CN108535375B - 一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法 - Google Patents

一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法 Download PDF

Info

Publication number
CN108535375B
CN108535375B CN201810251416.9A CN201810251416A CN108535375B CN 108535375 B CN108535375 B CN 108535375B CN 201810251416 A CN201810251416 A CN 201810251416A CN 108535375 B CN108535375 B CN 108535375B
Authority
CN
China
Prior art keywords
maca
metabolites
spectrum
analysis
mass spectrometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810251416.9A
Other languages
English (en)
Other versions
CN108535375A (zh
Inventor
杨长军
耿越
王桐
刘梅
徐宏楠
梁晓庆
仲米存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YANTAI NEW ERA HEALTH INDUSTRY CO LTD
Original Assignee
YANTAI NEW ERA HEALTH INDUSTRY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YANTAI NEW ERA HEALTH INDUSTRY CO LTD filed Critical YANTAI NEW ERA HEALTH INDUSTRY CO LTD
Priority to CN201810251416.9A priority Critical patent/CN108535375B/zh
Publication of CN108535375A publication Critical patent/CN108535375A/zh
Application granted granted Critical
Publication of CN108535375B publication Critical patent/CN108535375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation

Abstract

本发明涉及一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法。本发明通过甲醇提取玛咖代谢物,前处理后进行UHPLC‑Q Exactive Orbitrap LC‑MS分析,使用Compound Discover处理数据,再将数据导入SIMCA14.0软件,使用主成分分析(PCA)、偏最小二乘判别分析(PLS‑DA)和正交‑偏最小二乘判别分析(OPLS‑DA)分析数据,寻找差异性代谢产物;使用置换排列检验方法检验PLS‑DA模型建立有效性,结果显示模型建立有效。本发明的分析方法操作简单,寻找不同表型玛咖代谢产物,从而用于不同表型玛咖的区分鉴别。

Description

一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法
技术领域
本发明属于检测分析技术领域,尤其涉及一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法。
背景技术
玛咖(Lepidium meyenii Walp.),十字花科(Cruciferae)独行菜属(Lepidium)植物,原产于海拔3500~4500米的南美安第斯山区,已经有2000多年的栽培历史,具有食用和药用价值。自20世纪90年代以来,美国、日本、德国等许多国家尝试引进和培育玛咖。2002年,玛咖被引入中国。在过去的十多年中,这种植物已经在中国的许多地区,如云南、新疆、吉林和四川等,成功引进和种植。
玛咖的营养成分合理,种类繁多,主要包括:蛋白质、多种氨基酸、脂肪酸、纤维素、糖类、钙、锌、铁等矿物质及多种维生素等。玛咖含有多种生物活性成分,已经通过高效液相色谱—紫外分光光度计、LC-MS、GC-MS、核磁共振波谱法等方法来分析和鉴定,包括玛咖烯、玛咖酰胺、生物碱、甾醇和芥子油苷及其分解产物异硫氰酸苄酯。玛咖含有的生物活性物质使之具有特殊的药理功效,例如增强性功能、提高生育能力、抗疲劳、抗癌、抗氧化、促进生长、缓解良性前列腺增生、缓解女性更年期症状的发生等。同时,玛咖的下胚轴具有红色、黑色和黄色等不同表型,不同表型的玛咖表现出生物活性多样性。
代谢组学及其相关应用:代谢组学是继基因组学和蛋白质组学之后新近发展起来的一门学科,是对细胞、组织、以及其他生物在一特定生理时期内所有低分子量代谢产物同时进行研究的一门新学科。代谢组学发展迅速并且涉及多个领域,比如疾病诊断、毒理学、营养科学、环境学、医药研制开发和植物学等与人类健康护理密切相关的领域。代谢组学研究方法有两种:一种是代谢物指纹分析(metabolomic fingerprinting),即通过不同方法得到代谢产物的核磁峰或质谱峰,了解代谢产物的化学结构,建立识别不同化合物特征的分析方法;另一种方法是代谢轮廓分析(metabolomicprofiling),研究人员假定一条特定的代谢途径,并对此进行更深入的研究。代谢组学分析包括样品收集与前处理、样品的分析检测、原始数据的处理、化学统计学分析和标志性代谢产物分析。其中样品分析检测技术包括核磁共振技术、质谱技术、气质联用技术和液质联用技术。化学统计学分析主要包括聚类分析、主成分分析、偏最小二乘分析和正交-偏最小二乘分析。
Zhang L等人为了评价玛咖样品的质量,采用高效液相色谱(HPLC)和液相色谱串联质谱(LC-MS)分析了15批不同地理来源的玛咖下胚轴。在玛咖下胚轴中鉴别出三种芳香族芥子油苷:glucosinalbin(GSB)、glucotropaeolin(GTL)和glucol imnanthin(GLH)。HPLC图谱显示15批玛咖都含有这三种芥子油苷,但含量有差异。此外,根据玛咖的地理来源和芥子油苷含量,使用HCA(等级聚类分析)来评估玛咖质量差异性,结果表明,三种芳香族芥子油苷(GSB,GTL和GLH)含量可以作为评价玛咖材料质量的化学分类学标记物。
Zhao J等人为了深入了解玛咖的栽培历史(之前是否种植过玛咖)和生长地点对玛咖(Lepidium meyenii Walpers)下胚轴组成变化的影响,应用NMR分析结合化学计量学分析研究不同玛咖的代谢物变异性。为了检测代谢物的差异,对在两个不同地点(距离较远)栽培的玛咖、相同地区相近的两块区域但栽培历史不同的栽培玛咖和相同地点栽培的具有不同颜色(黄色,粉红色,紫色和铅色)的玛咖下胚轴进行了分析。1H NMR谱获得的数据用于主成分分析(PCA),进而分析不同栽培条件下种植的玛咖的分离度。通过NMR分析共鉴定了16种代谢物,并且使用单变量统计分析评估与玛咖胚轴的颜色类型和生长条件相关的代谢物水平的变化。PCA结果显示不同地点栽培的玛咖在得分图上可以较好分开,PCA载荷图显示两个地点玛咖的代谢物不同。单变量统计分析的结果表明,两个种植地点的玛咖中的16种代谢物含量有显著性差异。栽培历史也会对玛咖代谢物产生差异,但差异小于种植地点。由颜色类型引起的代谢物差异小于由栽培因素引起的代谢物差异。
发明内容
本发明针对上述现有技术存在的不足,提供一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法。
本发明解决上述技术问题的技术方案如下:一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法,步骤如下:
(1)玛咖提取液的制备
将玛咖与甲醇混合,经超声提取后,离心,所得上清液过孔径0.22μm滤膜,即得玛咖提取液,置于-80℃备用;
(2)玛咖提取液预处理
将步骤(1)的玛咖提取液用甲醇稀释15-20倍,经过稀释后的玛咖提取液过孔径0.22μm滤膜,得滤液;
(3)分析检测
将步骤(2)的滤液采用UHPLC-Q Exactive Orbitrap LC-MS上样分析检测,检测参数为:
色谱柱为ACQUITY UPLC BEH C18柱2.1×50mm,1.7μm;
正谱条件:洗脱液A相为含0.1%(v:v)甲酸的乙腈溶液,B相为0.1%(v:v)甲酸水溶液;梯度洗脱流程为:0-2min 1%A,2-3.25min 1%-5t%A,3.25-4.25min 5%A,4.25-7.75min 5%-55%A,7.75-9.75min 55%-90%A,9.75-14.75min 90%A,14.75-15min90%-1%A,15-18min 1%A;
负谱条件:洗脱液A相为含0.1%(v:v)甲酸的乙腈溶液,B相为10mM醋酸铵;梯度洗脱流程为:0-2min 1%A,2-3.25min 1%-5%A,3.25-4.25min5%A,4.25-7.75min 5%-55%A,7.75-9.75min 55%-90%A,9.75-14.75min90%A,14.75-15min 90%-1%A,15-18min 1%A;
流速:0.3mL/min;进样体积:2μL;1min之前和16min之后不进质谱;
质谱条件:一级质谱分辨率70000(FWHM),鞘气40Arb,辅助气10Arb,反吹气0Arb,正谱喷雾电压3.5KV,负谱喷雾电压3.1kV,毛细管温度320℃,辅助气温度350℃,扫描范围75-1125,扫描模式Full MS;
(4)Compound Discover数据处理
使用Compound Discover软件对原始数据进行提取、分析、整理,通过峰对齐、去卷积、降噪、归一化处理,得到原始数据矩阵;在Compound Discover数据处理过程中设置参数保留时间偏差为0.2min,质量偏差为5ppm,信噪比最大窗口为3,信号强度最大偏差30%,基础离子[M+H]+1、[M-H]-1,未知元素组成设定C90、H190、K、N5、Na、O15、P3、S5;
(5)SIMCA软件数据处理
将步骤(4)的原始数据矩阵导入SIMCA14.0进行分析,使用主成分分析PCA、偏最小二乘判别PLS-DA和正交-偏最小二乘判别OPLS-DA分析数据,运用置换排列实验检验;在正交-偏最小二乘判别OPLS-DA中导出的第一主成分的变量权重重要性排序值VIP,结合原始数据矩阵中的物质在两种玛咖中峰面积比值Ratio和P值,VIP值大于1、Ratio值大于2或小于0.5且P值小于0.01的代谢物即认定为玛咖标志性代谢产物;
(6)玛咖标志性代谢产物的二级质谱信息
将步骤(5)的玛咖标志性代谢产物进行二级质谱分析,得到二级质谱信息;
质谱条件:二级质谱分辨率17500(FWHM),扫描模式Ms/Ms,HCD高能碰撞池碰撞能量NCE:30、50、100、150;
二级质谱保留时间与一级质谱保留时间的允许偏差为0.2min,保留时间对应的物质即为不同表型玛咖的标志性代谢产物。
其中,步骤(1)中玛咖与甲醇的用量比为1g:20mL混合,超声提取时间为20min。
本发明的特点和有益效果在于:
本发明的分析方法通过甲醇提取玛咖代谢物,前处理后进行UHPLC-Q Exact iveOrbitrap LC-MS分析,UHPLC-Q Exactive Orbitrap LC-MS数据使用Compound Discover处理,再将数据导入SIMCA14.0软件,使用主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)和正交-偏最小二乘判别分析(OPLS-DA)分析数据,寻找差异性代谢产物;使用置换排列检验方法检验PLS-DA模型建立有效性,结果显示模型建立有效。
本发明的分析方法操作简单,寻找不同表型玛咖代谢产物,从而用于不同表型玛咖的区分鉴别。
本发明中,UHPLC-Q Exactive Orbitrap LC-MS是Thermo Fisher公司的超高效液相与质谱联用仪器。
UHPLC-MS:超高效液相色谱与质谱两用技术。
Compound Discover是Thermo Fisher公司开发的与LC-MS配套的数据处理软件。
SIMCA软件为多元统计分析软件。
PCA:主成分分析(Principal components analysis),是一种无监督的模式统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
PLS-DA:偏最小二乘判别(Partial least squares projection to latentstructure-discriminant analysis),是一种有监督的模式统计方法,利用偏最小二乘法对数据结构进行投影分析。
OPLS-DA:正交-偏最小二乘判别分析(orthogonal-PLS-DA),是将正交信号校正方法(orthogonal signal correction,OSC)与PLS-DA进行结合、从而对PLS-DA进行修正的分析方法。
附图说明
图1为Compound Discover数据处理工作流程图;
图2是负谱的PCA得分图;
图3是负谱的PLS-DA得分图;
图4是负谱的OPLS-DA得分图;
图5是负谱的排列实验模型图;
图6是正谱的PCA得分图;
图7是正谱的PLS-DA得分图;
图8是正谱的OPLS-DA得分图;
图9是正谱的排列实验模型图;
图10是449号物质的二级质谱图;
图11是655号物质的二级质谱图。
具体实施方式
以下结合实例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
本发明实施例中使用的仪器、试剂和玛咖样品如下:
1、仪器与软件:
Figure BDA0001607864800000071
2、试剂:
Figure BDA0001607864800000072
3、玛咖样品由烟台新时代健康产业有限公司提供,以下为20种玛咖样品表型和产地信息:
Figure BDA0001607864800000073
Figure BDA0001607864800000081
实施例1
一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法,步骤如下:
(1)玛咖提取液的制备
称取20种不同表型玛咖的粉末样品各1g,分别加入20mL甲醇混合,分别经超声提取20min后,3900rpm转速下离心20min,所得上清液过孔径0.22μm滤膜,即得玛咖提取液;
(2)玛咖提取液预处理
将步骤(1)的玛咖提取液用甲醇稀释20倍,经过稀释后的玛咖提取液过孔径0.22μm滤膜,得滤液;
(3)分析检测
将步骤(2)的滤液各1mL注入进样瓶,采用UHPLC-Q Exactive Orbitrap LC-MS上样分析检测,检测参数为:
色谱柱为ACQUITY UPLC BEH C18柱2.1×50mm,1.7μm;
正谱条件:洗脱液A相为含0.1%(v:v)甲酸的乙腈溶液,B相为0.1%(v:v)甲酸水溶液;梯度洗脱流程为:0-2min 1%A,2-3.25min 1%-5t%A,3.25-4.25min 5%A,4.25-7.75min 5%-55%A,7.75-9.75min 55%-90%A,9.75-14.75min 90%A,14.75-15min90%-1%A,15-18min 1%A;
负谱条件:洗脱液A相为含0.1%(v:v)甲酸的乙腈溶液,B相为10mM醋酸铵;梯度洗脱流程为:0-2min 1%A,2-3.25min 1%-5%A,3.25-4.25min5%A,4.25-7.75min 5%-55%A,7.75-9.75min 55%-90%A,9.75-14.75min90%A,14.75-15min 90%-1%A,15-18min 1%A;
流速:0.3mL/min;进样体积:2μL;1min之前和16min之后不进质谱;
质谱条件:一级质谱分辨率70000(FWHM),鞘气40Arb,辅助气10Arb,反吹气0Arb,正谱喷雾电压3.5KV,负谱喷雾电压3.1kV,毛细管温度320℃,辅助气温度350℃,扫描范围75-1125,扫描模式Full MS;
(4)Compound Discover数据处理
使用Compound Discover软件对原始数据进行提取、分析、整理,通过峰对齐、去卷积、降噪、归一化处理,得到原始数据矩阵;在Compound Discover数据处理过程中设置参数保留时间偏差为0.2min,质量偏差为5ppm,信噪比最大窗口为3,信号强度最大偏差30%,基础离子[M+H]+1、[M-H]-1,未知元素组成设定C90、H190、K、N5、Na、O15、P3、S5;
(5)SIMCA软件数据处理
将步骤(4)的原始数据矩阵在第一列前插入“序号”一列,对该列填充序列,导入SIMCA14.0软件,经过行列转换,将“序号”一行及第一列设置为Primary ID,Ratio值、P值、保留时间和分子式行设置为Secondary ID,保存;使用主成分分析PCA、偏最小二乘判别PLS-DA和正交-偏最小二乘判别OPLS-DA分析数据,找出可能的不同表型玛咖标志性代谢产物,并采用置换排列检验方法来检验模型是否有效;
(6)玛咖标志性代谢产物的二级质谱信息
将步骤(5)的玛咖标志性代谢产物进行二级质谱分析,得到二级质谱信息;
质谱条件:二级质谱分辨率17500(FWHM),扫描模式Ms/Ms,HCD高能碰撞池碰撞能量NCE:30、50、100、150;
二级质谱保留时间与一级质谱保留时间的允许偏差为0.2min,保留时间对应的物质即为不同表型玛咖的标志性代谢产物。
采用Compound Discover软件对原始数据进行处理,图1是Compound Discover数据处理工作流程图,导入文件后进行峰提取、峰对齐、未知物的检测、未知物组成预测等步骤,但由于在Compound Discover处理之前没有进行二级质谱分析,所以未知物组成预测并不准确。
Compound Discover处理后得到的原始数据矩阵进行序号填充处理后导入SIMCA14.0,然后进行行列转换、设置Primary ID和Secondary ID后保存为excel格式,然后进行PCA、PLS-DA和OPLS-DA处理,并对PLS-DA进行排列置换检验,结果如图2-图9所示,其中图2-图5是负谱数据,图6-图9是正谱数据。
图2和图6是PCA得分图,在PCA得分图上我们可以看出黄色、黑色和红色三种表型玛咖的分组趋势不明显,主成分分析属于无监督分析,分析结果可以呈现组内差异和组间差异,由于本实验选择的同种表型玛咖的产地不同,而产地不同也会引起玛咖中的物质发生改变,使得同种表型玛咖产生组内差异,影响三种表型玛咖分组结果。
图3和图7是PLS-DA得分图,图4和图8是OPLS-DA得分图,PLS-DA和OPLS-DA属于有监督分析方法,对样品进行指定分组,消除组内差异,有利于发现组间差异,从而寻找标志性代谢产物。OPLS-DA与PLS-DA相比,可以进一步强化组间差异。图3和图7的PLS-DA得分图可以看出三种表型玛咖基本可以分开,而图4和图8的OPLS-DA得分图则将三种表型玛咖完全分开。负谱数据的OPLS-DA得分图可以看出,紫色玛咖和黑色玛咖在第一主成分上可以分开,紫色玛咖位于第一主成分的负轴,黑色玛咖位于第一主成分正轴;黑色、紫色玛咖与黄色玛咖在第二主成分可以完全分开,黑色、紫色玛咖位于第二主成分负轴,黄色玛咖位于第二主成分正轴。正谱数据的OPLS-DA得分图可以看出,黄色玛咖和紫色玛咖在第一主成分上可以分开,黄色玛咖位于第一主成分的负轴,紫色玛咖位于第一主成分正轴;紫色、黄色玛咖与黑色玛咖在第二主成分可以完全分开,紫色、黄色玛咖位于第二主成分负轴,黑色玛咖位于第二主成分正轴。
图5和图9是PLS-DA置换检验结果,当Q2在Y轴的截距小于0、R2在Y轴的截距大于0、且Q2和R2的最终值接近1,说明模型建立比较好。由图5和图9可看出正负谱原始模型建立有效。
在正交-偏最小二乘判别(OPLS-DA)中导出的第一主成分的变量权重重要性排序值(VIP),结合原始数据矩阵中的该物质在两种玛咖中峰面积比值(Ratio)、P值和正负谱数据量大小,在正谱中选出VIP大于1、Ratio值大于20或小于0.05并且P值小于0.01的代谢物,在负谱中选出VIP大于2、Ratio值大于2或小于0.5并且P值小于0.01的代谢物。将这些代谢产物进行二级质谱分析,在二级质谱中保留时间与一级质谱保留时间对应的物质确定为不同表型玛咖标志性代谢产物,保留时间允许偏差为0.2min,其二级质谱信息如以下表1-3所示。
表1、表2和表3分别为黄色、紫色和黑色玛咖的标志性代谢物质二级质谱信息。经过对比文献中玛咖代谢物质的质谱数据,确定黑色玛咖中序号为449的标志性代谢物为N-苄基-15Z-烯二十四酰胺,二级质谱图如图10所示。黄色和紫色玛咖中序号为655的标志性代谢物为3-甲氧基苯基乙酸,二级质谱图如图11所示。由于目前对于玛咖中代谢物质定性的数据库和文献较少,449和655以外的物质没有找到与之相对应的二级质谱信息,所以没有定性结果。
表1 黄色玛咖标志性代谢产物二级质谱信息
Figure BDA0001607864800000111
Figure BDA0001607864800000121
表2 紫色玛咖标志性代谢产物二级质谱信息
Figure BDA0001607864800000122
Figure BDA0001607864800000131
表3 黑色玛咖标志性代谢产物二级质谱信息
Figure BDA0001607864800000132
Figure BDA0001607864800000141
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法,其特征在于,步骤如下:
(1)玛咖提取液的制备
将玛咖与甲醇混合,经超声提取后,离心,所得上清液过孔径0.22μm滤膜,即得玛咖提取液,置于-80℃备用;
(2)玛咖提取液预处理
将步骤(1)的玛咖提取液用甲醇稀释15-20倍,经过稀释后的玛咖提取液过孔径0.22μm滤膜,得滤液;
(3)分析检测
将步骤(2)的滤液采用UHPLC-Q Exactive Orbitrap LC-MS上样分析检测,检测参数为:
色谱柱为ACQUITYUPLC BEH C18柱2.1×50mm,1.7μm;
正谱条件:洗脱液A相为含0.1%(v:v)甲酸的乙腈溶液,B相为0.1%(v:v)甲酸水溶液;梯度洗脱流程为:0-2min 1%A,2-3.25min 1%-5%A,3.25-4.25min 5%A,4.25-7.75min5%-55%A,7.75-9.75min 55%-90%A,9.75-14.75min 90%A,14.75-15min 90%-1%A,15-18min 1%A;
负谱条件:洗脱液A相为含0.1%(v:v)甲酸的乙腈溶液,B相为10mM醋酸铵;梯度洗脱流程为:0-2min 1%A,2-3.25min 1%-5%A,3.25-4.25min 5%A,4.25-7.75min 5%-55%A,7.75-9.75min 55%-90%A,9.75-14.75min 90%A,14.75-15min 90%-1%A,15-18min1%A;
流速:0.3mL/min;进样体积:2μL;1min之前和16min之后不进质谱;
质谱条件:一级质谱分辨率70000(FWHM),鞘气40Arb,辅助气10Arb,反吹气0Arb,正谱喷雾电压3.5KV,负谱喷雾电压3.1kV,毛细管温度320℃,辅助气温度350℃,扫描范围75-1125,扫描模式FullMS;
(4)Compound Discover数据处理
使用Compound Discover软件对原始数据进行提取、分析、整理,通过峰对齐、去卷积、降噪、归一化处理,得到原始数据矩阵;在Compound Discover数据处理过程中设置参数保留时间偏差为0.2min,质量偏差为5ppm,信噪比最大窗口为3,信号强度最大偏差30%,基础离子[M+H]+1、[M-H]-1,未知元素组成设定C90、H190、K、N5、Na、O15、P3、S5;
(5)SIMCA软件数据处理
将步骤(4)的原始数据矩阵导入SIMCA14.0进行分析,使用主成分分析PCA、偏最小二乘判别PLS-DA和正交-偏最小二乘判别OPLS-DA分析数据,运用置换排列实验检验;在正交-偏最小二乘判别OPLS-DA中导出的第一主成分的变量权重重要性排序值VIP,结合原始数据矩阵中的物质在两种玛咖中峰面积比值Ratio和P值,在正谱中选出VIP大于1、Ratio值大于20或小于0.05并且P值小于0.01的代谢物,在负谱中选出VIP大于2、Ratio值大于2或小于0.5并且P值小于0.01的代谢物,即认定为玛咖标志性代谢产物;
(6)玛咖标志性代谢产物的二级质谱信息
将步骤(5)的玛咖标志性代谢产物进行二级质谱分析,得到二级质谱信息;
质谱条件:二级质谱分辨率17500(FWHM),扫描模式Ms/Ms,HCD高能碰撞池碰撞能量NCE:30、50、100、150;
二级质谱保留时间与一级质谱保留时间的允许偏差为0.2min,保留时间对应的物质即为不同表型玛咖的标志性代谢产物。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中玛咖与甲醇的用量比为1g:20mL,超声提取时间为20min。
CN201810251416.9A 2018-03-26 2018-03-26 一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法 Active CN108535375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810251416.9A CN108535375B (zh) 2018-03-26 2018-03-26 一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810251416.9A CN108535375B (zh) 2018-03-26 2018-03-26 一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法

Publications (2)

Publication Number Publication Date
CN108535375A CN108535375A (zh) 2018-09-14
CN108535375B true CN108535375B (zh) 2020-08-04

Family

ID=63484258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810251416.9A Active CN108535375B (zh) 2018-03-26 2018-03-26 一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法

Country Status (1)

Country Link
CN (1) CN108535375B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398545B (zh) * 2019-05-29 2022-03-01 烟台新时代健康产业有限公司 一种基于代谢组学分析鉴别松花粉原料的方法
CN110596259B (zh) * 2019-06-20 2022-03-01 烟台新时代健康产业有限公司 一种基于代谢组学分析鉴别松花粉储藏时间的方法
CN110596258B (zh) * 2019-06-20 2022-03-01 烟台新时代健康产业有限公司 一种基于代谢组学分析鉴别松花粉灭菌方式的方法
CN110320303A (zh) * 2019-08-09 2019-10-11 东北大学 一种基于uplc-ms的土壤渗滤系统代谢组学分析方法
CN113125588B (zh) * 2021-03-17 2022-01-14 广东省农业科学院农业质量标准与监测技术研究所 一种代谢组学分析技术判别鸭屎香单丛茶时空分类的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214853A (ja) * 2004-01-30 2005-08-11 Towa Corp ベンジル類グルコシノレートの定量法
KR20090117284A (ko) * 2008-05-09 2009-11-12 (주)풀무원홀딩스 재순환 분취용 액체 크로마토그래피를 이용한 마카마이드의제조방법
CN106526033A (zh) * 2016-12-30 2017-03-22 大连大学 一种同时测定玛咖中11种玛咖酰胺含量的方法
CN106974955A (zh) * 2017-04-12 2017-07-25 云南省药物研究所 一种改善性功能障碍的玛咖提取物及其制备方法和应用
CN107367565A (zh) * 2017-07-06 2017-11-21 新时代健康产业(集团)有限公司 利用气味指纹图谱快速鉴定玛咖品质的方法
CN107748211A (zh) * 2017-09-14 2018-03-02 大连大学 一种使用深共融溶剂提取测定玛咖中5种玛咖酰胺的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214853A (ja) * 2004-01-30 2005-08-11 Towa Corp ベンジル類グルコシノレートの定量法
KR20090117284A (ko) * 2008-05-09 2009-11-12 (주)풀무원홀딩스 재순환 분취용 액체 크로마토그래피를 이용한 마카마이드의제조방법
CN106526033A (zh) * 2016-12-30 2017-03-22 大连大学 一种同时测定玛咖中11种玛咖酰胺含量的方法
CN106974955A (zh) * 2017-04-12 2017-07-25 云南省药物研究所 一种改善性功能障碍的玛咖提取物及其制备方法和应用
CN107367565A (zh) * 2017-07-06 2017-11-21 新时代健康产业(集团)有限公司 利用气味指纹图谱快速鉴定玛咖品质的方法
CN107748211A (zh) * 2017-09-14 2018-03-02 大连大学 一种使用深共融溶剂提取测定玛咖中5种玛咖酰胺的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Quality Evaluation of Lepidium meyenii (Maca) Based on HPLC and LC-MS Analysis of its Glucosinolates from Roots;Zhang, Liming等;《FOOD ANALYTICAL METHODS》;20170731;第10卷(第7期);2143-2151 *
玛咖组分提取工艺研究进展;徐宏楠等;《口腔护理用品工业》;20170831;第27卷(第4期);32-34 *
药用植物玛咖研究新进展;周严严等;《中国中药杂志》;20151231;第40卷(第23期);4521-4526 *

Also Published As

Publication number Publication date
CN108535375A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN108535375B (zh) 一种基于液质联用代谢组学分析玛咖标志性代谢产物的方法
Li et al. Strategy for comparative untargeted metabolomics reveals honey markers of different floral and geographic origins using ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry
JP4768189B2 (ja) 非標的化複雑試料分析の方法
Last et al. Towards the plant metabolome and beyond
CN105574474A (zh) 一种基于质谱信息的生物特征图像识别方法
WO2022262132A1 (zh) 一种样品未知成分的液质联用非靶向分析方法
Lim et al. The integration of multi-platform MS-based metabolomics and multivariate analysis for the geographical origin discrimination of Oryza sativa L.
CN104297355A (zh) 一种基于液相色谱/质谱联用的拟靶标代谢组学分析方法
US8168945B2 (en) Method for generation and use of isotopic patterns in mass spectral data of simple organisms
CN107941939B (zh) 一种利用代谢组学技术区分有机大米和非有机大米的方法
Tarr et al. A metabolomics based approach for understanding the influence of terroir in Vitis Vinifera L.
Wang et al. Comprehensive metabolic profile analysis of the root bark of different species of tree peonies (Paeonia Sect. Moutan)
Creydt et al. Food authentication: Truffle species classification by non-targeted lipidomics analyses using mass spectrometry assisted by ion mobility separation
CN114324678B (zh) 异鼠李素-3-o-新橙皮苷作为草果蜜特征性标志物的应用
CN110208392B (zh) 基于uplc-qtof-ms对富硒烟叶的代谢组学研究的方法
CN107192770B (zh) 一种鉴别荆条蜜与糖浆掺假荆条蜜的分析方法
CN111337614A (zh) 对不同生长阶段大蒜鳞茎成分的代谢组学分析方法
CN111157664A (zh) 生物代谢组学数据处理方法、分析方法及装置和应用
CN111487353B (zh) 高含量泽兰黄酮-4’,7-双葡萄糖苷作为玫瑰蜂花粉特征性标志物的应用
CN111429971B (zh) 基于机器学习和代谢组学的岭南湿热证模式动物识别方法
CN110398545B (zh) 一种基于代谢组学分析鉴别松花粉原料的方法
CN110261512B (zh) 基于代谢组学的维药昆仑雪菊质量评价方法
CN106706820A (zh) 一种通用的大规模代谢组学数据的校正方法
CN113552258B (zh) 一种基于代谢组学技术挖掘工业大麻激素调控应答基因的方法
Fu et al. Quantification of acid metabolites in complex plant samples by using second-order calibration coupled with GC-mass spectrometry detection to resolve the influence of seriously overlapped chromatographic peaks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant