CN108585879B - 一种快速制备各向异性氮化钛陶瓷块体材料的方法 - Google Patents

一种快速制备各向异性氮化钛陶瓷块体材料的方法 Download PDF

Info

Publication number
CN108585879B
CN108585879B CN201810427772.1A CN201810427772A CN108585879B CN 108585879 B CN108585879 B CN 108585879B CN 201810427772 A CN201810427772 A CN 201810427772A CN 108585879 B CN108585879 B CN 108585879B
Authority
CN
China
Prior art keywords
titanium nitride
block material
ceramic block
nitride ceramic
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810427772.1A
Other languages
English (en)
Other versions
CN108585879A (zh
Inventor
史忠旗
王生凯
张哲健
杨必果
张晓钰
夏鸿雁
王红洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xianyang Gazelle Valley New Material Technology Co ltd
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810427772.1A priority Critical patent/CN108585879B/zh
Publication of CN108585879A publication Critical patent/CN108585879A/zh
Application granted granted Critical
Publication of CN108585879B publication Critical patent/CN108585879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种快速制备各向异性氮化钛陶瓷块体材料的方法,属于陶瓷材料技术领域。采用的技术方案为:先将沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料放入热压石墨模具中,再将石墨模具置于放电等离子烧结炉腔体中,烧结炉腔体抽真空至气压小于0.01Pa,施加轴向压力,并快速升温至烧结温度并保温;保温结束后随炉冷却,温度降至室温时卸压,完成烧结过程,制得各向异性氮化钛陶瓷块体材料。本发明操作流程简单,方法新颖,制备快捷,经该方法制备出的氮化钛陶瓷材料性能表现出明显的各向异性。

Description

一种快速制备各向异性氮化钛陶瓷块体材料的方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种快速制备各向异性氮化钛陶瓷块体材料的方法。
背景技术
氮化钛(TiN)陶瓷材料是一种具有面心立方结构的新型多功能陶瓷材料,由于其具有高熔点、高硬度、良好的导电性等特点,广泛应用在高温、极大摩擦力的工作环境下,也可作为熔盐电解的电极以及电触头使用,已经在民用、航空航天等领域发挥了非常重要的作用。
由于氮化钛陶瓷较难烧结,因此在制备氮化钛陶瓷时一般是直接将活性较高的纳米氮化钛粉等在高温下进行热压烧结制备,产物致密度较高、性能较好,但存在保温时间过长、原料成本过高等问题。
另外,氮化钛陶瓷晶体结构本身存在各向异性,导致不同晶面的性能也有很大区别。如文献(Journal of Applied Physics,1996,80(12):6725-6733.)报道,氮化钛陶瓷不同晶面力学性能有如下规律:(111)>(001)>(011),表现出明显的各向异性特征。因此,若采用一定的微结构调控手段,使氮化钛陶瓷材料的微观结构中,各向异性的氮化钛晶粒沿着某些特定方向规则排列,就可使材料特定方向上的性能得到增强。然而,目前烧结制备的氮化钛陶瓷材料其晶粒均表现为随机取向特征,这使得氮化钛陶瓷材料在特定方向的性能无法得到显著提高。目前,对于各向异性氮化钛陶瓷的制备,基本采用的是化学气相沉积的方法(Materials Transactions,2009,50(8):2028-2034)或抽滤结合高温氮化处理的方法(如专利“一种各向异性氮化钛陶瓷薄膜及其制备方法”,公开号:CN106848226A)获得,产物只能为厚度很薄的各向异性氮化钛陶瓷薄膜材料,尚不能获得各向异性TiN陶瓷块体材料。因此,寻找一种简单快捷的制备各向异性氮化钛陶瓷块体材料的方法对于提升传统氮化钛陶瓷材料的性能、扩展其应用领域至关重要。
发明内容
为了克服上述现有技术存在的缺陷,本发明的目的在于提供一种快速制备各向异性氮化钛陶瓷块体材料的方法——采用放电等离子烧结法,该方法具有操作简单、烧结相对温度低、保温时间短的优点,经该方法能够快速制备出性能良好的各向异性氮化钛陶瓷块体材料。
本发明是通过以下技术方案来实现:
本发明公开的一种快速制备各向异性氮化钛陶瓷块体材料的方法,包括以下步骤:
步骤1:先将沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料放入热压石墨模具中,再将石墨模具置于放电等离子烧结炉腔体中,烧结炉腔体抽真空至气压小于0.01Pa,施加轴向压力,并快速升温至烧结温度并保温;
步骤2:保温结束后随炉冷却,温度降至室温时卸压,完成烧结过程,制得各向异性氮化钛陶瓷块体材料。
优选地,所用的沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料的上、下表面平行。
进一步优选地,所用的沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料的形状为圆柱、圆台、棱柱、棱台或立方体等。
优选地,所用的沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料的取向度大于50%。
优选地,步骤1中,施加的轴向压力为30~70MPa。
优选地,步骤1中,快速升温至烧结温度为:自室温起,以100~300℃/min的速率升温至1400~1600℃保温。
优选地,保温时间为1~7min。
优选地,步骤2中,温度降至室温时以30~40MPa/min的速率卸压。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开的快速制备各向异性氮化钛陶瓷块体材料的方法,以沿(00l)晶面方向择优取向的Ti2AlN陶瓷块体材料作为预制体,利用Ti-N之间为共价键结合,而Ti-Al之间为金属键结合的结构特点,使得Ti2AlN预制体在采用本发明的放电等离子烧结过程中,较弱的Ti-Al金属键发生断裂,造成Al原子脱附,将Ti2AlN预制体转变为沿(111)方向择优取向的氮化钛陶瓷块体材料。本发明提供的放电等离子烧结制备各向异性氮化钛陶瓷块体材料的方法,与传统制备氮化钛陶瓷块体材料的方法相比,具有升温速率快、烧结时间短、烧结温度低等优势,能够极大的降低烧结成本、扩展材料的应用领域,为提高传统氮化钛陶瓷材料的制备及性能提升提供了一条有益路径。
进一步地,本发明选择上、下表面平行的沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料作为预制体,由于在TiN陶瓷中,不同晶面的力学性能规律为:(111)>(001)>(011),即(111)晶面取向的TiN力学性能最佳。而烧结后可转化为(111)方向TiN的Ti2AlN晶面取向为(001)方向。因此选择沿(001)方向的Ti2AlN陶瓷块体材料作为预制体,使得烧结后的材料为沿(111)方向的TiN陶瓷块体材料。
进一步地,本发明选择取向度>50%的沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料作为预制体,是因为材料使用时在不同方向上受到的抑制作用差别较大,通常在某一特定方向对力学性能的要求较高。因此期望在材料内部使得力学性能最佳的晶面形成沿特定方向的规则排列,最大程度的利用该晶面力学性能优异的特征,而规则排列的程度以取向度大小作为参考,选择取向度>50%时,效果较好。
进一步地,本发明选择快速的升温速率在保证材料致密度较高、性能较好的基础上,极大的缩短了材料的制备时间。而卸压速率选择相对较慢,控制在30-40MPa/min,能够防止卸压速率过快导致制备的块体裂开。
附图说明
图1为烧结温度为(a)1400℃、(b)1500℃、(c)1600℃时各向异性TiN陶瓷块体材料的X射线衍射图谱对比图。
图2为烧结温度为1400℃时制备的各向异性氮化钛陶瓷块体材料的断口形貌SEM照片。
图3为各向异性氮化钛陶瓷块体材料的性能测试方向示意图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
实施例1
将沿(00l)方向择优取向、取向度为90%的圆柱状Ti2AlN陶瓷块体材料放入热压石墨模具中,随后将上述热压石墨模具放入放电等离子烧结炉腔中,抽真空至气压小于0.01Pa,在30MPa的轴向压力下,以200℃/min的速率升温至1400℃,保温7min。保温结束后随炉冷却,待温度降至室温时以30MPa/min的速率卸压,完成烧结过程,最终得到各向异性TiN陶瓷块体材料。
利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对所得块体材料进行物相组成和微观形貌表征。图1中,(a)是得到的各向异性TiN陶瓷块体材料的XRD图谱,并与标准的TiN衍射峰对比,可见其沿(111)方向择优取向生长,具有显著的各向异性特征。图2是得到的各向异性TiN陶瓷块体材料的断口形貌SEM照片,可以看到TiN晶粒具有板条状形貌(宽度5-10μm、厚度2-5μm,宽厚比约为2),且具有类似于贝壳状的定向排列显微结构特征,表明其确实具有显著的显微结构各向异性。
根据图3所示的方向对各向异性TiN陶瓷块体材料进行硬度和电阻率进行测试,烧结温度为1400℃时,性能结果如表1所示:
表1
Figure BDA0001652581320000051
从表1可以看出,所制备的TiN陶瓷块体材料沿D1方向的硬度和电阻率明显高于D2方向,也证实了其各向异性的性能特征。
实施例2
将沿(00l)方向择优取向、取向度为50%的椭圆柱状Ti2AlN陶瓷块体材料放入热压石墨模具中,随后将上述热压石墨模具放入放电等离子烧结炉腔中,抽真空至气压小于0.01Pa,在70MPa的轴向压力下,以100℃/min的速率升温至1500℃,保温5min。保温结束后随炉冷却,待温度降至室温时以35MPa/min的速率卸压,完成烧结过程,最终得到各向异性TiN陶瓷块体材料。
利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对所得到的块体材料进行物相组成和微观形貌表征,并根据图3所示的方向对各向异性TiN陶瓷块体材料的硬度和电阻率进行测试。图1中,(b)是得到的各向异性TiN陶瓷块体材料的XRD图谱,并与标准的TiN衍射峰对比,可见其沿(111)方向择优取向生长,具有显著的各向异性特征,其他结果与实施例1类似。
实施例3
将沿(00l)方向择优取向、取向度为70%的立方体状Ti2AlN陶瓷块体材料放入热压石墨模具中,随后将上述热压石墨模具放入放电等离子烧结炉腔中,抽真空至气压小于0.01Pa,在60MPa的轴向压力下,以300℃/min的速率升温至1600℃,保温3min。保温结束后随炉冷却,待温度降至室温时以40MPa/min的速率卸压,完成烧结过程,最终得到各向异性TiN陶瓷块体材料。
利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对所得到的块体材料进行物相组成和微观形貌表征,并根据图3所示的方向对各向异性TiN陶瓷块体材料的硬度和电阻率进行测试。图1中,(c)是得到的各向异性TiN陶瓷块体材料的XRD图谱,并与标准的TiN衍射峰对比,可见其沿(111)方向择优取向生长,具有显著的各向异性特征,其他结果与实施例1类似。
实施例4
将沿(00l)方向择优取向、取向度为60%的圆台状Ti2AlN陶瓷块体材料放入热压石墨模具中。随后将上述热压石墨模具放入放电等离子烧结炉腔中,抽真空至气压小于0.01Pa,在40MPa的轴向压力下,以150℃/min的速率升温至1500℃,保温1min。保温结束后随炉冷却,待温度降至室温时以32MPa/min的速率卸压,完成烧结过程。最终得到各向异性TiN陶瓷块体材料。
利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对所得到的块体材料进行物相组成和微观形貌表征,并根据图3所示的方向对各向异性TiN陶瓷块体材料的硬度和电阻率进行测试。所得结果与实施例1类似。
实施例5
将沿(00l)方向择优取向、取向度为80%的棱柱状Ti2AlN陶瓷块体材料放入热压石墨模具中,随后将上述热压石墨模具放入放电等离子烧结炉腔中,抽真空至气压小于0.01Pa,在50MPa的轴向压力下,以250℃/min的速率升温至1400℃,保温6min。保温结束后随炉冷却,待温度降至室温时以37MPa/min的速率卸压,完成烧结过程,最终得到各向异性TiN陶瓷块体材料。
利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对所得到的块体材料进行物相组成和微观形貌表征,并根据图3所示的方向对各向异性TiN陶瓷块体材料的硬度和电阻率进行测试。所得结果与实施例1类似。
综上所述,本发明采用放电等离子烧结技术快速制备各向异性氮化钛陶瓷块体材料,无需使用纳米氮化钛粉原料,并且能够缩短烧结时间、降低烧结温度,具有显著优势。本发明操作流程简单,对设备要求低,制备快捷,经该方法制备出的氮化钛陶瓷材料性能表现出明显的各向异性。

Claims (5)

1.一种快速制备各向异性氮化钛陶瓷块体材料的方法,其特征在于,包括以下步骤:
步骤1:先将沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料放入热压石墨模具中,再将石墨模具置于放电等离子烧结炉腔体中,烧结炉腔体抽真空至气压小于0.01Pa,施加轴向压力,并快速升温至烧结温度并保温;保温时间为1~7min;
步骤2:保温结束后随炉冷却,温度降至室温时卸压,完成烧结过程,制得各向异性氮化钛陶瓷块体材料;
所用的沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料的上、下表面平行;所用的沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料的取向度大于50%。
2.根据权利要求1所述的快速制备各向异性氮化钛陶瓷块体材料的方法,其特征在于,所用的沿(00l)晶面择优取向的Ti2AlN陶瓷块体材料的形状为圆柱、圆台、棱柱、棱台或立方体。
3.根据权利要求1所述的快速制备各向异性氮化钛陶瓷块体材料的方法,其特征在于,步骤1中,施加的轴向压力为30~70MPa。
4.根据权利要求1所述的快速制备各向异性氮化钛陶瓷块体材料的方法,其特征在于,步骤1中,快速升温至烧结温度为:自室温起,以100~300℃/min的速率升温至1400~1600℃保温。
5.根据权利要求1所述的快速制备各向异性氮化钛陶瓷块体材料的方法,其特征在于,步骤2中,温度降至室温时以30~40MPa/min的速率卸压。
CN201810427772.1A 2018-05-07 2018-05-07 一种快速制备各向异性氮化钛陶瓷块体材料的方法 Active CN108585879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810427772.1A CN108585879B (zh) 2018-05-07 2018-05-07 一种快速制备各向异性氮化钛陶瓷块体材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810427772.1A CN108585879B (zh) 2018-05-07 2018-05-07 一种快速制备各向异性氮化钛陶瓷块体材料的方法

Publications (2)

Publication Number Publication Date
CN108585879A CN108585879A (zh) 2018-09-28
CN108585879B true CN108585879B (zh) 2020-08-28

Family

ID=63635642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810427772.1A Active CN108585879B (zh) 2018-05-07 2018-05-07 一种快速制备各向异性氮化钛陶瓷块体材料的方法

Country Status (1)

Country Link
CN (1) CN108585879B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161507A (zh) * 2011-04-11 2011-08-24 北京科技大学 一种用单晶硫化铋前驱粉体制备多晶织构热电材料的方法
CN103757452A (zh) * 2013-12-19 2014-04-30 陕西理工学院 一种Ti2AlC/TiAl 基复合材料及其低温制备方法
WO2014104461A1 (ko) * 2012-12-31 2014-07-03 부산대학교 산학협력단 Ti₂AlN 벌크소재의 제조방법 및 마이크로 방전가공 방법
CN107058851A (zh) * 2016-12-29 2017-08-18 上海大学 一种二维片层材料增强的金属基复合材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161507A (zh) * 2011-04-11 2011-08-24 北京科技大学 一种用单晶硫化铋前驱粉体制备多晶织构热电材料的方法
WO2014104461A1 (ko) * 2012-12-31 2014-07-03 부산대학교 산학협력단 Ti₂AlN 벌크소재의 제조방법 및 마이크로 방전가공 방법
CN103757452A (zh) * 2013-12-19 2014-04-30 陕西理工学院 一种Ti2AlC/TiAl 基复合材料及其低温制备方法
CN107058851A (zh) * 2016-12-29 2017-08-18 上海大学 一种二维片层材料增强的金属基复合材料

Also Published As

Publication number Publication date
CN108585879A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN107620049B (zh) 一种无粘结相纯碳化钨靶材的制备方法
JP5444384B2 (ja) 高熱伝導性窒化アルミニウム焼結体
JP5930317B2 (ja) 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法
WO2022089379A1 (zh) 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
JP5330518B2 (ja) セラミック部品を製造する方法
CN113773084A (zh) 一种用于装饰镀膜的碳化钨靶材及其制备方法
JP6436905B2 (ja) 炭化ホウ素セラミックス及びその作製法
JP3472585B2 (ja) 窒化アルミニウム焼結体
CN107746280B (zh) 一种高致密度TiB2陶瓷靶材的制备方法
CN108585879B (zh) 一种快速制备各向异性氮化钛陶瓷块体材料的方法
CN115125426B (zh) 一种含高密度位错/层错的无粘结相超细晶碳化钨硬质合金及其制备方法
CN115110044B (zh) 一种铬硅合金溅射靶材的制备方法
CN108892528B (zh) 一种多孔氮化硅陶瓷材料及其制备方法
CN113387705B (zh) 一种碳化硼陶瓷的制备方法
CN113881922A (zh) 一种低温制备高致密度W-Ti合金溅射靶材的方法
CN108358628B (zh) 一种莫来石-氧化锆复合陶瓷及其制备方法
JP2001354479A (ja) 窒化アルミニウム焼結体およびその製造方法
JP5245081B2 (ja) 高硬度高密度立方晶窒化ホウ素系焼結体およびその製造方法
JP4564257B2 (ja) 高熱伝導性窒化アルミニウム焼結体
CN115925424B (zh) 一种纳米析出相强化的过饱和钨超高温高熵陶瓷制备方法
CN109928400B (zh) 一种无粘接剂的纳米聚晶一硼化钛块体材料的制备方法
Toksoy et al. Densification and microstructural properties of boron-carbide in spark plasma sintering
Kitiwan et al. Densification and microstructure of monolithic TiN and TiB2 fabricated by spark plasma sintering
CN117383944A (zh) 一种(TiCrVNbTa)(C0.66N0.33)高熵陶瓷及其制备方法
CN117265308A (zh) 一种基于振荡热压工艺低温烧结制备高致密钨的方法及产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221130

Address after: 712046 Floor 2, Building 7, Incubation Park, Gaoke Second Road, Xianyang Hi tech Industrial Development Zone, Shaanxi Province

Patentee after: Xianyang Gazelle Valley New Material Technology Co.,Ltd.

Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28

Patentee before: XI'AN JIAOTONG University