CN108579348A - 改进的硫回收工艺 - Google Patents

改进的硫回收工艺 Download PDF

Info

Publication number
CN108579348A
CN108579348A CN201810224172.5A CN201810224172A CN108579348A CN 108579348 A CN108579348 A CN 108579348A CN 201810224172 A CN201810224172 A CN 201810224172A CN 108579348 A CN108579348 A CN 108579348A
Authority
CN
China
Prior art keywords
hydrogen sulfide
stream
separative element
rich
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810224172.5A
Other languages
English (en)
Inventor
让-皮埃尔·R·巴拉盖
米林德·M·维迪雅
塞巴斯蒂安·A·杜瓦尔
阿代什·哈拉利
安瓦尔·H·克哈瓦贾
维拉·V·R·塔姆马纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Publication of CN108579348A publication Critical patent/CN108579348A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0408Pretreatment of the hydrogen sulfide containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/11Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种富集装置和工艺,用于增加酸性气流中硫化氢的浓度,从而产生富硫化氢流以供给至克劳斯。所述富集装置包括烃选择性分离单元,其能够将酸性气流分离为富烃流和纯化的酸性气流,其中所述酸性气流包含硫化氢、二氧化碳和烃;硫化氢选择性分离单元,其能够将纯化的酸性气流分离从而产生富硫化氢流和贫硫化氢流,所述富硫化氢流具有一定浓度的硫化氢;以及克劳斯单元,其能够从贫二氧化碳流中回收硫。所述富集装置可包括二氧化碳选择性分离单元,其与硫化氢选择性分离单元流体连接,能够分离富硫化氢流。

Description

改进的硫回收工艺
本申请是申请号为201580019770.3、申请日为2015年4月10日、发明名称为“用于处理克劳斯单元中含有BTEX的低至中摩尔百分比的硫化氢气体供料的改进的硫回收工艺”的专利申请的分案申请。
技术领域
本发明涉及一种处理酸性气流的系统和方法。具体而言,本发明提供一种用于处理含有低摩尔百分比硫化氢的酸性气流的系统和方法。更具体而言,本发明提供一种用于处理含有低摩尔百分比硫化氢和BTEX污染物的酸性气流的系统和方法。
背景技术
克劳斯单元(Claus unit)是用于从含有硫化氢的酸性气流中以元素硫的形式回收硫的基本工艺系统。硫化氢气体自然存在于天然气中,或者以副产物的形式形成于一些气体工艺系统中。硫化氢是高毒性的,因此需要从气体流中回收和处理。有效地处理硫化氢和其它含硫化合物的需求对于减少排放以符合日益严格的燃料规定和增长的环境问题而言是重要的。元素硫是从含硫物质中回收的最终状态。
在克劳斯单元中,含有硫化氢的酸性气体供料流和氧源(如空气)被供给至熔炉。酸性气体供料流具有宽范围的组成。许多酸性气体供料流源自于溶剂吸收工艺,如胺吸收。
吸收工艺从石油精炼、天然气加工和其它工业过程的副产物气体中提取硫化氢。可供替代地,酸性气体供料流可来自于酸性污水汽提单元。
一旦硫化氢被供给至熔炉,其就进行部分燃烧从而生成硫、二氧化硫和水。为了确保克劳斯反应的有效性能,熔炉的温度曲线保持在850-1200℃的范围内。为了保证污染物的完全燃烧,温度需要高于950℃。所达到的温度取决于存在于供料中的其它组分,如二氧化碳(CO2)、水(H2O)、烃和其它含硫化合物。可燃气体往往通过燃烧而增加温度,而惰性气体往往通过稀释而降低温度。温度是一个重要的工艺参数,因为硫化氢转化为硫是温度的作用,压力的作用较小。熔炉中的停留时间通常在0.5秒的数量级。
燃烧产物的比例取决于熔炉中可利用的氧的量。熔炉中所形成的其它产物可包括氢气、羰基硫化物和二硫化碳。熔炉还分解酸性气流中存在的诸如硫醇之类的污染物。
反应产物被供给至第一冷凝器中,其中元素硫凝结、分离并收集在硫槽中,然后气体产物再次加热并供给至催化转化器中。催化转化器的平均温度保持在约305℃。根据限定出口温度以避免催化床损坏的需要限定催化转换器的温度。在催化转化器中,硫化氢与二氧化硫在催化剂的存在下发生反应并生成元素硫和水。来自于催化转化器的产物被再次供给至冷凝器,其中元素硫凝结并收集于硫槽中。在工艺的最后,引入焚化炉。
加热、催化和冷凝阶段可以重复进行。在常规的克劳斯单元中,这些阶段最多重复进行三次,硫化氢气体的转化率为96-98%(取决于供料的组成)。在改进的克劳斯单元中,工艺的最后在最终催化转化器和焚化炉之间具有尾气处理单元。在具有尾气处理单元的配置中,加热、催化和冷凝阶段通常只重复进行两次。具有尾气处理单元的改进克劳斯单元可将硫化氢转化为元素硫的转化率提升至99.9%。尾气处理单元将从焚化炉排放的二氧化硫降至最少。
为了提高总体能量效率,可将热俘获工艺与克劳斯单元组合,如在废热锅炉和冷凝器中产生蒸汽。
保持熔炉的温度对于保证元素硫的反应和其它污染物的破坏是重要的。如上所指出,熔炉温度受供料流的组成影响,并显著地受供料流中硫化氢浓度的影响。当酸性气流中硫化氢的浓度低于约55体积%时,熔炉的温度曲线降低。硫化氢的浓度受酸性气体中存在的污染物的量的影响。污染物的种类和数量受产生酸性气体的来源、以及产生在克劳斯单元中处理的酸性气体的工艺步骤的影响。
供料流中的污染物包括烃类。烃类给克劳斯单元带来了几个问题。首先,不清楚烃是否会完全燃烧,因为C-H键通常比S-H键强,因此部分烃就会经过熔炉到催化单元。其次,烃可能促成竞争的副反应从而生成一氧化碳(CO)、二硫化碳(CS2)、羰基硫化物(COS)和元素碳。再次,对于部分烃的燃烧过程,如那些包含苯、甲苯、乙苯或二甲苯(BTEX或BTX),熔炉必须保持高温。如果熔炉温度太低,由于硫化氢的浓度低,导致温度可能不足以发生BTEX降解反应。除去BTX很重要,因为BTX在催化转化器中对催化剂具有堵塞效果。催化床中碳化合物造成的催化剂毒化会导致活性损失和高的压降,这要求频繁再生和更换催化剂。
目前,存在一些工艺用于解决这些问题,但是它们都有缺点。当供料流中硫化氢的浓度低时,使用酸性气体支路或分流。在分流操作中,部分物流送入克劳斯单元的熔炉,而其余物流部分直接送入催化转化器。分流有两个缺点。首先,用于支路的供料气体的上限为2/3,这要求熔炉在还原条件下运行。其次,污染物的增加降低了催化转化器的效率,导致催化剂的失活和堵塞。
可以使用活性炭从工艺物流中分离BTEX,但是需要再生活性炭,导致在再生过程中改变了对克劳斯单元的供料条件,或者关闭全部的供料。胺或溶剂富集工艺使用溶剂吸收来增加硫化氢的浓度。由于胺富集向工艺中引入了液体,要求有效的维护,并且要求大量的能量用于操作以及溶剂的再生,因此是不利的。
氧气或富集空气可提高克劳斯单元的火焰温度,但是需要额外用于氧气及氧气回收单元的费用。向熔炉中注入天然气也可以提高温度,但是可能增加进入到供料中的污染物以及发生潜在竞争副反应的组分的量,并且会增加克劳斯单元的尺寸。预热供料气来保证熔炉内温度的方法需要额外的能量消耗,实质上增加了成本。
因此,需要这样一种工艺,其能增加酸性气流中硫化氢的浓度,并在不需要过多能量、设备和材料,或者关闭进程的条件下除去污染物。优选地,这样的工艺将会保持克劳斯单元的总体硫容量,同时由于消除或减少了污染物因而增加了总体硫回收效率。
发明内容
本发明涉及一种处理酸性气流的系统和方法。更具体而言,本发明提供一种处理含有低摩尔百分比硫化氢的酸性气流的系统和方法。更具体而言,本发明提供一种处理含有低摩尔百分比硫化氢和BTEX污染物的酸性气流的系统和方法。
在本发明的一个方面,提供一种富集装置,用于增加酸性气流中硫化氢的浓度,从而产生富硫化氢流以供给至克劳斯单元。所述富集装置包括烃选择性分离单元,所述烃选择性分离单元能够将所述酸性气流分离为富烃流和纯化的酸性气流,其中所述酸性气流包含硫化氢、二氧化碳和烃。所述富集装置还包括硫化氢选择性分离单元,其与所述烃选择性分离单元流体连接,所述硫化氢选择性分离单元能够将所述纯化的酸性气流分离从而产生富硫化氢流和贫硫化氢流,所述富硫化氢流具有一定浓度的硫化氢。所述富集装置进一步包括克劳斯单元,其与所述硫化氢选择性分离单元流体连接,所述克劳斯单元能够从所述富硫化氢流中回收元素硫。
在本发明的某些方面,所述富集装置还包括二氧化碳选择性分离单元,其与所述硫化氢选择性分离单元流体连接,所述二氧化碳选择性分离单元能够分离所述富硫化氢流,从而产生富二氧化碳渗透物和富硫化氢渗余物,所述富硫化氢渗余物具有一定浓度的硫化氢。在本发明的某些方面,所述硫化氢选择性分离单元选自聚磷腈类聚合物膜、聚醚-聚酰胺共聚物膜、离子液体膜、离子液体膜萃取器、以及其组合构成的组。在本发明的某些方面,所述二氧化碳选择性分离单元选自无定形氟塑料膜、无定形全氟聚合物膜,无规含氟共聚物膜、全氟化共聚物膜、以及及其组合构成的组。在本发明的某些方面,所述烃选择性分离单元包括聚二甲基硅氧烷(PDMS)类橡胶聚合物膜。在本发明的某些方面,所述酸性气流还包含选自硫醇(mercaptans)、硫醇类(thiols)、羰基硫化物、二硫化碳、以及其组合所构成的组的污染物。在本发明的某些方面,还可以存在不含硫的污染物。在本发明的某些方面,所述富烃流包含苯、甲苯、乙苯和二甲苯。在本发明的某些方面,所述酸性气流中硫化氢的浓度为15体积%至55体积%。在本发明的某些方面,所述富硫化氢流中硫化氢的浓度大于55体积%。
在本发明的第二方面,提供一种用于增加酸性气流中硫化氢的浓度,从而产生富硫化氢流以供给至克劳斯单元的工艺。所述工艺包括以下步骤:将所述酸性气流供给至烃选择性分离单元,所述酸性气流包含硫化氢、二氧化碳和烃;将所述烃选择性分离单元中所述酸性气流分离从而产生富烃流和纯化的酸性气流;将所述纯化的酸性气流供给至与所述烃选择性分离单元流体相连的硫化氢选择性分离单元,所述硫化氢选择性分离单元能够分离所述纯化的酸性气流;将所述硫化氢选择性分离单元中所述纯化的酸性气流分离以产生富硫化氢流和贫硫化氢流,所述富硫化氢流具有一定浓度的硫化氢;以及将所述富硫化氢流供给至克劳斯单元的熔炉,所述克劳斯单元能够从所述富硫化氢流中分离元素硫从而产生元素硫流和废气流。
在本发明的某些方面,所述工艺还包括以下步骤:将所述富硫化氢流供给至与所述硫化氢选择性分离单元流体连接的二氧化碳选择性分离单元,所述二氧化碳选择性分离单元能够分离所述富硫化氢流;将所述富硫化氢流分离以产生富二氧化碳渗透物和富硫化氢渗余物,所述富硫化氢渗余物具有一定浓度的硫化氢;以及将所述富硫化氢渗余物供给至所述克劳斯单元的熔炉。在本发明的某些方面,所述硫化氢选择性分离单元选自聚磷腈类聚合物膜、聚醚-聚酰胺共聚物膜、离子液体膜、离子液体膜萃取器、及其组合构成的组。在本发明的某些方面,所述二氧化碳选择性分离单元选自无定形氟塑料膜、无定形全氟聚合物膜,无规含氟共聚物膜、全氟化共聚物膜、及其组合构成的组。在本发明的某些方面,所述烃选择性分离单元包括橡胶膜。在本发明的某些方面,所述酸性气流还包含选自由硫醇(mercaptans)、硫醇类(thiols)、羰基硫化物、二硫化碳及其组合构成的组的污染物。在本发明的某些方面,所述富烃流包含苯、甲苯、乙苯和二甲苯。在本发明的某些方面,所述酸性气流中硫化氢的浓度为15体积%至55体积%。在本发明的某些方面,所述富硫化氢流中硫化氢的浓度大于55体积%。
在本发明的第三方面,提供一种富集装置,用于增加酸性气流中硫化氢的浓度,从而产生富硫化氢流以供给至克劳斯单元。所述富集装置包括烃选择性分离单元,所述烃选择性分离单元能够将所述酸性气流分离为富烃流和纯化的酸性气流,其中所述酸性气流包含硫化氢、二氧化碳和烃。所述富集装置还包括二氧化碳选择性分离单元,其与所述烃选择性分离单元流体连接,所述二氧化碳选择性分离单元能够将所述纯化的酸性气流分离从而产生富二氧化碳流和贫二氧化碳流,所述贫二氧化碳流具有一定浓度的硫化氢;以及克劳斯单元,其与所述二氧化碳选择性分离单元流体连接,所述克劳斯单元能够从所述贫二氧化碳流中回收元素硫。
在本发明的某些方面,所述富集装置还包括硫化氢选择性分离单元,其与所述二氧化碳选择性分离单元流体连接,所述硫化氢选择性分离单元能够分离所述富二氧化碳流从而产生富硫化氢渗透物和富二氧化碳渗余物,所述富硫化氢渗透物具有一定浓度的硫化氢。
附图简要说明
结合以下说明书、权利要求和附图而言,能够更好地理解本发明的这些和其它特征、方面和优点。然而,应当指出的是,附图仅仅解释发明的几个实施方案,因此不应当认为是对本发明范围的限制,因为其认可其它等效的实施方案。
图1是本发明的工艺流程图。
图2是富集装置100的一个实施方案的工艺流程图。
图3是富集装置100的实施方案的工艺流程图。
图4是富集装置100的实施方案的工艺流程图。
图5是富集装置100的实施方案的工艺流程图。
图6是富集装置100的实施方案的工艺流程图。
图7是富集装置100的实施方案的工艺流程图。
具体实施方式
虽然会使用几个实施方案对本发明进行描述,但是应当明白,本领域的普通技术人员将会理解,本文所描述的装置和方法的多个例子、变型和改变都在本发明的范围和实质内。因此,本文所述的发明的示例性实施方案是在要求保护的发明下、不丧失一般性、并且不强加限制的条件下进行阐述的。
参照图1,提供了富集装置100的工艺流程图,其用于增加酸性气流10中硫化氢的浓度,从而产生富硫化氢流18以供给至克劳斯单元200。酸性气流10被供给至富集装置100。酸性气流10为含有硫化氢(H2S)的任意气流。在本发明的至少一个实施方案中,酸性气流10来自于胺单元的出口。在本发明的至少一个实施方案中,酸性气流10含有低于约55体积%的H2S。在本发明的一些实施方案中,酸性气流10含有约15体积%至约55体积%的H2S,或者约15体积%至约40体积%的H2S,或者约15体积%至约30体积%的H2S,或者约15体积%至约25体积%的H2S,或者约15体积%至约20体积%的H2S,或者约25体积%至约40体积%的H2S。在本发明的至少一个实施方案中,酸性气流10含有大于15体积%的H2S。酸性气流10含有H2S、二氧化碳(CO2)、烃和其它污染物。在本发明的至少一个实施方案中,存在于酸性气流10中的烃包括苯、甲苯、乙苯和二甲苯,总称为BTEX或BTX。如本文所用,BTEX是指气流中存在苯、甲苯、乙苯和二甲苯的组合,包括缺少这些组分中的一种或多种的情况。在本发明的一些实施方案中,存在于酸性气流10中的烃包括烷烃、烯烃(alkenes)、烯类(olefins)和BTEX。在本发明的一些实施方案中,存在于酸性气流10中的污染物包括硫醇(mercaptans)、硫醇类(thiols)、羰基硫化物、二硫化碳及其组合。
富集装置100将酸性气流10的组分分离,产生富CO2流、富烃流和富H2S流。在本发明的至少一个实施方案中,富CO2流为贫硫化氢流16,富烃流为富烃流14,富H2S流为富H2S流18。贫硫化氢流16含有CO2,以及H2S和其它组分。贫硫化氢流16含有约50体积%至约99体积%的CO2,或者约75体积%至约99体积%的CO2,或者大于约96体积%的CO2。在本发明的至少一个实施方案中,贫硫化氢流16不存在BTEX组分。贫硫化氢流16被供给至克劳斯单元200的催化段220催化转化器(未示出)。将贫硫化氢流16直接供给至催化转化器以向催化转化器提供稀释气体,并去除熔炉中用于形成羰基硫化物(COS)和二硫化碳(CS2)的碳源。供入贫硫化氢流16的克劳斯单元200的催化转化器受到贫流16中硫化氢浓度的作用,或者是作为稀释催化转化器的需要。
富烃流14包含一定量的存在于酸性气流10中的BTEX。富烃流14包含其它烃,如C2+烷烃、烯烃、烯类和芳香烃、H2S、CO2及其它存在于酸性气流10中的污染物。富烃流14被供入克劳斯单元200的熔炉210。在本发明的一些实施方案中,富烃流14被送入替代处置操作,如焚化炉。在一些实施方案中,富烃流14被送入BTX回收工艺(未示出)以回收额外的烃。BTX回收工艺为能够从工艺流中分离BTEX和其它烃的任意工艺。BTX回收工艺中用于烃回收的示例性处理单元包括冷凝、吸附和吸收单元。回收的BTEX可进行进一步处理、可加工销售、或者可送至储存。
富硫化氢流18被供给至克劳斯单元200的熔炉210。富硫化氢流18包含一定量的存在于酸性气流10中的H2S,以及CO2和烃。与酸性气流10相比,富硫化氢流18具有更高的H2S浓度。在本发明的一些实施方案中,富硫化氢流18中H2S浓度大于约25体积%,或者大于约30体积%,或者大于约35体积%,或者大于约40体积%,或者大于约45体积%,或者大于约50体积%,或者大于约55体积%,或者大于约56体积%,或者大于约57体积%,或者大于约58体积%,或者大于约60体积%。
克劳斯单元200利用熔炉210中的供气60来处理富烃流14和富硫化氢流18。在本发明的一些实施方案中,富烃流14和富硫化氢流18可分别引入至克劳斯单元200的熔炉210。在本发明的一些实施方案中,富烃流14和富硫化氢流18可在克劳斯单元200的熔炉210的上游合并,使得合并流被供给至克劳斯单元200。克劳斯单元200产生废气流70和元素硫流80。
本领域技术人员将会理解,克劳斯单元是众所周知的处理系统,并且与克劳斯单元有关的系统设备可根据需求和工艺场地的布置进行设计。可在现有的克劳斯单元中使用本发明,或者本发明可以作为改进的克劳斯单元的一部分使用,因此本发明预期克劳斯单元200包含本领域技术人员已知的类似基本元件。
在本发明的一些实施方案中,富烃流14和富硫化氢流18可在被供给至熔炉210之前进行合并(未示出)。在合并流的实施方案中,合并流中硫化氢的浓度大于约25体积%,或者大于约30体积%,或者大于约35体积%,或者大于约40体积%,或者大于约45体积%,或者大于约50体积%,或者大于约55体积%,或者大于约56体积%,或者大于约57体积%,或者大于约58体积%,或者大于约60体积%。
在本发明的至少一个实施方案中,富烃流14可被供给至熔炉210中温度大于950℃的区段,或者温度大于1000℃,或者大于1050℃。根据本发明的实施方案,富集装置100浓缩富烃流14中的BTEX和其它污染物,浓缩富硫化氢流18中的硫化氢,以及浓缩贫硫化氢流16中的二氧化碳。根据具体情况,浓缩各流中的组分能够直接使供料到达克劳斯单元的合适位置以用于组分的破坏或回收。例如,浓缩富烃流14中的烃和其它污染物使该物流直接供给至熔炉210中温度大于950℃的区段,并且由于富硫化氢流18中的浓缩硫化氢,有利的是保持在熔炉210中温度大于950℃的区段。
参照图2,提供富集装置100的实施方案。烃选择性分离单元102将酸性气流10分离成富烃流14和纯化的酸性气流12。在本发明的至少一个实施方案中,烃选择性分离单元102为橡胶膜。如本文所用,“橡胶”是指杨氏模量在105至107Pa(106至108dyn/cm2)范围内的聚合物。在本发明的至少一个实施方案中,烃选择性分离单元102为硅橡胶聚二甲基硅氧烷(PDMS)类橡胶聚合物。在本发明的至少一个实施方案中,二氧化碳橡胶膜的透气系数为3200巴,并且甲苯对二氧化碳的选择性为456。在本发明的至少一个实施方案中,烃选择性分离单元102为变压吸附(PSA)工艺。在至少一个实施方案中,PSA工艺使用活性炭作为吸附剂。在本发明的至少一个实施方案中,烃选择性分离单元102为变温吸附(TSA)工艺。在本发明的至少一个实施方案中,TSA工艺使用活性炭作为吸附剂。在本发明的至少一个实施方案中,烃选择性分离单元102为冷凝吸附工艺。如上参照图1所述,将富烃流14供给至克劳斯单元200。
纯化的酸性气流12包含酸性气流10中存在的大部分H2S和CO2。纯化的酸性气流12被供给至硫化氢选择性分离单元106。硫化氢选择性分离单元106将纯化的酸性气流12分离为作为渗透物流的富硫化氢流18和作为渗余物流的贫硫化氢流16。
硫化氢选择性分离单元106为能够从酸性气流10中分离出硫化氢的任意膜。示例性膜包括基于聚磷腈、聚醚-聚酰胺共聚物、离子液体膜和离子液体膜萃取器的膜。
离子液体膜为掺杂有液体离子化合物的膜。液体离子化合物对硫化氢具有选择性溶解度。液体离子化合物具有以下结构式:
其中,R1选自由-H、-CH2-CH2-CF3、-CH2-CH2-CH2F、-CH3、-CH2-CH3、丙基、戊基、己基、庚基、辛基、C9-C18烷基、烯基和环烷基构成的组;R2选自由-H、-CH2-CH2-CF3、-CH2-CH2-CH2F、-CH3、-CH2-CH3、丙基、戊基、己基、庚基、辛基、C9-C18烷基、烯基和环烷基构成的组;X选自由BF4、PF6、(CF3SO2)N、CF3(CO)O构成的组。
在本发明的至少一个实施方案中,式I的液体离子化合物为这样的化合物,其中R1选自氢或C1-C18烷基;R2选自C1-C18烷基、C2-C6烯基、C3-C6环烷基、C3-C8环烯基、芳基、取代芳基、芳基(C1-C4烷基基)、或取代芳基(C1-C4烷基基);X为选自氢氧化物、氯化物、溴化物、碘化物、硼酸盐、四氟硼酸盐、铜酸盐、Cu(I)Cl2阴离子、磷酸盐、六氟磷酸盐、六氟锑酸盐、高氯酸盐、亚硝酸盐、硝酸盐、硫酸盐、羧酸盐、磺酸盐、磺酰亚胺和膦酸盐构成的组中的阴离子。
术语“芳基”是指环状芳香族基团,任选地包含诸如氧、氮和硫的一个或多个杂原子,例如苯基、萘基、吡啶基等。
术语“取代芳基”是指如本文所述的芳基,其中芳基上一至约三个氢原子被一价基团所取代,如卤素、烷基、卤代烷基、烷氧基、卤代烷氧基、烷硫基、卤代烷硫基、烷基氨基、烷酰基、氰基、硝基、等等。
用作阴离子的羧酸盐包括烷基羧酸盐,如乙酸盐;取代的烷基羧酸盐,如乳酸盐;和卤代烷基羧酸盐,如三氟乙酸盐等。
用作阴离子的磺酸盐包括烷基磺酸盐,如甲磺酸盐;卤代烷基磺酸盐,如三氟甲磺酸盐和九氟丁磺酸盐;以及芳基磺酸盐,如甲苯磺酸盐和2,4,6-三甲基苯磺酸盐(mesitylate)等。
用作阴离子的磺酰亚胺可以是单取代或二取代的磺酰亚胺,如甲磺酰亚胺和双乙磺酰亚胺;任选的卤代磺酰亚胺,如双三氟甲磺酰亚胺;芳基磺酰亚胺,如双-(4-甲氧基苯)磺酰胺等。
在优选的实施方案中,硫化氢选择性分离单元106包括浸渍有一种或多种带有非亲核阴离子的氟化液体离子化合物的离子液体膜。
用于本发明的示例性液体离子化合物包括咪唑鎓盐、吡唑鎓盐、唑鎓盐、噻唑鎓盐、三唑鎓盐、吡啶鎓盐、哒嗪鎓盐、嘧啶鎓盐和吡嗪鎓盐。这类化合物的示例为1-丁基-3-甲基咪唑四氟硼酸盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲磺酸盐、1-丁基-3-甲基咪唑三氟乙酸盐和1-丁基-3-甲基咪唑双(三氟甲磺酰亚胺),1-三氟丙基-3-甲基咪唑双(三氟甲磺酰亚胺)、1-三氟丙基-3-甲基咪唑六氟磷酸盐、1-三氟丙基-3-甲基咪唑四氟硼酸盐、1-三氟丙基-3-甲基咪唑三氟乙酸盐等。在优选的实施方案中,用作离子液体膜的氟化液体离子化合物为1-丁基-3-甲基咪唑四氟硼酸盐。
本领域技术人员将会理解,硫化氢选择性分离单元106的尺寸、渗透性和选择性是基于系统需求的设计特征。所选择膜的类型是考虑到所需要的膜的透过性和选择性、以及酸性气体供料的组成。适合用作硫化氢选择性分离单元106的膜为H2S/CO2选择性介于约3.0至约9.5之间的膜,或者介于约3.0至约7.0之间,或者介于约3.0至约5.0之间。
如上参照图1所述,富硫化氢流18和贫硫化氢流16被送入克劳斯单元200。
参照图3,提供富集装置100的替代性实施方案。参照前述的那些元件,纯化的酸性气流12被供给至二氧化碳选择性分离单元104。二氧化碳选择性分离单元104将酸性气流12分离从而产生渗透物富二氧化碳流30和渗余物贫二氧化碳流32。贫二氧化碳流32包含酸性气流10中存在的一定量的H2S,以及CO2和烃。贫二氧化碳流32被供给至克劳斯单元200。不受特定理论的约束,分别向熔炉供给贫二氧化碳流32和富烃流14使得物流与火焰混合,这增加了燃烧并最大程度破坏了污染物。在一些实施方案中,贫二氧化碳流32与富烃流14在熔炉的上游混合,从而向熔炉供入一个物流。在本发明的至少一个实施方案中,贫二氧化碳流32中H2S的浓度大于55体积%。
二氧化碳选择性分离单元104可以是能够从酸性气流10中分离出二氧化碳的任意类型的分离膜。二氧化碳选择性分离单元104的示例性膜包括无定形氟塑料膜、无定形全氟聚合物膜和无规含氟共聚物膜。在本发明的至少一个实施方案中,二氧化碳选择性分离单元104为玻璃无定形氟塑料膜,具体为2,2-双(三氟甲基)-4,5-二氟-1,3-间二氧杂环戊烯膜。在本发明的至少一个实施方案中,二氧化碳选择性分离单元104为全氟聚合物膜,具体为四氟乙烯与全氟甲氧基间二氧杂环戊烯的全氟共聚物。在本发明的至少一个实施方案中,二氧化碳选择性分离单元104为四氟乙烯与全氟甲基乙烯醚的橡胶无规含氟共聚物膜。适合用作二氧化碳选择性分离单元104的膜为CO2/H2S选择性介于约3.0至约8.0之间的膜。
富二氧化碳流30包含CO2、H2S、烃和其它污染物。在本发明的至少一个实施方案中,富二氧化碳流30中存在的CO2的浓度大于70体积%,或者大于75体积%,或者大于80体积%,或者大于85体积%,或者大于90体积%,或者大于95体积%。富二氧化碳流30被供给至克劳斯单元200的催化转化器。将富二氧化碳流30直接供给至催化转化器以向催化转化器提供稀释气体,并将熔炉中用于形成COS和CS2的碳源除去。供入富二氧化碳流30的克劳斯单元200的催化转化器受到富二氧化碳流30中二氧化碳浓度的作用,或者是作为稀释催化转化器的需要。
参照图4,提供富集装置100的替代性实施方案。参照前述的那些元件,纯化的酸性气流12被供给至硫化氢选择性分离单元106。硫化氢选择性分离单元106将纯化的酸性气流12分离为渗透物富硫化氢流18和渗余物贫硫化氢流16。富硫化氢流18被供给至第二硫化氢选择性分离单元108。第二硫化氢选择性分离单元108将富硫化氢流18分离为渗透物富硫化氢流22和渗余物二氧化碳渗余物20。富硫化氢流22和富烃流14被供给至克劳斯单元200的熔炉。贫硫化氢流16和二氧化碳渗余物20被供给至克劳斯单元200的催化转化器。
参照图5,提供富集装置100的替代性实施方案。参照前述的那些元件,将富硫化氢流22和富烃流14混合并以混合熔炉供料流24的形式供给至克劳斯单元200的熔炉。将贫硫化氢流16和二氧化碳渗余物20混合并以混合催化转化器供料流26的形式供给至克劳斯单元200的催化转化器。
参照图6,提供富集装置100的替代性实施方案。参照前述的那些元件,纯化的酸性气流12被供给至二氧化碳选择性分离单元104。二氧化碳选择性分离单元104将纯化的酸性气流12分离为渗透物富二氧化碳流30和渗余物贫二氧化碳流32。富二氧化碳流30被供给至硫化氢选择性分离单元106。硫化氢选择性分离单元106将富二氧化碳流30分离为富硫化氢渗透物34作为渗透物和富二氧化碳渗余物36作为渗余物。贫二氧化碳流32、富硫化氢渗透物34和富烃流14被供给至克劳斯单元200的熔炉。富二氧化碳渗余物36被供给至克劳斯单元200的催化转化器。
参照图7,提供富集装置100的替代性实施方案。参照前述的那些元件,纯化的酸性气流12被供给至硫化氢选择性分离单元106。硫化氢选择性分离单元106将纯化的酸性气流12分离为富硫化氢流18作为渗透物和贫硫化氢流16作为渗余物。富硫化氢流18被供给至二氧化碳选择性分离单元104。二氧化碳选择性分离单元104将富硫化氢流18分离为富二氧化碳渗透物38作为渗透物和富硫化氢渗余物40作为渗余物。富烃流14和富硫化氢渗余物40被供给至克劳斯单元200的熔炉。贫硫化氢流16和富二氧化碳渗透物38被供给至克劳斯单元200的催化转化器。
硫化氢选择性分离单元和二氧化碳选择性分离单元(以下称为“分离单元”)的总数和分离单元的构造(包括渗透物和渗余物流的流路)取决于酸性气流10的组成,以及熔炉的供料流或催化转化器的供料流中CO2或H2S的目标浓度。在本发明的至少一个实施方案中,串联布置多于两个的分离单元。
本发明的膜不存在甲醇。在本发明的至少一个实施方案中,硫化氢选择性分离单元106不存在选择性溶剂吸收过程。在本发明的至少一个实施方案中,本发明的膜不包括再生步骤作为稳态运行的一部分。
实施例
所有实施例中,对用于各分离单元的膜类型做出标记。表1包括用于本发明分离单元的示例性膜的所选性能列表。表1的数据是从独立研究的数据收集的。聚醚-聚酰胺共聚物的例子以聚合物制成的膜为代表。无定形氟塑料的例子以DuPontTM 树脂制成的膜为代表。聚磷腈1、2和3为2-(2-甲氧乙氧基)乙醇(MEE)、4-甲氧基苯酚与2-烯丙基苯酚的共聚物。
表1.示例性膜的性能
表2包含所有实施例所使用的烃选择性分离单元102的渗透常数。
表2.烃选择性分离单元102的渗透常数
实施例1.
实施例1是在图2示例的构造和本文所述的基础上进行模拟的。来自于胺分离工艺的酸性气流10在37.78℃和29.70psia下、以248.52MMscfd(292.66Msm3/h)的速度被供给至烃选择性分离单元102。烃选择性分离单元102制作成PDMS型橡胶聚合物膜,其H2S/CO2选择性为1.6,BTX透过性为100cm3/(cm2*s*psia)。参见表2中组分的渗透常数。烃选择性分离单元102产生富烃流14作为渗透物和纯化的酸性气流12作为渗余物。然后纯化的酸性气流12被供给至硫化氢选择性分离单元106。由1657或聚磷腈类膜制成硫化氢选择性分离单元106具有H2S/CO2选择性为1.6、BTX透过性为100cm3/(cm2*s*psia)的性能。硫化氢选择性分离单元106将纯化的酸性气流12分离成富硫化氢流18作为渗透物和贫硫化氢流16作为渗余物。富硫化氢流18和富烃流14被供给至克劳斯单元200的熔炉。贫硫化氢流16被供给至克劳斯单元200的催化转化器。到达熔炉的物流的总H2S浓度大于28%。所选物流中所得各组分的浓度(以体积%计)示于表3中。
表3.所选物流的组分浓度,以体积%计
实施例2.
参照图2和实施例1中所述的模拟参数,在实施例2中硫化氢选择性分离单元106被制作成H2S/CO2选择性为3.18的橡胶型膜。硫化氢选择性分离单元106对于所选组分的渗透常数包含在表4中。富烃流14和富硫化氢流18被供给至克劳斯单元200的熔炉。该物流的总H2S浓度大于30%。所选物流中所得各组分的浓度(以体积%计)示于表5中。
表4.渗透常数-硫化氢选择性分离单元106
表5.所选物流的组分浓度,以体积%计
实施例3.
参照图2和实施例1中所述的模拟参数,在实施例3中硫化氢选择性分离单元106被制作成H2S/CO2选择性为5.0的型膜。硫化氢选择性分离单元106对于所选组分的渗透常数列于表6中。富烃流14和富硫化氢流18被供给至克劳斯单元200的熔炉。该物流具有总的H2S浓度为大于约40%。所选物流的所得组分浓度(以体积%计)示于表7中。
表6.渗透常数-硫化氢选择性分离单元106
表7.所选物流的组分浓度,以体积%计
实施例4.
实施例4是按照图3所示的烃选择性分离单元102并结合一步二氧化碳选择性分离单元104进行模拟的。酸性气流10在37.78℃和29.70psia下被供给至烃选择性分离单元102。烃选择性分离单元102由PDMS型橡胶聚合物膜制成,其H2S/CO2选择性为1.6,BTX透过性为100cm3/(cm2*s*psia)。参见表2中烃选择性分离单元102的渗透常数。烃选择性分离单元102将酸性气流10分离成富烃流14作为渗透物和纯化的酸性气流12作为渗余物。纯化的酸性气流12被供给至二氧化碳选择性分离单元104。二氧化碳选择性分离单元104由玻璃型膜制成,CO2/H2S选择性为6。二氧化碳选择性分离单元104对于所选组分的渗透常数列于表8中。二氧化碳选择性分离单元104将纯化的酸性气流12分离成富二氧化碳流30作为渗透物和贫二氧化碳流32作为渗余物。贫二氧化碳流32和富烃流14被供给至克劳斯单元200的熔炉。富二氧化碳流30被供给至克劳斯单元200的催化转化器。到达熔炉的物流的总H2S浓度大于30%。所选物流中所得各组分的浓度示于表9中。
表8.渗透常数-二氧化碳选择性分离单元104
表9.所选物流的组分浓度,以体积%计
实施例5.
参照图4,提供用于模拟实施例5的布置的工艺图。来自于胺分离工艺的酸性气流10在37.78℃和29.70psia下、以248.47MMscfd(274.23Msm3/h)的速度被供给至烃选择性分离单元102。烃选择性分离单元102由PDMS型橡胶聚合物膜制成,其H2S/CO2选择性为1.6,BTX透过性为100cm3/(cm2*s*psia)。参见表2中所选组分的渗透常数。烃选择性分离单元102将酸性气流10分离为富烃流14作为渗透物和纯化的酸性气流12作为渗余物。然后纯化的酸性气流12被送入硫化氢选择性分离单元106。硫化氢选择性分离单元106由1657或聚磷腈类膜制成,其具有H2S/CO2选择性为3.99的性能。硫化氢选择性分离单元106对于所选组分的渗透常数包含于表10中。硫化氢选择性分离单元106将纯化的酸性气流12分离成富硫化氢流18作为渗透物和贫硫化氢流16作为渗余物。富硫化氢流18被供给至第二硫化氢选择性分离单元108。第二硫化氢选择性分离单元108由1657或聚磷腈类膜制成,其具有H2S/CO2选择性为3.99的性能。第二硫化氢选择性分离单元108对于所选组分的渗透常数包含于表10中。第二硫化氢选择性分离单元108将富硫化氢流18分离成富硫化氢流22作为渗透物和二氧化碳渗余物20作为渗余物。
表10.渗透常数-硫化氢选择性分离单元106和第二硫化氢选择性分离单元108
富硫化氢流22和富烃流14被供给至克劳斯单元200的熔炉。贫硫化氢流16和二氧化碳渗余物20被供给至克劳斯单元200的催化转化器。到达熔炉的物流的总H2S浓度大于55%。表11以体积%示出了所选物流的组成。
表11.所选物流的组分浓度,以体积%计
实施例6.
参照图5和实施例5中所述的模拟参数,在实施例6中硫化氢选择性分离单元106和第二硫化氢选择性分离单元108被制成H2S/CO2选择性为5.0的4011、1074、聚磷腈型膜或离子液体膜/离子液体膜萃取器型膜。表12包括了硫化氢选择性分离单元106和第二硫化氢选择性分离单元108的渗透常数。
表12.渗透常数-硫化氢选择性分离单元106和第二硫化氢选择性分离单元108
富硫化氢流22和富烃流14混合并以混合熔炉供料流24的形式供给至克劳斯单元200的熔炉。混合熔炉供料流24中H2S的浓度大于55%。贫硫化氢流16和二氧化碳渗余物20混合并以混合催化转化器供料流26的形式供给至克劳斯单元200的催化转化器。所选物流中所得各组分的浓度以体积%示于表13中。
表13.所选物流的组分浓度,以体积%计
实施例7.
实施例7在图6中示出的构造的基础上进行模拟。酸性气流10在37.78℃和29.70psia下、以248.5MMscfd(292.66Msm3/h)的速度被供给至烃选择性分离单元102。烃选择性分离单元102由PDMS型橡胶聚合物膜制成,其H2S/CO2选择性为1.6,BTX透过性为100cm3/(cm2*s*psia)。烃选择性分离单元102将酸性气流10分离为富烃流14作为渗透物和纯化的酸性气流12作为渗余物。然后纯化的酸性气流12被供给至二氧化碳选择性分离单元104。二氧化碳选择性分离单元104被制作成CO2/H2S选择性为6的玻璃型膜。二氧化碳选择性分离单元104将纯化的酸性气流12分离成富二氧化碳流30作为渗透物和贫二氧化碳流32作为渗余物。富二氧化碳流30被供给至硫化氢选择性分离单元106。硫化氢选择性分离单元106为4011、1074、聚磷腈类、离子液体膜或离子液体膜萃取器型膜,其H2S/CO2选择性为5.0。二氧化碳选择性分离单元104和硫化氢选择性分离单元106对于所选组分的渗透常数包含于表14中。硫化氢选择性分离单元106将富二氧化碳流30分离成富硫化氢渗透物34作为渗透物和富二氧化碳渗余物36作为渗余物。贫二氧化碳流32、富硫化氢渗透物34和富烃流14被供给至克劳斯单元200的熔炉。富二氧化碳渗余物36被供给至克劳斯单元200的催化转化器。到达熔炉的物流中总的H2S浓度大于40%。所选物流中所得各组分的浓度示于表15中,以体积%计。
表14.渗透常数
表15.所选物流的组分浓度,以体积%计
实施例8.
实施例8在图7所示出的构造的基础上进行模拟。酸性气流10在37.78℃和29.70psia下、以248.5MMscfd(292.66Msm3/h)的速度被供给至烃选择性分离单元102。烃选择性分离单元102由PDMS型橡胶聚合物膜制成,其H2S/CO2选择性为1.6,BTX透过性为100cm3/(cm2*s*psia)。烃选择性分离单元102将酸性气流10分离为富烃流14作为渗透物和纯化的酸性气流12作为渗余物。然后纯化的酸性气流12被供给至硫化氢选择性分离单元106。硫化氢选择性分离单元106的性能按照4011、1074、聚磷腈型、离子液体膜或离子液体膜萃取器型膜制作,其H2S/CO2选择性为5.0。硫化氢选择性分离单元106将纯化的酸性气流12分离成富硫化氢流18作为渗透物和贫硫化氢流16作为渗余物。富硫化氢流18被供给至二氧化碳选择性分离单元104。二氧化碳选择性分离单元104被制作成CO2/H2S选择性为6.0的玻璃型膜。硫化氢选择性分离单元106和二氧化碳选择性分离单元104的渗透常数包含于表16中。二氧化碳选择性分离单元104将富硫化氢流18分离成富二氧化碳渗透物38作为渗透物和富硫化氢渗余物40作为渗余物。富烃流14和富硫化氢渗余物40被供给至克劳斯单元200的熔炉。贫硫化氢流16和富二氧化碳渗透物38被供给至克劳斯单元200的催化转化器。到达熔炉的物流中总H2S的浓度大于68%。所选物流中所得组分的浓度示于表17中,以体积%计。
表16.渗透常数
表17.所选物流的组分浓度,以体积%计
实施例9.
实施例9观察膜表面对于所选物流的组分浓度的效果。参照图7以及参照实施例8所述的模拟参数,在实施例9中,用于硫化氢选择性分离单元106和二氧化碳选择性分离单元104的膜被制成总表面积为实施例8中所用的表面积的1.55倍。到达熔炉的物流的总H2S浓度大于58%。到达催化转化器的物流的总H2S浓度小于7.2%。
表18.所选物流的组分浓度,以体积%计
虽然已经对本发明做了详细说明,但是应当理解的是,在不脱离本发明原则和范围的前提下,可在本文基础上做出各种改变、替换和变型。因此,本发明的范围应当由以下权利要求书及其恰当的法律等价物所确定。
单数形式“一”、“一个”和“该”包括复数对象,除非上下文另有明确说明。
任选的或任选地是指,随后描述的事件或情况可能发生或可能不发生。该描述包括该事件或情况发生以及不发生的例子。
范围在本文中可表示为从大约一个特定值和/或到大约另一个特定值。当表示这样的范围时,应当理解的是,另一个实施方案是从一个特定值和/或到另一个特定值,以及在所述范围内的所有组合。
如本文以及随附权利要求所用,词语“包含”、“具有”和“包括”及其所有的语法变体各自旨在具有一种开放的、非限制性的含义,这并不排除其它另外的元件或步骤。
如本文所用,术语如“第一”和“第二”是任意地指定,并且仅仅旨在区分装置的两个或多个组件。应当理解的是,词语“第一”和“第二”没有其它目的,也不是组件的名称或说明的一部分,更不是指它们必须定义组件的相对位置或方位。另外,应当理解的是,术语“第一”和“第二”的唯一用途不要求存在任何“第三”组件,尽管这种可能性是在本发明范围下是可预期的。

Claims (30)

1.一种富集装置,用于增加酸性气流中硫化氢的浓度,从而产生富硫化氢流以供给至克劳斯单元,所述富集装置包括:
烃选择性分离单元,所述烃选择性分离单元能够将所述酸性气流分离为富烃流和纯化的酸性气流,
其中所述酸性气流包含选自由苯、甲苯、乙苯、二甲苯及其组合构成的组的芳香烃;以及
硫化氢选择性分离单元,其与所述烃选择性分离单元流体连接,所述硫化氢选择性分离单元能够将所述纯化的酸性气流分离从而产生富硫化氢流和贫硫化氢流,所述富硫化氢流具有一定浓度的硫化氢。
2.权利要求1所述的富集装置,还包括:
二氧化碳选择性分离单元,其与所述硫化氢选择性分离单元流体连接,所述二氧化碳选择性分离单元能够分离所述富硫化氢流,从而产生富二氧化碳渗透物和富硫化氢渗余物,所述富硫化氢渗余物具有一定浓度的硫化氢。
3.权利要求2所述的富集装置,其中所述二氧化碳选择性分离单元选自无定形氟塑料膜、无定形全氟聚合物膜,无规含氟共聚物膜、全氟化共聚物膜、及其组合构成的组。
4.权利要求1所述的富集装置,还包括:
第二硫化氢选择性分离单元,其与所述硫化氢选择性分离单元流体连接,所述第二硫化氢选择性分离单元能够将所述富硫化氢流分离从而产生富硫化氢流和二氧化碳渗余物。
5.权利要求1所述的富集装置,其中所述硫化氢选择性分离单元选自聚磷腈类聚合物膜、聚醚-聚酰胺共聚物膜、离子液体膜、离子液体膜萃取器、及其组合构成的组。
6.权利要求5所述的富集装置,其中所述第二硫化氢选择性分离单元选自聚磷腈类聚合物膜、聚醚-聚酰胺共聚物膜、离子液体膜、离子液体膜萃取器、及其组合构成的组。
7.权利要求1所述的富集装置,其中所述烃选择性分离单元包括PDMS类橡胶聚合物膜。
8.权利要求1所述的富集装置,其中所述酸性气流还包括选自由硫醇、硫醇类、羰基硫化物、二硫化碳、及其组合构成的组的污染物。
9.权利要求1所述的富集装置,其中所述酸性气流中硫化氢的浓度为15体积%至55体积%。
10.权利要求1所述的富集装置,其中所述富硫化氢流中硫化氢的浓度大于55体积%。
11.权利要求1所述的富集装置,还包括混合器,所述混合器能够将所述富烃流和所述富硫化氢流混合成用于所述克劳斯单元的熔炉的供料流。
12.权利要求11所述的富集装置,其中用于所述克劳斯单元的所述熔炉的所述供料流中的硫化氢的浓度大于25体积%。
13.一种用于增加酸性气流中硫化氢的浓度,从而产生富硫化氢流以供给至克劳斯单元的工艺,所述工艺包括以下步骤:
将所述酸性气流供给至烃选择性分离单元,所述酸性气流包含硫化氢、二氧化碳和烃;
将所述烃选择性分离单元中的所述酸性气流分离从而产生富烃流和纯化的酸性气流,其中所述富烃流包含选自由苯、甲苯、乙苯、二甲苯、及其组合构成的组的芳香烃;
将所述纯化的酸性气流供给至与所述烃选择性分离单元流体相连的硫化氢选择性分离单元,所述硫化氢选择性分离单元能够分离所述纯化的酸性气流;以及
将所述硫化氢选择性分离单元中的所述纯化的酸性气流分离以产生富硫化氢流和贫硫化氢流,所述富硫化氢流具有一定浓度的硫化氢。
14.权利要求13所述的工艺,还包括以下步骤:
将所述富硫化氢流供给至与所述硫化氢选择性分离单元流体连接的二氧化碳选择性分离单元,所述二氧化碳选择性分离单元能够分离所述富硫化氢流;
将所述富硫化氢流分离以产生富二氧化碳渗透物和富硫化氢渗余物,所述富硫化氢渗余物具有一定浓度的硫化氢;以及
将所述富硫化氢渗余物供给至所述克劳斯单元的熔炉。
15.权利要求14所述的工艺,其中所述二氧化碳选择性分离单元选自无定形氟塑料膜、无定形全氟聚合物膜,无规含氟共聚物膜、全氟化共聚物膜、及其组合构成的组。
16.权利要求13所述的工艺,还包括以下步骤:
将所述富硫化氢流供给至与所述硫化氢选择性分离单元流体连接的第二硫化氢选择性分离单元,所述第二硫化氢选择性分离单元能够分离所述富硫化氢流;以及
将所述第二硫化氢选择性分离单元中的所述富硫化氢流分离从而产生富硫化氢流和二氧化碳渗余物。
17.权利要求16所述的工艺,还包括以下步骤:
将所述富烃流和所述富硫化氢流混合从而产生混合的熔炉供料流;以及
将所述混合的熔炉供料流供给至所述克劳斯单元的熔炉。
18.权利要求17所述的工艺,其中所述混合的熔炉供料流的硫化氢的浓度为至少25体积%。
19.权利要求13所述的工艺,其中所述硫化氢选择性分离单元选自聚磷腈类聚合物膜、聚醚-聚酰胺共聚物膜、离子液体膜、离子液体膜萃取器、及其组合构成的组。
20.权利要求13所述的工艺,其中所述烃选择性分离单元包括PDMS类橡胶聚合物膜。
21.权利要求13所述的工艺,其中所述酸性气流还包括选自由硫醇、硫醇类、羰基硫化物、二硫化碳、及其组合构成的组的污染物。
22.权利要求13所述的工艺,其中所述酸性气流中硫化氢的浓度为15体积%至55体积%。
23.权利要求13所述的工艺,其中所述富硫化氢流中硫化氢的浓度大于55体积%。
24.一种富集装置,用于增加酸性气流中硫化氢的浓度,从而产生富硫化氢流以供给至克劳斯单元,所述富集装置包括:
烃选择性分离单元,所述烃选择性分离单元能够将所述酸性气流分离为富烃流和纯化的酸性气流,
其中所述酸性气流包括硫化氢、二氧化碳、和烃,
其中所述富烃流包含选自由苯、甲苯、乙苯、二甲苯及其组合构成的组的芳香烃;以及
二氧化碳选择性分离单元,其与所述烃选择性分离单元流体连接,所述二氧化碳选择性分离单元能够分离所述纯化的酸性气流从而产生富二氧化碳流和贫二氧化碳流,所述贫二氧化碳流具有一定浓度的硫化氢。
25.权利要求24所述的富集装置,还包括:
硫化氢选择性分离单元,其与所述二氧化碳选择性分离单元流体连接,所述硫化氢选择性分离单元能够将所述富二氧化碳流分离为富硫化氢渗透物和富二氧化碳渗余物,所述富硫化氢渗透物具有一定浓度的硫化氢。
26.一种用于增加酸性气流中硫化氢的浓度,从而产生富硫化氢流以供给至克劳斯单元的工艺,所述工艺包括以下步骤:
将所述酸性气流供给至烃选择性分离单元,所述酸性气流包含硫化氢、二氧化碳和烃;
将所述烃选择性分离单元中的所述酸性气流分离从而产生富烃流和纯化的酸性气流,其中所述富烃流包含选自由苯、甲苯、乙苯、二甲苯、及其组合构成的组的芳香烃;
将所述纯化的酸性气流供给至与所述烃选择性分离单元流体连接的二氧化碳选择性分离单元,所述二氧化碳选择性分离单元能够分离所述纯化的酸性气流;以及
将所述二氧化碳选择性分离单元中的所述纯化的酸性气流分离以产生富二氧化碳流和贫二氧化碳流,所述贫二氧化碳流具有一定浓度的硫化氢。
27.权利要求26所述的工艺,还包括以下步骤:
将所述富二氧化碳流供给至与所述二氧化碳选择性分离单元流体连接的硫化氢选择性分离单元,所述硫化氢选择性分离单元能够分离所述富二氧化碳流;以及
将所述硫化氢选择性分离单元中的所述富二氧化碳流分离以产生富硫化氢渗透物和富二氧化碳渗余物,所述富硫化氢渗透物具有一定浓度的硫化氢。
28.权利要求26所述的工艺,其中所述酸性气流还包括选自由硫醇、硫醇类、羰基硫化物、二硫化碳、及其组合构成的组的污染物。
29.权利要求26所述的工艺,其中所述酸性气流中硫化氢的浓度为15体积%至55体积%。
30.权利要求26所述的工艺,其中所述富硫化氢流中硫化氢的浓度大于55体积%。
CN201810224172.5A 2014-04-16 2015-04-10 改进的硫回收工艺 Pending CN108579348A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461980089P 2014-04-16 2014-04-16
US61/980,089 2014-04-16
CN201580019770.3A CN106457126B (zh) 2014-04-16 2015-04-10 用于处理克劳斯单元中含有btex的低至中摩尔百分比的硫化氢气体供料的改进的硫回收工艺

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580019770.3A Division CN106457126B (zh) 2014-04-16 2015-04-10 用于处理克劳斯单元中含有btex的低至中摩尔百分比的硫化氢气体供料的改进的硫回收工艺

Publications (1)

Publication Number Publication Date
CN108579348A true CN108579348A (zh) 2018-09-28

Family

ID=53008876

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201580019770.3A Active CN106457126B (zh) 2014-04-16 2015-04-10 用于处理克劳斯单元中含有btex的低至中摩尔百分比的硫化氢气体供料的改进的硫回收工艺
CN201810224172.5A Pending CN108579348A (zh) 2014-04-16 2015-04-10 改进的硫回收工艺

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201580019770.3A Active CN106457126B (zh) 2014-04-16 2015-04-10 用于处理克劳斯单元中含有btex的低至中摩尔百分比的硫化氢气体供料的改进的硫回收工艺

Country Status (8)

Country Link
US (2) US9593015B2 (zh)
EP (2) EP3131658B1 (zh)
JP (3) JP6358631B2 (zh)
KR (2) KR101929644B1 (zh)
CN (2) CN106457126B (zh)
SA (1) SA516380032B1 (zh)
SG (2) SG10201705644UA (zh)
WO (1) WO2015160645A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825559A (zh) * 2019-05-17 2021-12-21 沙特阿拉伯石油公司 具有改进的二氧化碳回收的改进硫回收操作
CN113939355A (zh) * 2019-05-17 2022-01-14 沙特阿拉伯石油公司 涉及吸收和膜扩散步骤的从合成气混合物中捕获硫的改进工艺
CN114072220A (zh) * 2019-05-17 2022-02-18 沙特阿拉伯石油公司 使用全氟化膜的硫化氢-二氧化碳膜分离方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457126B (zh) * 2014-04-16 2018-04-20 沙特阿拉伯石油公司 用于处理克劳斯单元中含有btex的低至中摩尔百分比的硫化氢气体供料的改进的硫回收工艺
MY179140A (en) 2014-08-07 2020-10-28 Linde Ag Recovery of gases, especially permanent gases, from streams of matter, especially from offgas streams from polymerizations
US9387430B2 (en) 2014-11-19 2016-07-12 Apache Corporation Methods and systems of enhanced carbon dioxide recovery
US10106410B2 (en) 2017-03-10 2018-10-23 Saudi Arabian Oil Company Enhancement of Claus tail gas treatment by sulfur dioxide-selective membrane technology
US9943802B1 (en) * 2017-03-13 2018-04-17 Saudi Arabian Oil Company Enhancement of claus tail gas treatment with membrane and reducing step
US10106411B2 (en) 2017-03-13 2018-10-23 Saudi Arabian Oil Company Enhancement of claus tail gas treatment by sulfur dioxide-selective membrane technology and sulfur dioxide-selective absorption technology
US10765995B2 (en) * 2017-06-08 2020-09-08 Saudi Arabian Oil Company Helium recovery from gaseous streams
CN107138026B (zh) * 2017-06-27 2020-03-31 苏州克莱尔环保科技有限公司 膜法处理燃气厂含硫化氢驰放气的系统
US10682606B2 (en) * 2017-07-07 2020-06-16 Saudi Arabian Oil Company Multilayer aromatic polyamide thin-film composite membranes for separation of gas mixtures
BR112020002881A2 (pt) * 2017-08-21 2020-07-28 Exxonmobil Upstream Research Company integração de solvente frio e remoção de gás ácido
WO2019043099A1 (en) * 2017-09-04 2019-03-07 Basf Se ABSORBENT AND PROCESS FOR SELECTIVELY REMOVING HYDROGEN SULFIDE
WO2019113513A1 (en) 2017-12-08 2019-06-13 Baker Hughes, A Ge Company, Llc Ionic liquid based well asphaltene inhibitors and methods of using the same
EA202091413A1 (ru) 2018-07-11 2020-09-24 Бейкер Хьюз Холдингз Ллк Скважинные ингибиторы асфальтенов на основе ионной жидкости и способы их применения
US10589223B1 (en) 2019-04-18 2020-03-17 Saudi Arabian Oil Company Method and apparatus for treating a sulfur dioxide containing stream by hydrogen sulfide in aqueous conditions
US11422122B2 (en) 2020-06-22 2022-08-23 Saudi Arabian Oil Company Measuring water content of petroleum fluids using dried petroleum fluid solvent
US11385217B2 (en) 2020-07-29 2022-07-12 Saudi Arabian Oil Company Online measurement of dispersed oil phase in produced water
US11786913B2 (en) 2021-05-14 2023-10-17 Saudi Arabian Oil Company Y-shaped magnetic filtration device
US11548784B1 (en) 2021-10-26 2023-01-10 Saudi Arabian Oil Company Treating sulfur dioxide containing stream by acid aqueous absorption
US11530131B1 (en) 2021-11-16 2022-12-20 Saudi Arabian Oil Company Methods and systems of sub-dew point sulfur recovery with interstage membrane units
US11926799B2 (en) 2021-12-14 2024-03-12 Saudi Arabian Oil Company 2-iso-alkyl-2-(4-hydroxyphenyl)propane derivatives used as emulsion breakers for crude oil

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589896A (en) * 1985-01-28 1986-05-20 Air Products And Chemicals, Inc. Process for separating CO2 and H2 S from hydrocarbons
CN86104191A (zh) * 1985-05-24 1986-11-26 联合碳化公司 增强气体分离方法
CN1064027A (zh) * 1990-04-09 1992-09-02 标准石油公司 用于选择性分离的交压促进膜及其使用方法
WO1992020431A1 (en) * 1991-05-21 1992-11-26 Exxon Chemical Patents Inc. Treatment of acid gas using hybrid membrane separation systems
US5407466A (en) * 1993-10-25 1995-04-18 Membrane Technology And Research, Inc. Sour gas treatment process including membrane and non-membrane treatment steps
US5558698A (en) * 1993-10-25 1996-09-24 Membrane Technology And Research, Inc. Acid gas fractionation process
JPH09255974A (ja) * 1996-03-23 1997-09-30 Chiyoda Corp イオウ回収方法及びイオウ回収プラント
CN1209756A (zh) * 1996-01-19 1999-03-03 斯托克工程师和承包人公司 从气体中除去含硫的污染物、芳族化合物和烃的方法
US6287365B1 (en) * 1999-01-13 2001-09-11 Uop Llc Sulfur production process
CN1361712A (zh) * 1999-07-22 2002-07-31 戴维系统技术公司 用于分离气体混合物的聚合物膜
JP2006507385A (ja) * 2002-11-21 2006-03-02 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 膜分離プロセス
CN101910314A (zh) * 2007-11-05 2010-12-08 Co2Crc技术股份有限公司 气体分离膜及其制备方法
US20120103185A1 (en) * 2010-11-01 2012-05-03 Saudi Arabian Oil Company Sour Gas and Acid Natural Gas Separation Membrane Process by Pre Removal of Dissolved Elemental Sulfur for Plugging Prevention
WO2013101938A1 (en) * 2011-12-27 2013-07-04 Dow Corning Corporation Organopolysiloxanes including silicon-bonded trialkylsilyl-substituted organic groups
JP2013530820A (ja) * 2010-05-13 2013-08-01 エア プロダクツ アンド ケミカルズ インコーポレイテッド ポリマー、ポリマー膜及びその製造方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534528A (en) 1969-05-26 1970-10-20 Abcor Inc Gas well sulfur removal by diffusion through polymeric membranes
DE2253806C3 (de) 1972-11-03 1978-06-15 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Umsetzung des in Gasgemischen enthaltenen Schwefelwasserstoffs mit Schwefeldioxid nach dem Claus-Prozess
IT1048269B (it) 1973-03-01 1980-11-20 Shell Int Research Processo per ridurre il contenuto totale di zolfo di gas di scarico del processo claus
US4025322A (en) * 1975-05-19 1977-05-24 Shell Oil Company Removal of hydrocarbons and water from acid gas streams
US4507275A (en) 1983-08-30 1985-03-26 Standard Oil Company (Indiana) Process for producing and recovering elemental sulfur from acid gas
US4508699A (en) 1984-01-13 1985-04-02 Schoofs, Inc. Claus process improvement
US4659343A (en) * 1985-09-09 1987-04-21 The Cynara Company Process for separating CO2 from other gases
US4857078A (en) * 1987-12-31 1989-08-15 Membrane Technology & Research, Inc. Process for separating higher hydrocarbons from natural or produced gas streams
GB8803767D0 (en) * 1988-02-18 1988-03-16 Ici Plc Desulphurisation
CA2024525A1 (en) 1990-09-04 1992-03-05 William A. Rendall Process for removing hydrogen sulfide from a gaseous mixture and producing sulfur therefrom
GB9207496D0 (en) * 1992-04-06 1992-05-20 Boc Group Plc Treatment of gas streams
US5304361A (en) 1992-06-26 1994-04-19 Union Carbide Chemicals & Plastics Technology Corporation Removal of hydrogen sulfide
FR2733162B1 (fr) 1995-04-19 1997-06-06 Inst Francais Du Petrole Procede et dispositif d'elimination d'au moins un gaz acide par solvant pour l'epuration du gaz naturel
JP3602268B2 (ja) * 1996-07-15 2004-12-15 日揮株式会社 天然ガス等に含まれる硫黄化合物の除去方法およびその装置
KR20020048974A (ko) * 1999-10-22 2002-06-24 죤 에이치. 뷰센 황의 제조 방법
US20050135992A1 (en) 2000-06-19 2005-06-23 Parsons Parsons Energy & Chemicals Group, Inc. Superox process for increasing processing capacity of sulfur recovery facilities
US6387159B1 (en) 2000-06-26 2002-05-14 Engelhard Corporation Claus feed gas hydrocarbon removal
DE60018992T2 (de) * 2000-10-18 2006-04-20 Jgc Corp. Verfahren und vorrichtung zur entfernung von schwefelverbindungen aus schwefelwasserstoff, mercaptan, kohlendioxid und aromatische kohlenwasserstoffe enthaltendem gas
US6508863B1 (en) 2001-10-11 2003-01-21 Engelhard Corporation Claus feed gas hydrocarbon removal
FR2836061B1 (fr) 2002-02-15 2004-11-19 Air Liquide Procede de traitement d'un melange gazeux comprenant de l'hydrogene et du sulfure d'hydrogene
WO2006113935A2 (en) * 2005-04-20 2006-10-26 Fluor Technologies Corporation Configurations and methods for claus plant operation with variable sulfur content
JP4845438B2 (ja) * 2005-07-08 2011-12-28 千代田化工建設株式会社 天然ガスからの硫黄化合物の除去方法
US7988767B2 (en) 2006-08-31 2011-08-02 Fluor Technologies Corporation Hydrocarbon based sulfur solvent systems and methods
US20090313895A1 (en) * 2006-09-12 2009-12-24 Pex Petrus Paulus Antonius Cat Process for obtaining a hydrocarbon-enriched fraction from a gaseous feedstock comprising a hydrocarbon fraction and carbon dioxide
US7637984B2 (en) 2006-09-29 2009-12-29 Uop Llc Integrated separation and purification process
US20080155984A1 (en) * 2007-01-03 2008-07-03 Ke Liu Reforming system for combined cycle plant with partial CO2 capture
AU2008292143B2 (en) 2007-08-30 2011-12-08 Shell Internationale Research Maatschappij B.V. Process for removal of hydrogen sulphide and carbon dioxide from an acid gas stream
JP2011516258A (ja) * 2008-04-08 2011-05-26 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ 複合膜
DE102008050088A1 (de) * 2008-10-06 2010-04-22 Uhde Gmbh Verfahren zur Entschwefelung
DE102009018911A1 (de) 2009-04-28 2011-01-20 Lurgi Gmbh Verfahren zum Herstellen von Prozessgas für das Claus-Verfahren
US7901646B2 (en) 2009-08-05 2011-03-08 General Electric Company System and method for sulfur recovery
SG182308A1 (en) * 2010-01-22 2012-08-30 Exxonmobil Upstream Res Co Removal of acid gases from a gas stream, with co2 capture and sequestration
DE102010013279B3 (de) 2010-03-29 2011-07-28 Uhde GmbH, 44141 Verfahren und Vorrichtung zur Verarbeitung eines kohlendioxidreichen Sauergases in einem Claus-Prozess
US8206669B2 (en) 2010-07-27 2012-06-26 Air Products And Chemicals, Inc. Method and apparatus for treating a sour gas
US9259680B2 (en) 2011-09-06 2016-02-16 Frank Bela Claus hydrocarbon destruction via staged solvent regeneration
EP2572774A1 (en) 2011-09-21 2013-03-27 Linde Aktiengesellschaft CO2 recovery using the SURE process
EP2748292A4 (en) * 2011-11-15 2015-05-06 Shell Int Research METHOD FOR TREATING FEEDING CURRENTS CONTAINING HYDROGEN SULFIDE
WO2013138422A1 (en) * 2012-03-16 2013-09-19 Saudi Arabian Oil Company Recovery method and system for delivering extracted btx from gas streams
US20150299596A1 (en) * 2014-03-12 2015-10-22 Rustam H. Sethna Methods for removing contaminants from natural gas
CN106457126B (zh) * 2014-04-16 2018-04-20 沙特阿拉伯石油公司 用于处理克劳斯单元中含有btex的低至中摩尔百分比的硫化氢气体供料的改进的硫回收工艺

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589896A (en) * 1985-01-28 1986-05-20 Air Products And Chemicals, Inc. Process for separating CO2 and H2 S from hydrocarbons
CN86104191A (zh) * 1985-05-24 1986-11-26 联合碳化公司 增强气体分离方法
CN1064027A (zh) * 1990-04-09 1992-09-02 标准石油公司 用于选择性分离的交压促进膜及其使用方法
WO1992020431A1 (en) * 1991-05-21 1992-11-26 Exxon Chemical Patents Inc. Treatment of acid gas using hybrid membrane separation systems
US5407466A (en) * 1993-10-25 1995-04-18 Membrane Technology And Research, Inc. Sour gas treatment process including membrane and non-membrane treatment steps
US5558698A (en) * 1993-10-25 1996-09-24 Membrane Technology And Research, Inc. Acid gas fractionation process
CN1209756A (zh) * 1996-01-19 1999-03-03 斯托克工程师和承包人公司 从气体中除去含硫的污染物、芳族化合物和烃的方法
JPH09255974A (ja) * 1996-03-23 1997-09-30 Chiyoda Corp イオウ回収方法及びイオウ回収プラント
US6287365B1 (en) * 1999-01-13 2001-09-11 Uop Llc Sulfur production process
CN1361712A (zh) * 1999-07-22 2002-07-31 戴维系统技术公司 用于分离气体混合物的聚合物膜
JP2006507385A (ja) * 2002-11-21 2006-03-02 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 膜分離プロセス
CN101910314A (zh) * 2007-11-05 2010-12-08 Co2Crc技术股份有限公司 气体分离膜及其制备方法
JP2013530820A (ja) * 2010-05-13 2013-08-01 エア プロダクツ アンド ケミカルズ インコーポレイテッド ポリマー、ポリマー膜及びその製造方法
US20120103185A1 (en) * 2010-11-01 2012-05-03 Saudi Arabian Oil Company Sour Gas and Acid Natural Gas Separation Membrane Process by Pre Removal of Dissolved Elemental Sulfur for Plugging Prevention
WO2013101938A1 (en) * 2011-12-27 2013-07-04 Dow Corning Corporation Organopolysiloxanes including silicon-bonded trialkylsilyl-substituted organic groups

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825559A (zh) * 2019-05-17 2021-12-21 沙特阿拉伯石油公司 具有改进的二氧化碳回收的改进硫回收操作
CN113939355A (zh) * 2019-05-17 2022-01-14 沙特阿拉伯石油公司 涉及吸收和膜扩散步骤的从合成气混合物中捕获硫的改进工艺
CN114072220A (zh) * 2019-05-17 2022-02-18 沙特阿拉伯石油公司 使用全氟化膜的硫化氢-二氧化碳膜分离方法

Also Published As

Publication number Publication date
WO2015160645A1 (en) 2015-10-22
US9981848B2 (en) 2018-05-29
KR101929644B1 (ko) 2019-03-12
SG10201705644UA (en) 2017-08-30
SG11201607810VA (en) 2016-10-28
JP6622355B2 (ja) 2019-12-18
JP6358631B2 (ja) 2018-07-18
EP3131658A1 (en) 2017-02-22
CN106457126B (zh) 2018-04-20
EP3131658B1 (en) 2019-09-25
US20170137288A1 (en) 2017-05-18
EP3586941B1 (en) 2021-08-25
JP2020097514A (ja) 2020-06-25
EP3586941A1 (en) 2020-01-01
JP2018184341A (ja) 2018-11-22
CN106457126A (zh) 2017-02-22
SA516380032B1 (ar) 2020-07-13
KR102038451B1 (ko) 2019-10-30
KR20160143827A (ko) 2016-12-14
US20150298972A1 (en) 2015-10-22
US9593015B2 (en) 2017-03-14
KR20180134429A (ko) 2018-12-18
JP6815460B2 (ja) 2021-01-20
JP2017513796A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
CN106457126B (zh) 用于处理克劳斯单元中含有btex的低至中摩尔百分比的硫化氢气体供料的改进的硫回收工艺
CN105188886B (zh) 使用垂直定向并流接触系统从气体物流中分离杂质
US10040051B2 (en) Integrated process to recover high quality native CO2 from a sour gas comprising H2S and CO2
CA2685923C (en) Method and absorbent composition for recovering a gaseous component from a gas stream
AU2007226476B2 (en) Process for contacting two phases whose contact is accompanied by heat evolution
US10479684B2 (en) Enhancement of claus tail gas treatment by sulfur dioxide-selective membrane technology and sulfur dioxide-selective absorption technology
US20070286783A1 (en) Method of deacidizing a gaseous effluent with extraction of the products to be regenerated
SG195532A1 (en) Removal of acid gases from a gas stream
CN102580473A (zh) 一种选择性脱除h2s及有机硫的吸收剂
KR20160058826A (ko) 풍부/희박 용매 재생을 위한 스트리퍼 공급 장치의 최적화
CN104519978A (zh) 用于深度脱除气体物流的杂质的方法
US11535515B2 (en) Sulfur recovery within a gas processing system
CN204918092U (zh) 一种含硫气体的脱硫剂净化装置
CN106731511A (zh) 一种脱除含氧废气中硫化氢的复合吸收剂
Abdulrahman et al. The studying of declining reservoir pressure on natural gas sweetening process: a case study and simulation
Baburao et al. Advanced intercooling and recycling in co2 absorption
CN116723887A (zh) 用于去除酸性气体的水性吸收介质
CA1207131A (en) Process for treating natural gas
JPH09278421A (ja) 天然ガスからの硫黄回収方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180928

WD01 Invention patent application deemed withdrawn after publication