加载比率。在一些实施方案中,金属薄膜在0.1至1帕斯卡的预定压力和200℃至1000℃的预定温度下进一步退火。
再次注意,在本公开内容中,术语“氢”可以指任何氢同位素,氕、氘或氚,或它们的混合物。
附图简述
图1示出了加载氢的示例性金属晶格。
图2示出了金属晶格中的示例性氢吸附和吸收过程。
图3示出了金属晶格中的示例性氢解吸过程。
图4示出了金属薄膜中不同的晶粒尺寸。
图5示出了用于提高金属晶格中的氢加载比率的示例性方法。
具体实施方式
在图1中所示的示例性过渡金属晶胞100中,金属原子形成面心立方(fcc)晶胞。包括水平分割晶胞的一组虚线作为视觉辅助。所述晶胞包括14个金属原子104,其位于所述晶胞的八个角和每个面的中心。所述fcc晶胞100加载有氢原子102,其位于晶格中的八面体间隙位置。在晶胞结构100中,氢加载比率为4个氢原子对4个金属原子,使用常规计数法(角原子的1/8,边缘中心原子的1/4,面心原子的1/2等等)。换言之,金属晶胞100中的氢加载比率已达到1.0,这在正常条件下很难实现。
在正常条件下,金属或金属结构只能达到约0.7或0.8的氢加载比率。图2示出了氢加载过程。所述加载过程解释了为什么在正常条件下难以使一块金属达到高于0.7或0.8的氢加载比率。在图2中,金属或金属晶格200部分地加载氢。在晶格200的表面202上,氢分子首先解离成氢原子102。氢原子102在表面202上的加载过程也称为吸附,并且氢原子102加载到晶格200的主体中的过程称为吸收。在氢气加载期间,两个竞争过程吸收和解吸同时发生。在吸收过程中,晶格200外部的氢原子扩散到晶格200中并被吸收到晶格200中。在解吸过程中,晶格200内的氢原子扩散到晶格200的表面,然后保留在表面或返回到气相。在氢加载过程开始时,扩散到晶格200中的氢原子比扩散出晶格200的氢原子更多,并且吸收速率超过解吸速率。随着更多的氢原子吸收到晶格200中,解吸速率逐渐增加。最终,吸收和解吸过程达到平衡状态,其中在晶格200中吸收的氢原子102的数量保持恒定,并且氢加载比率不随着时间推移而变化。
在解吸过程中,氢原子通过晶格200的表面202上的解吸位点从晶格200逸出。图3示出了一些解吸位点302。解吸位点302是吸附的氢原子102可以从晶格200逸出的位点,并且解吸过程的速率与表面上的解吸位点302的数量成正比。因此,减少解吸位点302的数量会降低解吸速率或减慢解吸过程。在较慢的解吸速率下,在较长时间内吸收速率持续高于解吸速率,直到两个竞争过程再次达到平衡。在达到平衡之前的较长时间内,吸收了更多的氢原子,从而提高氢加载比率。
在许多工业应用中,希望实现高的氢加载比率,例如高于1.0。研究表明,高压或超高压,例如高于10,000千帕斯卡,有助于获得1.2的氢加载比率。研究还表明,各种温度和压力循环有助于实现高的氢加载比率。用于在金属结构中实现氢加载比率的其它技术包括电解共沉积、离子注入和使用纳米颗粒。一些调查进一步表明,强磁场、高电压、高电解电流等可用于实现高于1.0的氢加载比率。
本公开内容教导了用于增加金属结构中的氢加载比率而不需要超过200kPa的氢压力的有利的方法和设备。在本公开内容中,金属结构是指金属或金属晶格或合金晶格。
合适的金属或金属结构选自一组过渡金属,包括钯、铱、镍、铂、铜、银、金、锌、钛、锆、铪、铬、钒、铌、钽、钼、钨、铁、钌、铑、铝、铟、锡、铅及它们的混合物。在一些实施方案中,优选钯。在一些实施方案中,实现了1.0或更高的氢加载比率。在一些实施方案中,实现了1.0至1.8之间的氢加载比率。
在一些实施方案中,金属结构(例如钯晶格)表面上的一部分氢解吸位点通过沉积在金属结构表面上的金属或半金属薄膜失活。可以使用以下元素中的一种或多种来制造所述薄膜:钛(Ti)、锆(Zr)、铪(Hf)、钒(V)、铌(Nb)、钽(Ta)、铬(Cr)、钼(Mo)、钨(Ta)、铁(Fe)、铝(Al)、镓(Ga)、铟(In)、硅(Si)、锗(Ge)和锡(Sn)。在一些实施方案中,薄膜的厚度范围为1至5个单层厚,并且通过溅射单金属靶,或不同金属的多个靶,或合金靶来沉积所述薄膜。使用先前沉积的薄膜的横截面透射电子显微镜校准用于产生仅一至五个单层的薄膜的沉积条件。在一些实施方案中,薄膜可以覆盖10至99%的表面积。在一个实施方案中,厚度为1至5个单层的薄膜覆盖超过表面积的一半。在另一个实施方案中,薄膜覆盖不到一半的表面积。计算表明,阻塞10%的解吸位点导致未阻塞位点的氢(氘)分压增加1.2倍,而阻塞99%的解吸位点导致氢(氘)分压增加10,000倍。
在一些实施方案中,通过溅射一个金属靶或多个金属靶来沉积薄膜。在一些实施方案中,通过溅射单金属靶、不同金属的多个靶或合金靶来沉积薄膜。金属靶的溅射产率是溅射沉积条件的函数。溅射产率定义为当被溅射离子撞击时从靶释放的原子数。特定金属的溅射产率取决于溅射离子所需的能量。例如,需要具有300电子伏特(eV)能量的氩离子来溅射一个镍原子。相比之下,需要能量为400eV的氙离子来溅射一个镍原子。
解吸位点是吸附的氢原子逸出晶格200的位置。如图3所示,一些解吸位点302位于晶格200的表面202上。一些解吸位点位于晶格200的晶界上(图3中未示出)。晶粒是指金属结构的一部分,其中晶体排列是不间断的。晶界是连续晶体结构中的中断,并且基本上表现为金属结构中的内表面。减少金属结构中的晶界减少了总表面积。结果,减少了解吸位点的数量,从而减慢了解吸速率。
在一些实施方案中,通过增加晶粒尺寸来实现晶界的减少。图4a-4d示出了在不同条件下(例如温度和压力)制备(例如退火)的四种示例性金属结构。由于退火条件不同,四种示例性金属结构中的每一种的平均晶粒尺寸是不同的。例如,在图4a中,金属结构中的平均晶粒尺寸最大,约为50-60nm。在图4b中,平均晶粒尺寸为30至40nm。在图4c和图4d中,金属结构在很大程度上破碎了,并且晶粒尺寸小于图4a或图4b中的晶粒尺寸。图4c中的平均晶粒尺寸落在20至30nm的范围内,并且图4d中的平均晶粒尺寸落在20至10nm的范围内。如图4a-4d所示,晶粒尺寸越大,晶界的总面积变得越小。因此,增加晶粒尺寸可以减小晶界,从而可以降低氢解吸速率。
以下是一些实施方案,其说明了可用于增加金属结构中的平均晶粒尺寸的方法和/或系统。在一些实施方案中,出于说明目的,使用特定的金属或材料(例如,钯或玻璃)作为示例。应注意,本文公开的方法和系统可适合于处理或制备其它金属或合金或具有类似性质的任何材料。
在一个实施方案中,过渡金属样品,例如钯,在真空下在0.1至0.001帕斯卡的压力和200至1000℃的温度下退火10至60分钟以诱导晶粒生长。增加金属样品的平均晶粒尺寸会降低样品中的总晶界,这会降低氢解吸的潜在面积。
在一个实施方案中,退火用于增加钯样品中的晶粒尺寸。样品在惰性气体中在标称100千帕斯卡的压力下在200℃至1000℃的温度下退火。退火过程持续约10至60分钟以诱导晶粒生长。惰性气体(溅射气体)可以是氩气或任何气体,比如氮气、二氧化碳或在退火条件下不形成化合物或扩散到钯样品中的其它惰性气体。在一些实施方案中,优选氩气。
如上所述,通过增加金属结构中的平均晶粒尺寸可以减少总晶界。在一些实施方案中,采用改进的溅射沉积工艺来产生金属薄膜,其中薄膜中的平均晶粒尺寸与所述薄膜的厚度一样大。在一个实施方案中,将5至200nm的钯薄膜以0.1至1帕斯卡的总压力在100至1000W的功率下在惰性气体中溅射沉积在一片玻璃上。当钯薄膜中的晶粒尺寸约为,例如,或者变得大于或等于所述薄膜的厚度,平均氢原子扩散距离通过薄膜的厚度比穿过晶界更短,因此使通过晶界的解吸最小化。
在另一个实施方案中,将5至200nm厚的钯薄膜以0.1至1帕斯卡的总压力在100至1000W的功率下在惰性气体中溅射沉积在一片石英玻璃上。在适当的退火条件下对薄膜进行退火直到晶粒尺寸大于薄膜的厚度。例如,钯薄膜在惰性气体存在下在标称100千帕斯卡的压力和200℃至1000℃的温度下退火。退火过程持续约10至60分钟。再例如,将钯薄膜在真空下在0.1至0.001Pa的压力下在200℃至1000℃的温度下退火10至60分钟以诱导晶粒生长。
在一些实施方案中,溅射沉积中使用的基底是定向的银基底。
在一些实施方案中,将25至50nm(100)定向的钯薄膜在1×10-4至1×10-6Pa的压力下和150℃至250℃的基底温度下蒸发到(100)定向的银(Ag)基底上,产生具有面内尺寸大于50nm的(100)定向的晶粒。应注意,(100)定向是指米勒指数100的平面,即,切割x轴但平行于y轴和z轴的平面。这些是两种薄膜的例子,其中所有晶粒具有相同的定向。当使用定向薄膜时,晶粒将比随机定向的晶粒更容易聚结形成更大的晶粒。其中所有晶粒具有大致相同定向的任何薄膜具有这种有利的行为并且可以用于本文公开的方法和装置中。没有特定的平面或平面范围更合适或更优选。
在一些实施方案中,将25至50nm(111)定向的钯薄膜在1×10-4至1×10-6帕斯卡和150℃至250℃温度下蒸发到(111)定向的Ag基底上,得到面内尺寸大于50nm的(11l)定向的晶粒。注意,(111)定向是指切割通过晶胞面的对角线和对立顶点的111平面。这些是两种薄膜的例子,其中基本上所有的晶粒将具有大致相同的定向。
在上述一些实施方案中,可以实现1.0或更高的氢加载比率。在一些实施方案中,氢加载比率优选为1.0至1.8。
图5是描绘用于提高金属材料中的氢加载的示例性过程的流程图。图5中所示的示例性过程是预处理的一个实施方案,其可以用于减少金属材料的解吸面积。通过减少金属材料表面上的解吸位点的数量或增加金属材料中的平均晶粒尺寸,可以实现解吸面积的减少。图5示出了用于增加金属材料中的平均晶粒尺寸的示例性方法。在示例性方法500中,首先将过渡金属膜溅射沉积在一块玻璃上(步骤502)。所述薄膜在0.1至1帕斯卡的预定压力和200℃至1000℃的预定温度下退火。
提高过渡金属中氢气加载比率的另一种方法包括:(i)提供过渡金属作为基底,(ii)提供溅射靶,(iii)提供溅射气体,(iv)用溅射气体溅射所述溅射靶以从溅射靶中逐出金属原子或离子,和(v)在基底上沉积逐出的金属原子或离子。
在不脱离本发明的范围和基本特征的情况下,本发明可以以不同于本文所述的其它特定方式实施。因此,本发明的实施方案在所有方面都被认为是说明性的而非限制性的,并且落入所附权利要求的含义和等同范围内的所有改变都旨在包含在其中。

Claims (19)

1.一种提高过渡金属中氢气加载比率的方法,包括:
在过渡金属表面上沉积薄膜;
通过沉积薄膜使所述过渡金属表面上的解吸位点失活;其中由于解吸位点失活,过渡金属的解吸面积减小;
其中减小的解吸面积降低了氢气的解吸速率并提高了氢气的加载比率。
2.根据权利要求1所述的方法,其中所述薄膜是金属的。
3.根据权利要求1所述的方法,其中所述薄膜是半金属的。
4.根据前述权利要求中任一项所述的方法,其中所述薄膜为1至5个单层厚。
5.根据权利要求1-3中任一项所述的方法,其中所述薄膜包括以下元素中的一种或多种:钛、锆,铪、钒、铌、钽、铬、钼、钨、铁、铝、镓、铟、硅、锗和锡。
6.根据权利要求1-3中任一项所述的方法,其中所述过渡金属是钯、铱、镍、铂、铜、银、金、锌、钛、锆、铪、铬、钒、铌、钽、钼、钨、铁、钌、铑、铝、铟、锡、铅,或它们的混合物,优选钯。
7.根据权利要求1-3中任一项所述的方法,其中提高的氢加载比率为0.9或更高。
8.一种提高过渡金属中氢气加载比率的方法,包括:
在基底上溅射沉积过渡金属的薄膜;和
在0.1至1.0帕斯卡的预定压力和200℃至1000℃的预定温度下使所述过渡金属退火,
其中所述过渡金属中的平均晶粒尺寸增加,且所述过渡金属的解吸面积减少;以及其中过渡金属中氢气的加载比率提高。
9.根据权利要求8所述的方法,其中所述过渡金属是钯。
10.根据权利要求8或9所述的方法,其中所述基底是定向的银基底。
11.根据权利要求8或9所述的方法,其中所述基底是玻璃。
12.根据权利要求8或9所述的方法,其中所述氢加载比率为0.9或更高。
13.根据权利要求8或9所述的方法,其中所述薄膜为1至5个单层厚。
14.一种提高过渡金属中氢气加载比率的方法,包括:
蒸发过渡金属;
沉积蒸发的过渡金属以在定向的基底上形成过渡金属的定向金属薄膜,其中所述定向的金属薄膜的沉积在150℃至250℃的预定温度和1×10-4至1×10-6帕斯卡的预定压力下进行;
其中所述基底上的金属薄膜包括面内尺寸大于所述薄膜的厚度的定向的晶粒。
15.根据权利要求14所述的方法,其中所述过渡金属是钯。
16.根据权利要求14或15所述的方法,其中所述基底是定向的银基底。
17.根据权利要求14或15所述的方法,其中所述氢加载比率为1.0或更高。
18.根据权利要求14或15所述的方法,其中所述薄膜为1至5个单层厚。
19.根据权利要求14所述的方法,还包括在0.1至1帕斯卡的预定压力和200℃至1000℃的预定温度下使所述过渡金属退火。
CN201780007749.0A 2016-01-21 2017-01-23 提高氢气加载比率的方法 Pending CN108602668A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662281392P 2016-01-21 2016-01-21
US62/281,392 2016-01-21
US201662344009P 2016-06-01 2016-06-01
US62/344,009 2016-06-01
PCT/US2017/014558 WO2017127800A1 (en) 2016-01-21 2017-01-23 Methods for improving loading ratio of hydrogen gas

Publications (1)

Publication Number Publication Date
CN108602668A true CN108602668A (zh) 2018-09-28

Family

ID=59362193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780007749.0A Pending CN108602668A (zh) 2016-01-21 2017-01-23 提高氢气加载比率的方法

Country Status (7)

Country Link
US (1) US20200277185A1 (zh)
EP (1) EP3405430A4 (zh)
CN (1) CN108602668A (zh)
AU (1) AU2017210104A1 (zh)
CA (1) CA3011987A1 (zh)
RU (1) RU2721009C2 (zh)
WO (1) WO2017127800A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249654A (en) * 1979-09-25 1981-02-10 Helversen Frederick D Hydrogen storage apparatus
JPH01131002A (ja) * 1987-11-17 1989-05-23 Sanyo Electric Co Ltd 水素吸蔵合金の製造方法
JPH01290501A (ja) * 1988-05-17 1989-11-22 Sanyo Electric Co Ltd 水素貯蔵素子並びに水素ガス検知素子
EP0417802A1 (en) * 1989-09-13 1991-03-20 Canon Kabushiki Kaisha Hydrogen storage body
US20040161949A1 (en) * 1998-11-06 2004-08-19 Tapesh Yadav Semiconductor and device nanotechnology and methods for their manufacture
CN103668133A (zh) * 2013-09-09 2014-03-26 西北工业大学 Zr基储氢合金沉积Pd膜的方法及化学镀镀液
WO2017127423A2 (en) * 2015-12-04 2017-07-27 Ih Ip Holdings Limited Methods and apparatus for triggering exothermic reactions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1805357C (ru) * 1990-05-21 1993-03-30 Институт Проблем Машиностроения Ан Усср Устройство дл определени содержани водорода в металлах и сплавах
EP0851515A3 (en) * 1996-12-27 2004-10-27 Canon Kabushiki Kaisha Powdery material, electrode member, method for manufacturing same and secondary cell
WO2004044923A2 (en) * 2002-05-18 2004-05-27 Peter Hagelstein A device, system and method for increasing multiple occupancy of hydrogen isotopes in a host lattice
WO2004103036A2 (en) * 2003-04-25 2004-11-25 Lattice Energy, L.L.C. Electrode constructs including modified metal layers, and related cells and methods
US20080112881A1 (en) * 2006-11-14 2008-05-15 Andrei Lipson Systems and methods for hydrogen loading and generation of thermal response
US8227020B1 (en) * 2007-03-29 2012-07-24 Npl Associates, Inc. Dislocation site formation techniques
WO2011026214A1 (en) * 2009-09-01 2011-03-10 The Governors Of The University Of Alberta Kinetic stabilization of magnesium hydride
ES2901962T3 (es) * 2015-05-23 2022-03-24 Univ Warszawski Sistema Paladio-Platino para su uso como material de almacenamiento de hidrógeno y/o electrocatalizador, preferentemente en pilas de combustible

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249654A (en) * 1979-09-25 1981-02-10 Helversen Frederick D Hydrogen storage apparatus
JPH01131002A (ja) * 1987-11-17 1989-05-23 Sanyo Electric Co Ltd 水素吸蔵合金の製造方法
JPH01290501A (ja) * 1988-05-17 1989-11-22 Sanyo Electric Co Ltd 水素貯蔵素子並びに水素ガス検知素子
EP0417802A1 (en) * 1989-09-13 1991-03-20 Canon Kabushiki Kaisha Hydrogen storage body
US20040161949A1 (en) * 1998-11-06 2004-08-19 Tapesh Yadav Semiconductor and device nanotechnology and methods for their manufacture
CN103668133A (zh) * 2013-09-09 2014-03-26 西北工业大学 Zr基储氢合金沉积Pd膜的方法及化学镀镀液
WO2017127423A2 (en) * 2015-12-04 2017-07-27 Ih Ip Holdings Limited Methods and apparatus for triggering exothermic reactions

Also Published As

Publication number Publication date
WO2017127800A1 (en) 2017-07-27
RU2018126505A3 (zh) 2020-03-05
US20200277185A1 (en) 2020-09-03
CA3011987A1 (en) 2017-07-27
EP3405430A1 (en) 2018-11-28
EP3405430A4 (en) 2019-12-04
AU2017210104A1 (en) 2018-08-09
RU2018126505A (ru) 2020-02-25
RU2721009C2 (ru) 2020-05-15

Similar Documents

Publication Publication Date Title
Thornton High rate thick film growth
Thornton Structure-zone models of thin films
KR101730175B1 (ko) 몰리브덴 함유 타겟들
Lee et al. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering
EP1081718A1 (en) Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
CN110607550B (zh) 准单晶薄膜及其制造方法
EP3696823A1 (en) Zirconium alloy cladding with improved oxidation resistance at high temperature and method for manufacturing same
KR20100135957A (ko) 몰리브덴-니오브 합금, 몰리브덴-니오브 합금을 포함하는 스퍼터링 타겟, 이러한 스퍼터링 타겟의 제조 방법 및 이러한 스퍼터링 타겟으로부터 준비되는 박막 및 그 용도
El Beainou et al. Correlation between structure and electrical resistivity of W-Cu thin films prepared by GLAD co-sputtering
JP2017502166A (ja) スパッタリングターゲット及びその製造方法
Wang et al. Growth mechanism of preferred crystallite orientation in transparent conducting ZnO: In thin films
JP4287001B2 (ja) 透明導電積層体
JP4137254B2 (ja) 透明導電積層体の製造方法
US6423196B1 (en) Method of making Ni-Si magnetron sputtering targets and targets made thereby
CN108602668A (zh) 提高氢气加载比率的方法
US20170175249A1 (en) Thin metal film substrate and method for preparing the same
CN108004506B (zh) 一种基于In合金的贵金属纳米颗粒及其制备方法
JP2017193755A (ja) 透明導電膜の製造方法、及び透明導電膜
CN115074669A (zh) 一种低温激活的大容量吸气薄膜
Lim et al. Effect of substrate bias voltage on the thermal stability of Cu/Ta/Si structures deposited by ion beam deposition
CN112382718A (zh) 一种C轴垂直择优取向AlN压电薄膜及其制备方法
Boukhalfa et al. Ballistic and thermalized regimes to tune structure and conducting properties of W–Mo thin films
Zhou et al. Study on the surface modification and mechanism of multilayer graphene by ion beam irradiation
Lee et al. Microstructure and electrical property of tantalum oxynitride thin films prepared using high-power impulse reactive magnetron sputtering
Barman et al. Surface scaling behaviour of size-selected Ag-nanocluster film growing under subsequent shadowing process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180928