CN108546143A - 一种高强多孔陶瓷及其低温制备方法 - Google Patents

一种高强多孔陶瓷及其低温制备方法 Download PDF

Info

Publication number
CN108546143A
CN108546143A CN201810330999.4A CN201810330999A CN108546143A CN 108546143 A CN108546143 A CN 108546143A CN 201810330999 A CN201810330999 A CN 201810330999A CN 108546143 A CN108546143 A CN 108546143A
Authority
CN
China
Prior art keywords
raw material
porous ceramics
low
strength porous
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810330999.4A
Other languages
English (en)
Inventor
税安泽
花开慧
马娟
胡家兴
李秋玲
高小云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810330999.4A priority Critical patent/CN108546143A/zh
Publication of CN108546143A publication Critical patent/CN108546143A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1324Recycled material, e.g. tile dust, stone waste, spent refractory material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1352Fuel ashes, e.g. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于多孔陶瓷的技术领域,公开了一种高强多孔陶瓷及其低温制备方法。所述方法:(1)将原料混合;所述原料包括固体废弃物、低品位矿物以及添加剂;当原料中铝元素不足时,所述原料还包括铝源;(2)将混合的原料成型制成坯体;(3)将坯体在800~1300℃下烧成,获得高强多孔陶瓷;所述添加剂为氧化铝、硝酸盐、碳酸盐、硫酸盐、磷酸盐、氟化物、硼砂中的一种以上。本发明以固体废弃物、低品位矿物为原料的一部分,实现了资源的回收利用,环保,经济;而且原料范围广,工艺简单(一步法原位制备晶须骨架结构),生产成本低,适合产业化生产。同时本发明能耗少,制备的多孔陶瓷具有晶须骨架结构,孔隙率高、密度低、机械强度高。

Description

一种高强多孔陶瓷及其低温制备方法
技术领域
本发明属于多孔陶瓷的技术领域,涉及一种高强多孔陶瓷及其低温制备方法,特别涉及一种具有晶须骨架结构的多孔陶瓷及其低温制备方法。
背景技术
多孔陶瓷具有保温、隔热、吸音、保水、吸水、过滤、催化剂载体等功能,广泛应用于建筑、化工、轻工、冶金、农业等各领域,但由于其孔隙结构的原因,多孔陶瓷的机械强度一般都比较低,因此具有晶须骨架结构增强的多孔陶瓷具有较好的发展前景。
另外,我国固体废弃物和低品位矿物急剧增多,大量堆积、填埋的固体废弃物和低品位矿物不仅挤占良田,污染水土资源和空气环境,还会造成严重的二次灾害。它们富含SiO2、Al2O3、CaO等化学成分,其高效率资源化利用具有重要的社会经济意义。
专利“原位自生莫来石晶须增强钛酸铝多孔陶瓷材料及制备方法”(CN102584313A),采用α-氧化铝、拟薄水铝石等为原料合成了一种原位自生莫来石晶须增强的钛酸铝多孔陶瓷,晶须穿插于多孔陶瓷的空隙之间,对材料增强作用明显,但该工艺对原料纯度要求高,且烧成温度高(1400~1500℃)。专利“一种焊接晶须制备莫来石多孔陶瓷的方法”(CN105110779A),通过外加高温粘结剂、莫来石晶须,经冷冻干燥制备晶须焊接的多孔陶瓷,但该方法烧成温度也高(1200~1500℃以上),并且材料强度低(2~30MPa)。专利申请“一种莫来石晶须增强钙长石多孔陶瓷及其制备方法”(CN105198478A),先采用固相反应法制备出高纯、高长径比,易分散的莫来石晶须,再将该晶须与α-氧化铝、二氧化硅和碳酸钙结合,通过泡沫注凝成型,在1450℃烧成制备莫来石晶须增强的钙长石多孔陶瓷,但该工艺原料纯度要求也高,且烧成温度也高(1450℃)。专利“利用陶瓷废弃物生产的泡沫吸声材料及其制备方法”(CN102936151A),以陶瓷废弃物、超细高岭土等为主要原料,采用有机前驱体浸渍法,通过高温烧成制备泡沫吸声材料,但烧成温度仍然很高(1350~1450℃),且机械强度低。
发明内容
为了克服现有技术的缺点和不足,本发明的目的在于提供一种高强多孔陶瓷及其低温制备方法。通过本发明方法所获得的多孔陶瓷具有孔隙率高、密度低、强度高等优点,并且本发明烧成温度低,能耗低。
本发明的目的通过以下技术方案实现:
一种高强多孔陶瓷的制备方法,包括以下步骤:
(1)将原料混合;所述原料包括固体废弃物、低品位矿物以及添加剂;当原料中铝元素不足时,所述原料还包括铝源;
(2)将混合的原料成型制成坯体;
(3)将坯体在800~1300℃下烧成,获得高强多孔陶瓷。高强多孔陶瓷具有晶须骨架结构。
所述固体废弃物为固体废弃物的粉体,是指固体废弃物经收集、破碎、混匀、磨碎后,再度球磨得到粉体。
所述固体废弃物为建筑废弃物、粉煤灰、陶瓷废渣、煤矸石、高温炉渣中的一种以上;这几种固体废弃物其主要成分为SiO2和Al2O3,属于有用矿物资源。
所述低品位矿物为低品位粘土矿、低品位铝矿、低品位铁矿、低品位钾长石、低品位云母矿中的一种以上。低品位矿物是指未达到工业原料品位要求的矿物或尾矿,或者在当前的经济、技术条件下难以利用的矿物或尾矿。
所述铝源为氧化铝或铝粉。
所述添加剂为氧化铝、硝酸盐、碳酸盐、硫酸盐、磷酸盐、氟化物、硼砂中的一种以上。本发明的添加剂作为助熔剂和晶须催化剂,有利于高温液相生成,降低液相粘度,为晶须形成和生长提供液相环境,并降低晶须生成温度。
所述硝酸盐为NaNO3、KNO3、Mg(NO3)2中一种以上;所述碳酸盐为Na2CO3、K2CO3、MgCO3、NaHCO3、KHCO3中一种以上;所述硫酸盐为CaSO4、K2SO4、MgSO4、Na2SO4、Al2(SO4)3中一种以上;所述磷酸盐为Na3PO4、NaH2PO4、Na2HPO4、K3PO4、KH2PO4、K2HPO4、Mg3(PO4)2中一种以上;所述氟化物为KHF2、Na2SiF6、NaF、CaF2、KF、AlF3中一种以上。
所述原料中各组分的重量百分比为:
固体废弃物:0~80%;低品位矿物:0~80%;添加剂:0.5%~30%;固体废弃物与低品位矿物不同时为0;
当原料中铝元素不足时,所述原料还包括铝源,此时铝源与添加剂的总量为0.5~30%。
步骤(1)中原料混合是指将各原料进行球磨混合;球磨的转速100~800rpm,球磨的时间0.5~36h;
步骤(1)中所述成型的压力为1~600MPa;
步骤(3)中所述烧成的时间为30~1500min。步骤(3)中所述烧成的升温速率为2~40℃/min。
步骤(3)中所述坯体在烧成之前需进行干燥。
低品位矿物是指未达到工业原料品位要求的矿物或尾矿,或者在当前的经济、技术条件下难以利用的矿物或尾矿。
本发明以固体废弃物、低品位矿物为原料的一部分,辅以其他原料和添加剂,通过低温(800~1300℃)烧成制备具有晶须骨架结构的多孔陶瓷。该方法原料范围广,工艺简单(一步法原位制备晶须骨架结构),生产成本低,适合产业化生产。制备的多孔陶瓷孔隙率高、密度低、力学性能优良,可广泛应用于建筑、化工、环保等领域。本发明技术在节能环保、吸声、过滤、低温烧成等领域具有重要的价值。本发明材料还可应用于吸声、过滤领域。
与现有技术相比,本发明具有以下优点及有益效果:
本发明以固体废弃物、低品位矿物为原料的一部分,实现了资源的回收利用,环保、经济;而且原料范围广,工艺简单(一步法原位制备晶须骨架结构),生产成本低,适合产业化生产。本发明通过低温烧成,能耗低,制备的多孔陶瓷具有晶须骨架结构,孔隙率高、密度低、机械强度高。
附图说明
图1为实施例1制备的高强多孔陶瓷的SEM图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
本发明的建筑废弃物指建筑施工、拆迁、装修等过程产生的废砖、废混凝土、废砂石等无机废料,主要成分为SiO2:23.0~72.0%,Al2O3:10.0~36.0%,Fe2O3:1.5~7.0%,CaO:3.0~22.0%,MgO:0.8~4.5%,Na2O:1.2~3.4%,K2O:0.9~2.9%等;
陶瓷废渣,主要成分为SiO2:48.0~82.0%,Al2O3:5.0~33.0%,Fe2O3:0.5~3.5%,TiO2:0.3~2.9%,K2O:1.5~4.5%,Na2O:0.5~4.5%,MgO:0.5~10.5%等。
高温炉渣,主要成分为SiO2:18.0~62.0%,Al2O3:1.5~28.0%,MgO:5.0~30.0%,Fe2O3:1.5~5.0%,CaO:3.0~40.0%等。
低品位矿物,其主要成分为SiO2:9.0~72.0%,Al2O3:10.0~70.0%,等。
实施例1
一种高强多孔陶瓷的制备方法,包括以下步骤:实施例中百分数为质量百分数;
(1)建筑废弃物(主要成分为SiO2:23.5%,Al2O3:35.0%,Fe2O3:6.5%,CaO:21.7%,MgO:3.7%,Na2O:2.1%,K2O:2.9%等)55.2%、低品位铝矿石(主要成分为Al2O3:62.3%,SiO2:9.1%,Fe2O3:13.5%,TiO2:4.5%,K2O:6.9%等)34.8%、Na2CO3 6.0%、硼砂2.0%、K3PO4 2.0%,按比例配料,用球磨机以400r/min转速,球磨混料12h,得到混合的原料;
(2)将混合的原料100MPa下压制成型,烘干(40℃),制得坯体;混合的原料可先进行造粒,然后压制成型;
(3)将坯体置入高温炉中,以35℃/min升温速率升温至1050℃烧成,保温200min,制得高强多孔陶瓷,多孔陶瓷断面形貌如图1所示。图1为实施例1制备的高强度多孔陶瓷的SEM图。
本实施例制备的高强多孔陶瓷,密度0.78g/cm3,开口孔隙率68.13%,抗压强度30.69MPa,平均孔径11.60μm。
实施例2
一种高强多孔陶瓷的制备方法,包括以下步骤:实施例中百分数为质量百分数;
(1)煤矸石(主要成分为SiO2:51.0%,Al2O3:39.0%,Fe2O3:2.2%,CaO:0.9%,TiO2:2.7%,K2O:1.9%,Na2O:0.8%,MgO:1.3%)33.0%、陶瓷废渣(主要成分为SiO2:48.7%,Al2O3:32.0%,Fe2O3:2.4%,TiO2:1.5%,K2O:3.4%,Na2O:2.8%,MgO:8.6%)21.0%、低品位粘土矿(主要成分为SiO2:48.7%,Al2O3:34.7%,Fe2O3:2.5%,Na2O:3.5%,TiO2:2.5%,K2O:3.8%)10.2%、低品位钾长石(主要成分为SiO2:63.0%,Al2O3:16.7%,K2O:4.7%,Fe2O3:4.5%,Na2O:3.5%等)13.8%、KNO3 12.0%、磷酸盐(NaH2PO4和K3PO4,含量分别为7.0%、3.0%)10.0%,按比例配料,用球磨机以700r/min转速,球磨混料4h,得到混合的原料;
(2)将混合的原料150MPa下压制成型,烘干(80℃),制得坯体;混合的原料可先过100目筛,造粒,然后压制成型;
(3)将坯体置入高温炉中,以20℃/min升温速率升温至850℃,保温600min,制得高强多孔陶瓷。
本实施例制备的高强多孔陶瓷,密度0.72g/cm3,开口孔隙率70.56%,抗压强度28.61MPa,平均孔径12.90μm。
实施例3
一种高强多孔陶瓷的制备方法,包括以下步骤:实施例中百分数为质量百分数;
(1)低品位粘土矿(主要成分为SiO2:47.3%,Al2O3:26.8%,Fe2O3:2.8%,Na2O:3.5%)37.8%、低品位铝矿(主要成分为Al2O3:62.9%,SiO2:10.4%,Fe2O3:11.8%,TiO2:4.5%,K2O:5.2%)30.0%、低品位云母矿(主要成分为SiO2:68.0%,Al2O3:20.3%,Fe2O3:1.9%,K2O:4.7%)12.2%、Na2HPO4 8.0%、硫酸盐(CaSO4和MgSO4,含量分别为6.0%和2.0%)8.0%、MgCO3 4.0%,按比例配料,用球磨机以800r/min转速,球磨混料0.5h,得到混合的原料;
(2)将混合的原料200MPa下压制成型,烘干(120℃),制得坯体;混合的原料可先进行造粒,然后压制成型;混合的原料可先过150目筛,造粒,然后压制成型;
(3)将坯体置入高温炉中,以2℃/min升温速率升温至1020℃,保温400min,制得高强多孔陶瓷。
本实施例制备的高强多孔陶瓷,密度0.62g/cm3,开口孔隙率74.87%,抗压强度23.34MPa,平均孔径14.80μm。
实施例4
一种高强多孔陶瓷的制备方法,包括以下步骤:实施例中百分数为质量百分数;
(1)建筑废弃物21.3%、高温炉渣(主要成分为SiO2:42.0%,Al2O3:21.0%,MgO:12.3%,Fe2O3:4.4%,CaO:18.2%)15.5%、低品位铝矿(主要成分为Al2O3:68.9%,SiO2:10.1%,Fe2O3:5.8%,TiO2:2.7%)39.1%、磷酸盐(Na2HPO4、Mg3(PO4)2,含量分别为4.5%、3.0%)7.5%、硝酸盐(NaNO3、Mg(NO3)2,含量分别为2.0%、4.0%)6.0%、K2SO4 4.2%、K2CO36.4%,按比例配料,用球磨机以460r/min转速,干法球磨混料36h,得到混合的原料;
(2)将混合的原料600MPa下压制成型,烘干(100℃),制得坯体;混合的原料可先进行造粒,然后压制成型;混合的原料可先过200目筛,造粒,然后压制成型;
(3)将坯体置入高温炉中,以10℃/min升温速率升温至800℃,保温1500min,制得高强多孔陶瓷。
本实施例制备的高强多孔陶瓷,密度0.72g/cm3,开口孔隙率69.80%,抗压强度29.92MPa,平均孔径13.10μm。
实施例5
一种高强多孔陶瓷的制备方法,包括以下步骤:实施例中百分数为质量百分数;
(1)建筑废弃物80.0%、氧化铝4.0%、Na3PO4 3.5%、Na2SO4 1.2%、氟化物(KHF2、AlF3,含量分别为9.2%、2.1%)11.3%,按比例配料,用球磨机以630r/min转速,干法球磨混料7h,得到混合的原料;
(2)将混合的原料200MPa下压制成型,烘干(70℃),制得坯体;混合的原料可先进行造粒,然后压制成型;混合的原料可先过80目筛,造粒,然后压制成型;
(3)将坯体置入高温炉中,以25℃/min升温速率升温至980℃,保温1000min,制得高强多孔陶瓷。
本实施例制备的高强多孔陶瓷,密度0.68g/cm3,开口孔隙率72.47%,抗压强度27.69MPa,平均孔径13.90μm。
实施例6
一种高强多孔陶瓷的制备方法,包括以下步骤:实施例中百分数为质量百分数;
(1)粉煤灰70.0%、低品位钾长石(主要成分为SiO2:69.2%,Al2O3:17.3%,K2O:5.5%,Fe2O3:1.8%)12.3%、磷酸盐(NaH2PO4、Mg3(PO4)2,含量分别为6.0%、4.1%)10.1%、Mg(NO3)2 2.7%、硼砂4.9%,按比例配料,用球磨机以300r/min转速,球磨混料20h,得到混合的原料;
(2)将混合的原料1MPa下压制成型,烘干(60℃),制得坯体;混合的原料可先进行造粒,然后压制成型;混合的原料可先过300目筛,造粒,然后压制成型;
(3)将坯体置入高温炉中,以10℃/min升温速率升温至1300℃,保温30min,制得高强多孔陶瓷。
本实施例制备的高强多孔陶瓷,密度0.84g/cm3,开口孔隙率63.25%,抗压强度40.69MPa,平均孔径11.20μm。
实施例7
一种高强多孔陶瓷的制备方法,包括以下步骤:实施例中百分数为质量百分数;
(1)陶瓷废渣34.8%、低品位铁矿(主要成分为TFe:19.3%,FeO:13.0%,SiO2:46.0%,Al2O3:17.8%,MgO:2.70,K2O:1.2%)20.0%、氧化铝22.0%、K2HPO4 3.0%、硝酸盐(NaNO3、Mg(NO3)2,含量均为4.7%)9.4%、碳酸盐(MgCO3、NaHCO3,含量分别为7.0%、3.8%)10.8%,按比例配料,用球磨机以400r/min转速,球磨混料16h,得到混合的原料;
(2)将混合的原料80MPa下压制成型,烘干(90℃),制得坯体;混合的原料可先进行造粒,然后压制成型;混合的原料可先过220目筛,造粒,然后压制成型;
(3)将坯体置入高温炉中,以40℃/min升温速率升温至900℃,保温1300min,制得高强多孔陶瓷。
本实施例制备的高强多孔陶瓷,密度0.78g/cm3,开口孔隙率67.94%,抗压强度34.69MPa,平均孔径11.80μm。
实施例8
一种高强多孔陶瓷的制备方法,包括以下步骤:实施例中百分数为质量百分数;
(1)粉煤灰20.0%、高温炉渣(主要成分为SiO2:19.7%,Al2O3:21.3%,MgO:23.5%,Fe2O3:4.7%,CaO:29.0%)36.0%、陶瓷废渣(主要成分为SiO2:51.2%,Al2O3:29.0%,Fe2O3:2.9%,TiO2:2.8%,K2O:4.3%,Na2O:4.2%,MgO:9.5%)24.0%、低品位铁矿(主要成分为TFe:27.6%,FeO:13.0%,SiO2:42.8%,Al2O3:13.6%,MgO:3.70%,K2O:1.5%)10.5%、氧化铝9.0%、氟化物(Na2SiF6)0.5%,按比例配料,用球磨机以360r/min转速,球磨混料4h,得到混合的原料;
(2)将混合的原料150MPa下压制成型,烘干(100℃),制得坯体;混合的原料可先进行造粒,然后压制成型;混合的原料可先过40目筛,造粒,然后压制成型;
(3)将坯体置入高温炉中,以15℃/min升温速率升温至1080℃,保温100min,制得高强多孔陶瓷。
本实施例制备的高强多孔陶瓷,密度0.68g/cm3,开口孔隙率71.57%,抗压强度25.47MPa,平均孔径13.70μm。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,在未背离本发明的精神实质与原理下所作的任何改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高强多孔陶瓷的制备方法,其特征在于:包括以下步骤:
(1)将原料混合;所述原料包括固体废弃物、低品位矿物以及添加剂;当原料中铝元素不足时,所述原料还包括铝源;
(2)将混合的原料成型制成坯体;
(3)将坯体在800~1300℃下烧成,获得高强多孔陶瓷;
所述添加剂为氧化铝、硝酸盐、碳酸盐、硫酸盐、磷酸盐、氟化物、硼砂中的一种以上。
2.根据权利要求1所述高强多孔陶瓷的制备方法,其特征在于:所述低品位矿物为低品位粘土矿、低品位铝矿、低品位铁矿、低品位钾长石、低品位云母矿中的一种以上;
所述固体废弃物为建筑废弃物、粉煤灰、陶瓷废渣、煤矸石、高温炉渣中的一种以上。
3.根据权利要求1所述高强多孔陶瓷的制备方法,其特征在于:
所述硝酸盐为NaNO3、KNO3、Mg(NO3)2中一种以上;所述碳酸盐为Na2CO3、K2CO3、MgCO3、NaHCO3、KHCO3中一种以上;所述硫酸盐为CaSO4、K2SO4、MgSO4、Na2SO4、Al2(SO4)3中一种以上;所述磷酸盐为Na3PO4、NaH2PO4、Na2HPO4、K3PO4、KH2PO4、K2HPO4、Mg3(PO4)2中一种以上;所述氟化物为KHF2、Na2SiF6、NaF、CaF2、KF、AlF3中一种以上。
4.根据权利要求1所述高强多孔陶瓷的制备方法,其特征在于:所述铝源为氧化铝或铝粉;所述固体废弃物为固体废弃物的粉体。
5.根据权利要求1所述高强多孔陶瓷的制备方法,其特征在于:所述原料中各组分的重量百分比为:
固体废弃物:0~80%;低品位矿物:0~80%;添加剂:0.5~30%;固体废弃物与低品位矿物不同时为0;
当原料中铝元素不足时,所述原料还包括铝源,此时铝源与添加剂的总量为0.5~30%。
6.根据权利要求1所述高强多孔陶瓷的制备方法,其特征在于:步骤(1)中原料混合是指将各原料进行球磨混合;球磨的转速100~800rpm,球磨的时间0.5~36h;
步骤(1)中所述成型的压力为1~600MPa。
7.根据权利要求1所述高强多孔陶瓷的制备方法,其特征在于:步骤(3)中所述烧成的时间为30~1500min。
8.一种由权利要求1~7任一项所述制备方法得到的高强多孔陶瓷。
9.根据权利要求8所述高强多孔陶瓷的应用,其特征在于:所述高强多孔陶瓷应用于建筑、化工、环保领域。
10.根据权利要求8所述高强多孔陶瓷的应用,其特征在于:所述高强多孔陶瓷用于制备吸声材料、过滤材料和/或催化剂载体。
CN201810330999.4A 2018-04-13 2018-04-13 一种高强多孔陶瓷及其低温制备方法 Pending CN108546143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810330999.4A CN108546143A (zh) 2018-04-13 2018-04-13 一种高强多孔陶瓷及其低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810330999.4A CN108546143A (zh) 2018-04-13 2018-04-13 一种高强多孔陶瓷及其低温制备方法

Publications (1)

Publication Number Publication Date
CN108546143A true CN108546143A (zh) 2018-09-18

Family

ID=63515000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810330999.4A Pending CN108546143A (zh) 2018-04-13 2018-04-13 一种高强多孔陶瓷及其低温制备方法

Country Status (1)

Country Link
CN (1) CN108546143A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128020A (zh) * 2019-06-30 2019-08-16 李秋惠 一种微晶陶瓷保温板及其制备方法
CN110235746A (zh) * 2019-04-19 2019-09-17 湖北声荣再生资源利用有限公司 一种环保型植物培养基及其制备方法
CN110436907A (zh) * 2019-08-26 2019-11-12 湖南德景源科技有限公司 一种利用煤矸石制备莫来石的方法
CN110483022A (zh) * 2019-09-17 2019-11-22 东莞理工学院 一种环保高强多孔陶瓷膜支撑体及其制备方法
CN110526734A (zh) * 2019-09-17 2019-12-03 东莞理工学院 一种环保多孔陶瓷吸声材料及其制备方法
CN111875992A (zh) * 2020-06-23 2020-11-03 浙江艺玛材料科技有限公司 低温瓷化层浆料和复合有该浆料的低温瓷化有机板
CN111960853A (zh) * 2020-07-23 2020-11-20 国网浙江省电力有限公司金华供电公司 一种用于变电站的吸声降噪多孔陶瓷
CN112062594A (zh) * 2020-08-19 2020-12-11 华南理工大学 一种具有优异的中低频吸声性能的轻质陶瓷吸声材料及其制备方法
CN112645692A (zh) * 2020-12-28 2021-04-13 信阳师范学院 一种以低品位非金属伴生矿为主要原料制备的穿孔吸音陶瓷及其制备方法
CN112723905A (zh) * 2021-02-02 2021-04-30 迈高科技(广东)有限公司 一种建筑节能保温材料及其制备方法
CN113072391A (zh) * 2021-04-22 2021-07-06 四川双铁科技有限公司 一种全固废基多孔陶瓷吸音材料及其制备方法
CN113213963A (zh) * 2021-06-26 2021-08-06 江西陶瓷工艺美术职业技术学院 一种利用建筑废弃物制备的轻质耐火材料及其制备方法
CN113372130A (zh) * 2021-06-21 2021-09-10 湖南国发控股有限公司 一种飞灰及商砼搅拌站废料生产的发泡陶瓷及制备方法
ES2958332A1 (es) * 2022-07-12 2024-02-07 Unir Univ Internacional De La Rioja S A Material basado en cemento recuperado y su uso para la producción de productos cerámicos para la construcción

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759430A (zh) * 2010-01-19 2010-06-30 天津大学 一种制备多孔莫来石的方法
CN105036720A (zh) * 2015-07-28 2015-11-11 景德镇陶瓷学院 一种利用硼化物作为添加剂合成莫来石晶须的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759430A (zh) * 2010-01-19 2010-06-30 天津大学 一种制备多孔莫来石的方法
CN105036720A (zh) * 2015-07-28 2015-11-11 景德镇陶瓷学院 一种利用硼化物作为添加剂合成莫来石晶须的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
(苏)李特瓦柯夫斯基: "《熔注耐火材料》", 30 November 1963, 中国工业出版社 *
刘宜汉: "《金属陶瓷材料制备与应用》", 31 March 2012, 东北大学出版社 *
张锦化: "莫来石晶须的制备_生长机理及其在陶瓷增韧中的应用", 《中国学术期刊(光盘版)工程科技Ⅰ辑》 *
柏雪: "添加剂对以铝矾土为主要原料的支撑剂的烧结性能的影响", 《中国学术期刊(光盘版)工程科技Ⅰ辑》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235746A (zh) * 2019-04-19 2019-09-17 湖北声荣再生资源利用有限公司 一种环保型植物培养基及其制备方法
CN110128020A (zh) * 2019-06-30 2019-08-16 李秋惠 一种微晶陶瓷保温板及其制备方法
CN110436907A (zh) * 2019-08-26 2019-11-12 湖南德景源科技有限公司 一种利用煤矸石制备莫来石的方法
CN110483022A (zh) * 2019-09-17 2019-11-22 东莞理工学院 一种环保高强多孔陶瓷膜支撑体及其制备方法
CN110526734A (zh) * 2019-09-17 2019-12-03 东莞理工学院 一种环保多孔陶瓷吸声材料及其制备方法
CN111875992A (zh) * 2020-06-23 2020-11-03 浙江艺玛材料科技有限公司 低温瓷化层浆料和复合有该浆料的低温瓷化有机板
CN111960853A (zh) * 2020-07-23 2020-11-20 国网浙江省电力有限公司金华供电公司 一种用于变电站的吸声降噪多孔陶瓷
CN112062594B (zh) * 2020-08-19 2021-09-21 华南理工大学 一种具有优异的中低频吸声性能的轻质陶瓷吸声材料及其制备方法
CN112062594A (zh) * 2020-08-19 2020-12-11 华南理工大学 一种具有优异的中低频吸声性能的轻质陶瓷吸声材料及其制备方法
CN112645692A (zh) * 2020-12-28 2021-04-13 信阳师范学院 一种以低品位非金属伴生矿为主要原料制备的穿孔吸音陶瓷及其制备方法
CN112723905B (zh) * 2021-02-02 2021-09-14 波尔玛(辛集)保温材料有限公司 一种建筑节能保温材料及其制备方法
CN112723905A (zh) * 2021-02-02 2021-04-30 迈高科技(广东)有限公司 一种建筑节能保温材料及其制备方法
CN113072391A (zh) * 2021-04-22 2021-07-06 四川双铁科技有限公司 一种全固废基多孔陶瓷吸音材料及其制备方法
CN113372130A (zh) * 2021-06-21 2021-09-10 湖南国发控股有限公司 一种飞灰及商砼搅拌站废料生产的发泡陶瓷及制备方法
CN113213963A (zh) * 2021-06-26 2021-08-06 江西陶瓷工艺美术职业技术学院 一种利用建筑废弃物制备的轻质耐火材料及其制备方法
ES2958332A1 (es) * 2022-07-12 2024-02-07 Unir Univ Internacional De La Rioja S A Material basado en cemento recuperado y su uso para la producción de productos cerámicos para la construcción

Similar Documents

Publication Publication Date Title
CN108546143A (zh) 一种高强多孔陶瓷及其低温制备方法
CN103964765B (zh) 一种利用抛光废渣制造陶粒透水砖的方法
CN108503371B (zh) 一种利用高炉渣和高铝粉煤灰制备发泡陶瓷材料的方法
CN101955370B (zh) 一种轻质保温陶瓷材料及制备方法
CN110511053B (zh) 一种利用陶瓷压榨泥生产的发泡陶瓷及其制备方法
CN104446364A (zh) 一种电解硫酸锰渣制备陶粒的方法
CN107760275B (zh) 一种用玻璃制备的低熔点高温相变材料及其制备方法
CN109095887A (zh) 一种超轻发泡陶瓷保温材料及其制备方法
CN108164224A (zh) 一种公路工程用环保透水混凝土的制备方法
CN109776067A (zh) 一种利用陶土制备烧结透水材料的方法
CN108503338B (zh) 一种利用粉煤灰制备高强度发泡陶瓷材料的方法
CN110511038A (zh) 一种高抗压强度发泡陶瓷的制备方法
Li et al. Preparation of lightweight ceramsite from solid waste lithium slag and fly ash
CN101723595A (zh) 一种陶瓷化泡沫玻璃制品及其制造工艺
Yang et al. Use of bauxite tailing for the production of fine lightweight aggregates
CN104909800A (zh) 一种添加瓷砖废料并经辊道窑烧成发泡赤泥瓷砖的方法
CN108911726A (zh) 一种煤矸石-脱硫石膏-碳酸钙体系透水陶瓷砖及其制备方法
CN111377751B (zh) 一种用于生产发泡陶瓷的发泡剂
Wang et al. Preparation of lightweight and high-strength ceramsite from highly doped coal fly ash
CN111548189A (zh) 一种用陶瓷抛磨废料和高炉矿渣制备发泡陶瓷材料的方法
CN108164250A (zh) 一种自保温烧结多孔砖及烧结工艺
AU2019389856B2 (en) A novel method of producing synthetic lightweight ceramic sand and uses thereof
CN105036796B (zh) 利用煤矸石和石灰氮水解废料制备的承重加气混凝土及其制备方法
CN116947352A (zh) 一种煤矸石中温热活化的方法
CN110590329A (zh) 一种发泡陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180918