CN108566134B - 共直流母线开绕组永磁同步电机转子位置辨识方法 - Google Patents

共直流母线开绕组永磁同步电机转子位置辨识方法 Download PDF

Info

Publication number
CN108566134B
CN108566134B CN201810332826.6A CN201810332826A CN108566134B CN 108566134 B CN108566134 B CN 108566134B CN 201810332826 A CN201810332826 A CN 201810332826A CN 108566134 B CN108566134 B CN 108566134B
Authority
CN
China
Prior art keywords
current
motor
integrator
follows
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810332826.6A
Other languages
English (en)
Other versions
CN108566134A (zh
Inventor
张兴
李二磊
李浩源
杨淑英
马铭遥
刘威
刘世园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Polytechnic University
Original Assignee
Hefei Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Polytechnic University filed Critical Hefei Polytechnic University
Priority to CN201810332826.6A priority Critical patent/CN108566134B/zh
Publication of CN108566134A publication Critical patent/CN108566134A/zh
Application granted granted Critical
Publication of CN108566134B publication Critical patent/CN108566134B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种共直流母线开绕组永磁同步电机转子位置辨识方法,属于电机控制领域。为了解决现有的位置辨识方法中存在的抗干扰性差、可靠性低,难以工程应用的问题。本发明方法是直接采样得到三相绕组电流ia、ib和ic,通过带有锁频环的二阶广义积分器得到正交的零序电流信号,外差法处理得到位置偏差信号ε,然后通过锁相环PLL获得当前周期转子位置估计值最后再计算出转子估计位置避免了额外的电压检测电路,算法简单易行,另外位置辨识算法与电机参数无关,抗干扰性更高,鲁棒性更强,适合工程应用。

Description

共直流母线开绕组永磁同步电机转子位置辨识方法
技术领域
本发明涉及共直流母线开绕组永磁同步电机转子位置辨识方法,属于电机控制领域。
背景技术
永磁同步电机具有高转矩、高功率密度、高效率和运行性能优良的优点,在电动汽车、风电和伺服领域得到广泛应用。而共直流母线开绕组永磁同步电机除了具有永磁同步电机的优点外,还包括控制灵活,母线电压利用率高,容错能力强等优势。为了充分利用共直流母线开绕组永磁同步电机,实现电机驱动系统高精度、高性能的矢量控制,必须准确获取转子的位置信息,通常采用机械位置传感器或无传感器算法来检测位置。但是机械传感器增加了系统重量和成本,降低了可靠性。因此,共直流母线开绕组永磁同步电机转子无传感器位置辨识是一项重要且亟待解决的技术。
开绕组永磁同步电机是将传统Y型连接电机绕组的中性点打开,连接到两台变流器的拓扑结构,而共直流母线结构的开绕组永磁同步电机提供了零序电流通路,因此零序电流可以存在于电机绕组中。而零序电流又与电机转子位置有关,因此可以用于位置估计。
2011年IEEE文献“Position Sensorless Control of PM Synchronous MotorsBased on Zero-Sequence Carrier Injection”(“基于零序载波注入的永磁同步电机无传感器控制”——2011年IEEE工业电子期刊),在零轴上注入电压信号的基础上,通过采样得到的电流估计电机转子位置,动态性能好,信噪比高,但是需要在特定时刻进行采样,算法较为复杂。
2016年IEEE文献“Novel Square-Wave Signal Injection Method Using Zero-Sequence Voltage for Sensorless Control of PMSM Drivers”(“基于新型方波信号注入的永磁同步电机零序电压无传感器驱动控制”——2016年IEEE工业电子期刊),通过注入方波电压信号,然后解调检测零序电压提取出转子位置信号。该方法可以注入非常高的频率,拥有较大的系统带宽,也不需要微分运算,稳定性更好,但是该方法在检测零序电压的时候引入了额外的零序电压检测电路,可靠性变差,难以工程应用。
2016年IEEE文献“A Novel Zero-Sequence Model-Based Sensorless Methodfor Open-Winding PMSM With Common DC Bus”(“基于零序电流模型的共直流母线开绕组永磁同步电机无传感器方法”——2016年IEEE工业电子期刊),通过检测零序电压信号,通过零序电流方程计算出零序电流,然后解调零序电流实现转子位置估计。该方法避免了使用零序电压检测电路,提高了可靠性,但是该方法使用基于零序电流模型方法计算零序电流,因此对电机参数要求较高,鲁棒性差。
发明内容
本发明要解决的技术问题为针对现有共直流母线开绕组永磁同步电机转子位置辨识中存在的可靠性差、工程实用性差和抗干扰能力弱的问题,提供了一种共直流母线开绕组永磁同步电机转子位置辨识方法,采样得到三相绕组电流ia、ib和ic,经过信号处理得到位置偏差信号ε,最后通过锁相环PLL计算出转子估计位置
为解决本发明的技术问题,所采用的技术方案为一种共直流母线开绕组永磁同步电机转子位置辨识方法,在电机正常工作情况下,电流传感器采样得到三相绕组电流ia、ib和ic,然后计算出零序电流i0,最后从零序电流中提取转子估计位置包括以下步骤:
步骤1,电流传感器采样电机三相绕组电流ia、ib和ic,计算零序电流i0,其计算式如下:
步骤2,根据步骤1得到的零序电流i0,通过带有锁频环的广义二阶积分器得到目标电流i0 *、正交电流iq0 *及当前周期电机转速估计值
步骤3,根据步骤2得到的目标电流i0 *和正交电流iq0 *,通过外差法的方式提取位置偏差信号ε;
步骤4,根据步骤3得到的位置偏差信号ε,通过锁相环PLL得到电机当前周期转子位置估计值
步骤5,根据步骤4得到的当前周期转子位置估计值计算得到转子估计位置
优选地,步骤2所述通过带有锁频环的广义二阶积分器得到目标电流i0 *、正交电流iq0 *及当前周期电机转速估计值的步骤如下:
步骤2.1,将零序电流i0和上一周期目标电流i0'作差处理得到电流差值信号εi,计算公式如下:
εi=i0-i0
步骤2.2,将步骤2.1得到的电流差值信号εi乘以上一周期正交电流iq0'和锁频环增益系数-γ得到转速加速度信号εγ,表达式如下:
εγ=εi×iq0′×(-γ)
将εγ通过积分器得到当前周期电机转速估计值表达式如下:
其中,t为时间信号,C为积分器初始值;
步骤2.3,将步骤2.1得到的电流差值信号εi乘以系数k,减去上一周期正交电流iq0',得到正交电流差值信号εqi,表达式如下:
εqi=k×εi-iq0
将正交电流差值信号εqi乘以上一周期电机转速估计值并将得到的结果作为积分器的输入,得到目标电流i0 *,表达式如下:
步骤2.4,将步骤2.3得到的目标电流i0 *乘以上一周期电机转速估计值并将得到的结果作为积分器的输入,得到正交电流iq0 *,表达式如下:
步骤2.1~步骤2.4中所述的积分器为带有锁频环的广义二阶积分器,积分器GI(s)的表达式为:s为拉普拉斯算子。
优选地,步骤3所述通过外差法的方式提取位置偏差信号ε的计算式如下:
其中,为上一周期转子位置估计值,LPF是低通滤波器的表达式,式中,s为拉普拉斯算子,ξ为阻尼比,G0为低通滤波器增益,ωn为自然频率。
优选地,步骤4所述通过锁相环PLL得到电机当前周期转子位置估计值的步骤如下:
步骤4.1,调节PI控制器的参数使得位置偏差信号ε收敛到0,其输出即为电机转速差值信号Δω,PI控制器GPI(s)的表达式如下:
其中,s为拉普拉斯算子,kp为PI控制器比例项系数,ki为PI控制器积分项系数;
步骤4.2,将步骤4.1得到的电机转速差值信号Δω加上当前周期电机转速估计值得到电机真实转速ω,表达式如下:
将电机真实转速ω作为积分器的输入,积分器的输出即为电机当前周期转子位置估计值
所述的积分器为带有锁频环的广义二阶积分器,积分器GI(s)的表达式为:
与现有技术相比,本发明专利的有益效果如下:
1)无需外加零序电压检测电路,降低了成本,提高了可靠性。
2)直接采样零序电流而非根据零序电压方程,受电机参数变化不敏感,鲁棒性更高。
附图说明
图1为本发明辨识方法的实施流程图。
图2为本发明辨识方法的信号处理流程图。
图3为本发明方法的电路原理图。
图4为电机三相静止坐标系、两相静止坐标系和同步旋转坐标系示意图。
图5为基于零序电流的无传感器控制仿真波形图。
具体实施方式
下面结合附图,来说明本发明的具体实施方式。
图1为本发明辨识方法流程图,由图1可见,本发明辨识方法包括以下步骤:
步骤1,电流传感器采样电机三相绕组电流ia、ib和ic,计算零序电流i0,其计算式如下;
步骤2,根据步骤1得到的零序电流i0,通过带有锁频环的广义二阶积分器得到目标电流i0 *和正交电流iq0 *,以及当前周期电机转速估计值
步骤2.1,将零序电流i0和上一周期目标电流i0'作差处理得到电流差值信号εi,计算公式如下:
εi=i0-i0
步骤2.2,将步骤2.1得到的电流差值信号εi乘以上一周期正交电流iq0'和锁频环增益系数-γ得到转速加速度信号εγ,表达式如下:
εγ=εi×iq0′×(-γ)
将εγ通过积分器得到当前周期电机转速估计值表示如下:
其中,t为时间信号,C为积分器初始值。在本实施例中,C=30。
步骤2.3,将步骤2.1得到的电流差值信号εi乘以系数k,减去上一周期正交电流iq0',得到正交电流差值信号εqi,表达式如下:
εqi=k×εi-iq0
在本实施例中,系数k=1.5。
然后将正交电流差值信号εqi乘以上一周期电机转速估计值得到的结果作为积分器的输入,得到目标电流i0 *,表达式如下:
步骤2.4,将步骤2.3得到的目标电流i0 *乘以上一周期电机转速估计值将输出结果作为积分器输入,得到正交电流iq0 *,表示如下:
步骤2.1~步骤2.4中所述的积分器为带有锁频环的广义二阶积分器,积分器GI(s)的表达式为:s为拉普拉斯算子。
步骤3,根据步骤2得到的目标电流i0 *和正交电流iq0 *通过外差法的方式提取位置偏差信号ε。
步骤3.1,将步骤2得到的目标电流i0 *和正交电流iq0 *分别乘以作差之后通过低通滤波器LPF即得到位置偏差信号ε,计算公式如下:
其中,为上一周期转子位置估计值,LPF是低通滤波器的表达式,式中,s为拉普拉斯算子,ξ为阻尼比,G0为滤波器增益,ωn为自然频率。在本实施例中,自然频率ωn=314rad/s,阻尼比ξ=0.707,滤波器增益G0=1。
步骤4,根据步骤3得到的位置偏差信号ε,通过锁相环PLL得到电机当前周期转子位置估计值
步骤4.1,调节PI控制器的参数使得位置偏差信号ε收敛到0,其输出即为电机转速差值信号Δω,PI控制器GPI(s)的表达式如下:
其中,s为拉普拉斯算子,kp为比例项系数,ki为积分项系数。在本实施例中,比例项系数kp=5,积分项系数ki=100。
步骤4.2,将步骤4.1得到的转速差值Δω加上当前周期电机转速估计值得到电机真实转速ω,表示如下:
将电机真实转速ω作为积分器的输入,积分器的输出即为电机当前周期转子位置估计值
所述的积分器为带有锁频环的广义二阶积分器,积分器GI(s)的表达式为:
步骤5,将步骤4得到的电机当前周期转子位置估计值计算出转子估计位置计算公式如下:
图2为本发明辨识方法的信号处理流程图,步骤2-5中的具体流程可见图2。
图3为本发明方法的电路原理图:三个电流传感器采样定子A、B、C三相电流,得到三相绕组电流ia、ib和ic,一方面经过无传感器控制算法得到当前周期转子位置估计值另一方面经过3s/2r变换到dq轴同步旋转坐标系,得到dq轴电流坐标变换角为上一周期转子位置估计值然后将dq轴电流参考信号idref、iqref分别与dq轴电流和作差,之后通过PI控制器得到dq轴电压信号ud和uq,然后经过电压分配得到dq轴电压信号udq1和udq2,坐标变换角为上一周期转子位置估计值最后经过2r/2s变换得到静止坐标系αβ轴电压uαβ1、uaβ2,坐标变换角为上一周期转子位置估计值uαβ1和uaβ2经过空间矢量调制SVPWM产生开关信号SVPWM1和SVPWM2驱动电压源型逆变器VSI,直流侧电压Udc经过逆变产生交流电压VABC1和VABC2控制共直流母线开绕组永磁同步电机OEW-PMSM。具体见图3。
坐标变换关系参见图4所示,以电机定子绕组A相、B相和C相为轴线建立三相静止坐标系。规定A相轴线为零位参考轴,并以此轴为α轴,沿逆时针方向超前90°为β轴,建立两相静止坐标系。取永磁体励磁磁场轴线为d轴,沿逆时针方向超前90°为q轴,建立两相旋转坐标系。d轴与α轴的夹角为转子位置估计值,采用本发明方法辨识结果为
注意事项:本发明中提及的所有角度均为电角度。
图5是本发明方法的无传感器算法辨识位置波形图,电机参数为:功率10kw,极对数2,额定转速1500rpm,开关频率8.4kHz,定子电阻0.433Ω,d轴电感6.08mH,q轴电感21.36mH,永磁体磁链ψf=0.78Wb。电机转速从1300转每次加100转直至加到1600转,从图中可以看到得到的目标电流i0 *和正交电流iq0 *相差90°,为正交状态。估计转速也基本上能跟踪到真实转速,估计位置也能跟踪到真实位置,误差保持在25°左右,验证了方法的可行性。

Claims (3)

1.一种共直流母线开绕组永磁同步电机转子位置辨识方法,其特征在于,在电机正常工作情况下,电流传感器采样得到三相绕组电流ia、ib和ic,然后计算出零序电流i0,最后从零序电流中提取转子估计位置包括以下步骤:
步骤1,电流传感器采样电机三相绕组电流ia、ib和ic,计算零序电流i0,其计算式如下:
步骤2,根据步骤1得到的零序电流i0,通过带有锁频环的广义二阶积分器得到目标电流i0 *、正交电流iq0 *及当前周期电机转速估计值其步骤如下:
步骤2.1,将零序电流i0和上一周期目标电流i0'作差处理得到电流差值信号εi,计算公式如下:
εi=i0-i′0
步骤2.2,将步骤2.1得到的电流差值信号εi乘以上一周期正交电流iq0'和锁频环增益系数-γ得到转速加速度信号εγ,表达式如下:
εγ=εi×iq0′×(-γ)
将εγ通过积分器得到当前周期电机转速估计值表达式如下:
其中,t为时间信号,C为积分器初始值;
步骤2.3,将步骤2.1得到的电流差值信号εi乘以系数k,减去上一周期正交电流iq0',得到正交电流差值信号εqi,表达式如下:
εqi=k×εi-iq0
将正交电流差值信号εqi乘以上一周期电机转速估计值并将得到的结果作为积分器的输入,得到目标电流i0 *,表达式如下:
步骤2.4,将步骤2.3得到的目标电流i0 *乘以上一周期电机转速估计值并将得到的结果作为积分器的输入,得到正交电流iq0 *,表达式如下:
步骤2.1~步骤2.4中,所述的积分器为带有锁频环的广义二阶积分器,积分器GI(s)的表达式为:s为拉普拉斯算子;
步骤3,根据步骤2得到的目标电流i0 *和正交电流iq0 *,通过外差法的方式提取位置偏差信号ε;
步骤4,根据步骤3得到的位置偏差信号ε,通过锁相环PLL得到电机当前周期转子位置估计值
步骤5,根据步骤4得到的当前周期转子位置估计值计算得到转子估计位置
2.根据权利要求1所述的一种共直流母线开绕组永磁同步电机转子位置辨识方法,其特征在于,步骤3所述通过外差法的方式提取位置偏差信号ε的计算式如下:
其中,为上一周期转子位置估计值,LPF是低通滤波器的表达式,式中,s为拉普拉斯算子,ξ为阻尼比,G0为低通滤波器增益,ωn为自然频率。
3.根据权利要求1所述的一种共直流母线开绕组永磁同步电机转子位置辨识方法,其特征在于,步骤4所述通过锁相环PLL得到电机当前周期转子位置估计值的步骤如下:
步骤4.1,调节PI控制器的参数使得位置偏差信号ε收敛到0,其输出即为电机转速差值信号△ω,PI控制器GPI(s)的表达式如下:
其中,s为拉普拉斯算子,kp为PI控制器比例项系数,ki为PI控制器积分项系数;
步骤4.2,将步骤4.1得到的电机转速差值信号△ω加上当前周期电机转速估计值得到电机真实转速ω,表达式如下:
将电机真实转速ω作为积分器的输入,积分器的输出即为电机当前周期转子位置估计值
所述的积分器为带有锁频环的广义二阶积分器,积分器GI(s)的表达式为:
CN201810332826.6A 2018-04-13 2018-04-13 共直流母线开绕组永磁同步电机转子位置辨识方法 Active CN108566134B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810332826.6A CN108566134B (zh) 2018-04-13 2018-04-13 共直流母线开绕组永磁同步电机转子位置辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810332826.6A CN108566134B (zh) 2018-04-13 2018-04-13 共直流母线开绕组永磁同步电机转子位置辨识方法

Publications (2)

Publication Number Publication Date
CN108566134A CN108566134A (zh) 2018-09-21
CN108566134B true CN108566134B (zh) 2019-11-01

Family

ID=63534992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810332826.6A Active CN108566134B (zh) 2018-04-13 2018-04-13 共直流母线开绕组永磁同步电机转子位置辨识方法

Country Status (1)

Country Link
CN (1) CN108566134B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617487B (zh) * 2018-11-14 2022-03-01 创驱(上海)新能源科技有限公司 基于高频电压信号注入的永磁同步电机转子位置观测方法
CN112072649B (zh) * 2020-09-01 2022-06-14 东南大学 一种基于同步坐标系的比例积分锁频环及其建模方法
CN112583307B (zh) * 2020-12-15 2022-08-05 潍柴动力股份有限公司 一种永磁同步电机及其旋转变压器的软解码方法、系统
CN114844418B (zh) * 2022-04-18 2023-07-25 西南交通大学 一种感应电机无速度传感器控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997273B (zh) * 2014-04-11 2016-04-06 浙江大学 一种基于比例谐振控制的抑制共母线开绕组永磁电机零序电流的方法
CN104716882A (zh) * 2015-03-12 2015-06-17 南京航空航天大学 一种基于开绕组电机的三相-单相发电系统及其控制方法
CN106059408B (zh) * 2016-07-20 2018-07-20 吉林大学 基于双电源开放式绕组永磁同步电机的驱动控制系统及其控制方法
CN106655936B (zh) * 2016-11-08 2018-12-14 江苏大学 一种少稀土永磁电机零序电流抑制控制系统及方法

Also Published As

Publication number Publication date
CN108566134A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
Benjak et al. Review of position estimation methods for IPMSM drives without a position sensor part I: Nonadaptive methods
Jang et al. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency
CN108566134B (zh) 共直流母线开绕组永磁同步电机转子位置辨识方法
CN106655942B (zh) 永磁同步电机无位置传感器控制方法
Kim et al. High performance position sensorless control using rotating voltage signal injection in IPMSM
CN105356806A (zh) 一种采用方波注入的永磁同步电机无位置传感器控制方法
CN105915142B (zh) 一种基于解耦自适应观测器的永磁同步电机转子位置和转速估算方法
CN108390611B (zh) 基于旋转高频注入的永磁同步电机无传感器控制方法
CN108847795A (zh) 一种永磁同步电机无位置传感器的控制方法
CN108258963A (zh) 永磁同步电机转子位置辨识方法
CN113992087B (zh) 一种电机全速域无传感位置估计与控制方法及系统
CN106374805B (zh) 永磁同步电机转子静止状态初始位置辨识方法及装置
CN106026831B (zh) 一种无位置传感器控制下的电流解耦方法
Bist et al. Sensorless control based on sliding mode observer for pmsm drive
Li et al. Sensorless control of five-phase permanent-magnet synchronous motor based on third-harmonic space
Dong et al. A sensorless control strategy of injecting HF voltage into d-axis for IPMSM in full speed range
Zhao Position/speed sensorless control for permanent-magnet synchronous machines
Jiang et al. A sliding mode observer for pmsm speed and rotor position considering saliency
Agrawal et al. Low speed sensorless control of PMSM drive using high frequency signal injection
Comanescu Speed, emf and rotor position estimation of pmsm using phase locked loop and simple sliding mode observer
CN113489410B (zh) 周期互补高频方波注入的无传感器控制方法
Wang et al. Sensorless control of synchronous reluctance motors for low-speed operation considering cross-saturation effect
CN112491308A (zh) 一种采用转矩和定子磁链估计器的永磁同步电机控制方法
CN111654223A (zh) 一种混合励磁磁通切换电机无位置传感器复合控制方法
Qu et al. Rotor-position detection in permanent-magnet wheel motor to ensure smooth startup from standstill

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant