CN108558434A - 一种微波辅助烧结增韧多孔陶瓷的制备方法 - Google Patents

一种微波辅助烧结增韧多孔陶瓷的制备方法 Download PDF

Info

Publication number
CN108558434A
CN108558434A CN201810440554.1A CN201810440554A CN108558434A CN 108558434 A CN108558434 A CN 108558434A CN 201810440554 A CN201810440554 A CN 201810440554A CN 108558434 A CN108558434 A CN 108558434A
Authority
CN
China
Prior art keywords
toughening
sintering
porous ceramics
microwave radiation
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810440554.1A
Other languages
English (en)
Inventor
郑辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANHUI YA'OU CERAMIC Co Ltd
Original Assignee
ANHUI YA'OU CERAMIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANHUI YA'OU CERAMIC Co Ltd filed Critical ANHUI YA'OU CERAMIC Co Ltd
Priority to CN201810440554.1A priority Critical patent/CN108558434A/zh
Publication of CN108558434A publication Critical patent/CN108558434A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/1305Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1352Fuel ashes, e.g. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种微波辅助烧结增韧多孔陶瓷的制备方法,将粉煤灰、氧化铝粉末、高岭土、陶瓷颗粒混合球磨后煅烧,和淀粉、石墨烯纳米片、分散剂、溶剂及消泡剂超声分散制成悬浮液后,常温球磨过筛,使用碾压后聚氨酯海绵浸入浆料中吸附,加压低温预烧得到素坯,置于保温装置中,在微波高温真空烧结炉中,进行烧结,既得所述微波辅助烧结增韧多孔陶瓷。本发明通过通过添加石墨烯纳米片与聚氨酯海绵,实现多孔与增韧的效果,采用微波烧结节约时间与能源,实现高效、绿色、节能的目标。

Description

一种微波辅助烧结增韧多孔陶瓷的制备方法
技术领域
本发明属于陶瓷加工技术领域,具体涉及一种微波辅助烧结增韧多孔陶瓷的制备方法。
背景技术
在陶瓷艺术的历史长河中,中国的陶瓷艺术占有举足轻重的地位,在数千年的灿烂文化中,孕育出了六大瓷系,五大名窑以及无数的民间窑系等陶瓷文化,历史底蕴深厚,给后人留下了大量的陶瓷文化宝藏,陶瓷文化是中国最具特色的传统文化之一,时至今日,随着设计思潮的变革和技术多元化的拓展,陶瓷文化在近一个世纪的发展中,上升到了前所未有的高度,科技的进步推动着生产力的大发展,日新月异的技术给陶瓷文化带来了前所未有的便利。
发明内容
本发明提供一种微波辅助烧结增韧多孔陶瓷的制备方法,本发明通过通过添加石墨烯纳米片与聚氨酯海绵,实现多孔与增韧的效果,采用微波烧结节约时间与能源,实现高效、绿色、节能的目标。
本发明是通过以下技术方案实现的:
一种微波辅助烧结增韧多孔陶瓷的制备方法,其特征在于,包括以下步骤:
(1)陶瓷土的球磨与煅烧
将粉煤灰、氧化铝粉末、高岭土、陶瓷颗粒混合后并置于不锈钢真空罐中密封抽真空后通入氩气保护,磨球为氧化铝,采用行星式球磨机进行干法研磨,球磨完成后放入马弗炉中煅烧,待用;
(2)海绵吸附
将步骤(1)所得物按比例和淀粉、石墨烯纳米片、分散剂、溶剂及消泡剂混合后进行搅拌,进行超声分散,得到悬浮液后,进行常温球磨,采用高能球磨法球磨,球磨介质为水,磨球为氧化铝,将球磨完成后的浆料过100目筛,把多个大孔径聚氨酯海绵经过碾压设备进行加工碾压,浸入浆料中,反复揉压,使得浆料完全渗透海绵,然后取出浸渍了浆料的海绵采用辊压法去除多余的浆料;
(3)压制素坯
将步骤(2)所得混合物填入陶瓷模具中,缓慢的速度加压到150MPa,保压一段时间后卸压,再以相同的压制速率加压到200MPa,保压1-3分钟,卸压后,压远从模具中取出,在50-80℃温度下进行烘干预烧,得到素坯;
(4)微波烧结
将步骤(3)所得坯体放置于保温装置中,之后将保温装置整体放置于微波高温真空烧结炉中,通入惰性气体作为保护气体,设定微波高温真空烧结炉的烧结温度,控制升温速率,进行烧结,随炉冷却至室温,既得所述微波辅助烧结增韧多孔陶瓷。
所述的氧化铝粉末5-8份、粉煤灰15-25份、高岭土5-10份、陶瓷颗粒5-10份、分散剂0.01-0.3份、溶剂40-100份、消泡剂0.01-0.2份、大孔径聚氨酯海绵5-8份。
所述的球磨的球料比为8-10:1,球磨时间为24-48小时。
所述溶剂选自聚乙二醇、酒精、去离子水、N-甲基吡咯烷酮和十二磺基苯酸钠的至少一种。
所述消泡剂选自矿物油类消泡剂、硅油类消泡剂、二甲基硅油类消泡剂中的至少一种
所述的微波烧结温度设定为1700-2000℃,控制速率为30-40℃/min。
本发明的优点是:
本发明将粉煤灰、氧化铝粉末、高岭土、陶瓷颗粒混合球磨后煅烧,和淀粉、石墨烯纳米片、分散剂、溶剂及消泡剂超声分散制成悬浮液后,常温球磨过筛,使用碾压后聚氨酯海绵浸入浆料中吸附,加压低温预烧得到素坯,置于保温装置中,在微波高温真空烧结炉中,进行烧结,既得所述微波辅助烧结增韧多孔陶瓷。本发明使得粉煤灰、氧化铝粉末、高岭土、陶瓷颗粒在机械力作用下,细化粉体颗粒尺寸,改善其分散性并提高粉体烧结活性,煅烧后将粉末颗粒间的有机物和水分,粉煤灰中含有大量的二氧化硅非晶玻璃相,采用聚氨酯海绵为牺牲模板,烧结过程中被分解成气体溢出陶瓷,碾压使得聚氨酯海绵本身具有极强的吸附性,在之后的浸入浆料中吸附步骤中可以较多的保存浆料,烧结得到的多孔陶瓷具有与聚氨酯海绵相似的孔隙结构,施加外部压力把模具中的粉末压制成具有一定形状和密度的素坯,采用微波烧结法制备的多孔陶瓷,烧结时间短,效率高,可以避免杂相出现具有高效、绿色和节能的特点。本发明通过通过添加石墨烯纳米片与聚氨酯海绵,实现多孔与增韧的效果,采用微波烧结节约时间与能源,实现高效、绿色、节能的目标。
具体实施方式
本发明是通过以下技术方案实现的:
一种微波辅助烧结增韧多孔陶瓷的制备方法,其特征在于,包括以下步骤:
(1)陶瓷土的球磨与煅烧
将粉煤灰、氧化铝粉末、高岭土、陶瓷颗粒混合后并置于不锈钢真空罐中密封抽真空后通入氩气保护,磨球为氧化铝,采用行星式球磨机进行干法研磨,球磨完成后放入马弗炉中煅烧,待用;
(2)海绵吸附
将步骤(1)所得物按比例和淀粉、石墨烯纳米片、分散剂、溶剂及消泡剂混合后进行搅拌,进行超声分散,得到悬浮液后,进行常温球磨,采用高能球磨法球磨,球磨介质为水,磨球为氧化铝,将球磨完成后的浆料过100目筛,把多个大孔径聚氨酯海绵经过碾压设备进行加工碾压,浸入浆料中,反复揉压,使得浆料完全渗透海绵,然后取出浸渍了浆料的海绵采用辊压法去除多余的浆料;
(3)压制素坯
将步骤(2)所得混合物填入陶瓷模具中,缓慢的速度加压到150MPa,保压一段时间后卸压,再以相同的压制速率加压到200MPa,保压1-3分钟,卸压后,压远从模具中取出,在50-80℃温度下进行烘干预烧,得到素坯;
(4)微波烧结
将步骤(3)所得坯体放置于保温装置中,之后将保温装置整体放置于微波高温真空烧结炉中,通入惰性气体作为保护气体,设定微波高温真空烧结炉的烧结温度,控制升温速率,进行烧结,随炉冷却至室温,既得所述微波辅助烧结增韧多孔陶瓷。
所述的氧化铝粉末7份、粉煤灰20份、高岭土8份、陶瓷颗粒8份、分散剂0.05份、溶剂60份、消泡剂0.05份、大孔径聚氨酯海绵7份。
所述的球磨的球料比为8:1,球磨时间为48小时。
所述溶剂选自聚乙二醇、酒精、去离子水、N-甲基吡咯烷酮和十二磺基苯酸钠的至少一种。
所述消泡剂选自矿物油类消泡剂、硅油类消泡剂、二甲基硅油类消泡剂中的至少一种
所述的微波烧结温度设定为1700-2000℃,控制速率为30-40℃/min。

Claims (6)

1.一种微波辅助烧结增韧多孔陶瓷的制备方法,其特征在于,包括以下步骤:
(1)陶瓷土的球磨与煅烧
将粉煤灰、氧化铝粉末、高岭土、陶瓷颗粒混合后并置于不锈钢真空罐中密封抽真空后通入氩气保护,磨球为氧化铝,采用行星式球磨机进行干法研磨,球磨完成后放入马弗炉中煅烧,待用;
(2)海绵吸附
将步骤(1)所得物按比例和淀粉、石墨烯纳米片、分散剂、溶剂及消泡剂混合后进行搅拌,进行超声分散,得到悬浮液后,进行常温球磨,采用高能球磨法球磨,球磨介质为水,磨球为氧化铝,将球磨完成后的浆料过100目筛,把多个大孔径聚氨酯海绵经过碾压设备进行加工碾压,浸入浆料中,反复揉压,使得浆料完全渗透海绵,然后取出浸渍了浆料的海绵采用辊压法去除多余的浆料;
(3)压制素坯
将步骤(2)所得混合物填入陶瓷模具中,缓慢的速度加压到150MPa,保压一段时间后卸压,再以相同的压制速率加压到200MPa,保压1-3分钟,卸压后,压远从模具中取出,在50-80℃温度下进行烘干预烧,得到素坯;
(4)微波烧结
将步骤(3)所得坯体放置于保温装置中,之后将保温装置整体放置于微波高温真空烧结炉中,通入惰性气体作为保护气体,设定微波高温真空烧结炉的烧结温度,控制升温速率,进行烧结,随炉冷却至室温,既得所述微波辅助烧结增韧多孔陶瓷。
2.如权利要求1所述的一种微波辅助烧结增韧多孔陶瓷的制备方法,其特征在于,所述的氧化铝粉末5-8份、粉煤灰15-25份、高岭土5-10份、陶瓷颗粒5-10份、分散剂0.01-0.3份、溶剂40-100份、消泡剂0.01-0.2份、大孔径聚氨酯海绵5-8份。
3.如权利要求1所述的一种微波辅助烧结增韧多孔陶瓷的制备方法,其特征在于,所述的球磨的球料比为8-10:1,球磨时间为24-48小时。
4.如权利要求1所述的一种微波辅助烧结增韧多孔陶瓷的制备方法,其特征在于,所述溶剂选自聚乙二醇、酒精、去离子水、N-甲基吡咯烷酮和十二磺基苯酸钠的至少一种。
5.如权利要求1所述的一种微波辅助烧结增韧多孔陶瓷的制备方法,其特征在于,所述消泡剂选自矿物油类消泡剂、硅油类消泡剂、二甲基硅油类消泡剂中的至少一种。
6.如权利要求1所述的一种微波辅助烧结增韧多孔陶瓷的制备方法,其特征在于,所述的微波烧结温度设定为1700-2000℃,控制速率为30-40℃/min。
CN201810440554.1A 2018-05-10 2018-05-10 一种微波辅助烧结增韧多孔陶瓷的制备方法 Pending CN108558434A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810440554.1A CN108558434A (zh) 2018-05-10 2018-05-10 一种微波辅助烧结增韧多孔陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810440554.1A CN108558434A (zh) 2018-05-10 2018-05-10 一种微波辅助烧结增韧多孔陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN108558434A true CN108558434A (zh) 2018-09-21

Family

ID=63538250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810440554.1A Pending CN108558434A (zh) 2018-05-10 2018-05-10 一种微波辅助烧结增韧多孔陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN108558434A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851393A (zh) * 2021-01-26 2021-05-28 刘正芳 一种多功能耐污隔热陶瓷材料及其制备方法
CN117486615A (zh) * 2023-12-29 2024-02-02 江苏先进无机材料研究院 一种真空微重力悬浮烧结制备SiC陶瓷及复合材料的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040086621A (ko) * 2003-04-03 2004-10-12 경기대학교 연속적인 기공을 갖는 세라믹 다공체의 제조 방법
US20060162929A1 (en) * 2005-01-26 2006-07-27 Global Synfrac Inc. Lightweight proppant and method of making same
CN102153362A (zh) * 2010-11-29 2011-08-17 杭州中亚特种耐火材料有限公司 一种氧化铝泡沫陶瓷废料回收方法
CN102173856A (zh) * 2010-12-20 2011-09-07 中钢集团洛阳耐火材料研究院有限公司 铸造用莫来石泡沫陶瓷过滤器及其制备方法
CN103011894A (zh) * 2012-10-19 2013-04-03 华南理工大学 一种土壤替代多孔陶瓷材料的制备方法
CN104402517A (zh) * 2014-10-27 2015-03-11 武汉科技大学 一种Al2O3-SiC泡沫陶瓷及其制备方法
CN106478132A (zh) * 2016-09-14 2017-03-08 郑州峰泰纳米材料有限公司 氮化硅多孔陶瓷材料及其制备方法
CN107382274A (zh) * 2017-06-28 2017-11-24 常州新之雅装饰材料有限公司 一种泡沫陶瓷材料的制备方法
CN107857571A (zh) * 2017-11-10 2018-03-30 南京航空航天大学 一种多层结构的莫来石‑堇青石基泡沫陶瓷及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040086621A (ko) * 2003-04-03 2004-10-12 경기대학교 연속적인 기공을 갖는 세라믹 다공체의 제조 방법
US20060162929A1 (en) * 2005-01-26 2006-07-27 Global Synfrac Inc. Lightweight proppant and method of making same
CN102153362A (zh) * 2010-11-29 2011-08-17 杭州中亚特种耐火材料有限公司 一种氧化铝泡沫陶瓷废料回收方法
CN102173856A (zh) * 2010-12-20 2011-09-07 中钢集团洛阳耐火材料研究院有限公司 铸造用莫来石泡沫陶瓷过滤器及其制备方法
CN103011894A (zh) * 2012-10-19 2013-04-03 华南理工大学 一种土壤替代多孔陶瓷材料的制备方法
CN104402517A (zh) * 2014-10-27 2015-03-11 武汉科技大学 一种Al2O3-SiC泡沫陶瓷及其制备方法
CN106478132A (zh) * 2016-09-14 2017-03-08 郑州峰泰纳米材料有限公司 氮化硅多孔陶瓷材料及其制备方法
CN107382274A (zh) * 2017-06-28 2017-11-24 常州新之雅装饰材料有限公司 一种泡沫陶瓷材料的制备方法
CN107857571A (zh) * 2017-11-10 2018-03-30 南京航空航天大学 一种多层结构的莫来石‑堇青石基泡沫陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鞠鲁粤主编: "《工程材料与成形技术基础》", 31 December 2004, 高等教育出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851393A (zh) * 2021-01-26 2021-05-28 刘正芳 一种多功能耐污隔热陶瓷材料及其制备方法
CN117486615A (zh) * 2023-12-29 2024-02-02 江苏先进无机材料研究院 一种真空微重力悬浮烧结制备SiC陶瓷及复合材料的方法
CN117486615B (zh) * 2023-12-29 2024-05-14 江苏先进无机材料研究院 一种真空微重力悬浮烧结制备SiC陶瓷及复合材料的方法

Similar Documents

Publication Publication Date Title
CN113563103B (zh) 一种采用流延成型法制备梯度氧化铝多孔陶瓷的方法
CN107721424B (zh) 一种凝胶注模成型制备yag透明陶瓷的方法
CN109095916B (zh) 一种sps烧结制备yag透明陶瓷的方法
CN114031376B (zh) 一种高硬度、细晶粒zta体系复相陶瓷材料的制备方法
CN104671826A (zh) 一种多孔氧化铝陶瓷、制备方法及其应用
CN108558434A (zh) 一种微波辅助烧结增韧多孔陶瓷的制备方法
CN111018503B (zh) 一种具有高强度生坯的陶瓷薄板及其制备方法
CN114956828B (zh) 碳化硅陶瓷及其制备方法和应用
CN112299861B (zh) 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法
CN101648814A (zh) 一步固相反应法制备高性能陶瓷的方法
CN113943162A (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN110668845B (zh) 一种降低陶瓷表面产生缩釉缺陷的上釉方法
CN109133934A (zh) 利用氧化硅基固体废弃物制备碳化硅基多孔陶瓷的方法
CN109650753B (zh) 一种利用菱镁矿放电等离子烧结制备高密度镁砂的方法
CN106673708A (zh) 一种碳/碳复合材料表面制备碳化硅纳米线多孔层的方法
CN109485420B (zh) 一种提高陶瓷纳米粉体的湿法成型性及烧结性的方法
CN108484210B (zh) 一种孔隙率高的碳化硅多孔陶瓷制备方法
CN112521177B (zh) 一种低熔点多孔陶瓷材料及其制备方法
CN114644525A (zh) 添加废弃料的复合匣钵及其制备方法
CN112028662B (zh) 一种复合多级孔结构陶瓷及其制备方法
CN114149274A (zh) 一种采用煤泥作为造孔剂制备定向多孔SiC陶瓷方法
CN110790571A (zh) 一种制备Gd2Zr2O7透明陶瓷的方法
CN114538897A (zh) 一种凝胶注模陶瓷生坯的烧结方法
CN112675803B (zh) 一种三维氮化硼纳米片泡沫的制备和使用方法
CN110681263A (zh) 一种Al2O3-TiO2梯度多孔结构陶瓷超滤膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180921

RJ01 Rejection of invention patent application after publication