CN108517499A - 一种润滑/导电双功能NbSe2薄膜的低温制备方法 - Google Patents

一种润滑/导电双功能NbSe2薄膜的低温制备方法 Download PDF

Info

Publication number
CN108517499A
CN108517499A CN201810261644.4A CN201810261644A CN108517499A CN 108517499 A CN108517499 A CN 108517499A CN 201810261644 A CN201810261644 A CN 201810261644A CN 108517499 A CN108517499 A CN 108517499A
Authority
CN
China
Prior art keywords
film
nbse
lubrication
difunctional
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810261644.4A
Other languages
English (en)
Other versions
CN108517499B (zh
Inventor
郝俊英
刘金玉
徐书生
刘维民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201810261644.4A priority Critical patent/CN108517499B/zh
Publication of CN108517499A publication Critical patent/CN108517499A/zh
Application granted granted Critical
Publication of CN108517499B publication Critical patent/CN108517499B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种润滑/导电双功能NbSe2薄膜的低温制备方法。该方法采用氩气(纯度为99.99%)为溅射气体,NbSe2(纯度为99.9%)为溅射靶材,射频电源为溅射源,制备润滑/导电双功能NbSe2薄膜。此方法实现了薄膜的低温快速沉积。该固体薄膜结构均匀致密,且膜‑基结合强度较好,具备良好的择优取向,在大气环境下(30%RH、20℃)具有优异的摩擦学性能(摩擦系数约为0.033)和良好的导电性能(静态接触电阻约为1.76×10‑3Ω·cm),在动态接触滑动模式下依然呈现出优异的润滑/导电双功能。该NbSe2薄膜在电接触滑动部件表面处理领域具有广泛的应用前景。

Description

一种润滑/导电双功能NbSe2薄膜的低温制备方法
技术领域
本发明属于薄膜材料制备技术领域,涉及一种润滑/导电双功能NbSe2薄膜的低温制备方法。
背景技术
长期以来,电接触滑动部件以银基和铜基合金材料为主,其在电导通的状态下,能够保证滑动部件的平稳运行。然而,银基和铜基合金材料的摩擦系数偏高且磨损率较多,占据了部件的大部分动力损耗,影响电流传输和转换效率。根据以往报道,在一定工艺下制备NbSe2材料可以在干燥大气和真空环境中发挥良好的润滑作用;且在超导领域的研究中,其室温导电性能要明显优于同系材料(如WS2和MoS2等)。
目前,常见的薄膜制备技术主要包括物理气相沉积、化学气相沉积和化学溶液镀膜法等。其中,对于NbSe2薄膜而言,其主要制备方法为脉冲激光沉积法(属于物理气相沉积)和常压化学气相沉积法(属于化学气相沉积)。上述两种方法在研究中较为常用,却也存在许多问题。首先,脉冲激光沉积法需要高效脉冲激光器以及复杂光路系统,使得其设备成本显著提高。而且,受脉冲激光器能量的限制,致使部分材料沉积速率偏低。另外,对于常压化学气相沉积法而言,NbCl5为常用原材料,此材料为毒性物质,制备过程中带有很大危险性,且不可避免地带来一定的环境污染。而且,由于制备方法自身限制,制备温度要求高于300℃,致使制备成本大大增加。可见,此方法无法达到工业应用需求。因此,发展一种简单快速制备润滑/导电双功能NbSe2薄膜的新方法成为研究者们追求的目标。
发明内容
本发明的目的是提供一种润滑/导电双功能NbSe2薄膜的低温制备方法。
本发明选用单一NbSe2靶材源,在室温下采用具有较高离化效率的射频磁控溅射技术制备润滑/导电双功能NbSe2薄膜。此方法简单易行,所得薄膜质地均匀致密,且膜-基结合强度较好,呈现明显的择优取向,尤其是沉积温度几乎接近室温,而且在大气环境下具有优异的润滑/导电双重功能,并具有良好的减摩性、优异的耐磨性能与良好的导电性。
一种润滑/导电双功能NbSe2薄膜的低温制备方法,其特征在于采用射频磁控溅射技术在室温即基底无需额外加热的条件下制备润滑/导电双功能NbSe2薄膜,具体操作步骤如下:
步骤一、靶材的安装:
将NbSe2和Ti靶材装在溅射镀膜室的对应靶位上;
步骤二、基底的清洗及安装:
将基底用无水乙醇和丙酮分别超声清洗15 min,烘干后装入溅射沉积腔室内的旋转工件盘上;
步骤三、等离子体清洗:
开启真空系统,抽真空至7×10-4 Pa~5×10-4 Pa,通入高纯氩气,并在负偏压为-500 V~-1000 V、占空比为75%~85%、压强为1.0 Pa~ 2.5 Pa条件下进行等离子体溅射清洗基底表面,溅射时间为15 mm~ 30 mm;
步骤四、沉积Ti过渡层:
通入高纯氩气作为溅射气体,采用直流电源,在压强为0.5 Pa~ 1.5 Pa、脉冲偏压为-10 V~ -100 V、占空比为75%~85%、靶电流为0.1 A~ 0.5 A的条件下,沉积Ti过渡层1 min~8min;
步骤五、NbSe2薄膜沉积:
初始温度为20℃~30℃,关闭直流电源,同时开启射频电源,在射频功率密度为0.027W/mm2~0.070 W/mm2,采用氩气为溅射气体,在工作压强为0.3 Pa~1.5 Pa、基底脉冲偏压为-100 V~-200 V、占空比为50%~90%的条件下,进行NbSe2薄膜沉积;沉积时间为0.5 h~3.0 h,沉积结束温度为35℃~40℃,薄膜自然冷却至室温。
所述过渡层的厚度为10 nm~70 nm;所述NbSe2薄膜厚度为0.1 μm~3.0 μm。
所述NbSe2和Ti靶材的纯度均为99.9%;所述高纯氩气的纯度为99.99%。
所述基底为单晶硅 (100)、钠钙玻璃或钢 (9Cr18) 。
整个溅射镀膜过程中,旋转工件盘的转速为1.0 r/min~ 2.0 r/min,基底与靶材之间的间距保持在80 mm~140 mm。
本发明具有以下优点:
1)该方法采用射频磁控溅射技术制备NbSe2薄膜,工艺简单,镀膜过程易于调控,且相比于化学气相沉积所必需的高温条件,此制备过程在室温条件下进行,大大降低了制备成本;
2)该方法制备的NbSe2薄膜结构致密均匀,且具有显著的 (002) 择优取向;
3)该方法制备的NbSe2薄膜在大气环境(30%RH、20℃)下具有优异的减摩抗磨性能,摩擦系数约为0.038,磨损率约为7.30×10-7 mm3/(N·m);
4)该方法制备的NbSe2薄膜具有良好的导电性,静态接触条件下电阻率约为1.76×10-3 Ω·cm,动态接触条件下仍可发挥良好的润滑/导电双功能;
5)该方法通过表面处理手段将NbSe2薄膜附着于滑动部件表面,这样不仅可以充分发挥其具有的导电性能,而且可以减少动力损耗,提高运动部件的工作寿命和服役可靠性。
本发明所制备的NbSe2薄膜具有以上优点的原因在于:射频电源有利于消除NbSe2靶材表面的电荷积累,显著提高了沉积速率;溅射过程中,由于内部磁场对电子的约束,提高了成膜的均匀性;薄膜中存在的纳米微晶,保证了薄膜的导电性能,同时有利于摩擦过程中晶面的重新取向,进而降低薄膜的摩擦系数并提高了其抗磨性能。
附图说明
图1为本发明实施例1所述薄膜的Nb 3d (a)以及Se 3d (b) X射线光电子能谱分析谱图。
图2为本发明实施例1所述薄膜的表面(a)以及断面(b)场发射扫描电镜图。
图3为本发明实施例2所述薄膜的X射线衍射谱图。
图4为本发明实施例2所述薄膜在大气环境中的原位摩擦-导电系数曲线。
具体实施方式
为进一步阐明本发明的方法,将通过以下具体实例对本发明中的上述内容做进一步详细说明。但本发明的上述主体范围不仅仅局限于下述实例。
实施例1
将NbSe2靶材与Ti靶材分别安装在射频磁控溅射镀膜室的对应靶位上;将单晶硅、钠钙玻璃或钢作为基底,在无水乙醇和丙酮试剂溶液中分别超声清洗15 min,自然干燥后放置于腔室旋转工件盘上。整个溅射镀膜过程中,旋转工件盘的转速保持在1.0 r/min。基底温度为室温;开启真空系统,抽真空至7×10-4 Pa,通入氩气,在气压为1.5 Pa、占空比为80%、脉冲偏压为-600 V的条件下,进行等离子体溅射清洗基底,时间为15 min,以除去基底表面氧化层和杂质;然后,进行Ti过渡层沉积。通入氩气,采用直流电源,在压强为0.5 Pa、脉冲偏压为-100 V、Ti靶电流为0.4 A的条件下,沉积Ti过渡层6.5 min,Ti层厚度约为50 nm;之后,进行NbSe2薄膜沉积。关闭直流电源,同时开启射频电源,在射频功率密度为0.045 W/mm2、工作压强为0.3 Pa、初始温度为28℃、脉冲偏压为-200 V、占空比为80%的条件下,沉积NbSe2薄膜1 h;最后,沉积结束后,腔室温度为35℃,薄膜自然冷却至室温。
图1为NbSe2薄膜的Nb 3d (a) 以及Se 3d (b) X射线衍射成分分析谱图。由于薄膜沉积过程中的反溅射现象和薄膜转移过程中不可避免的氧化现象,薄膜中出现了Nb和Se新的结合形式NbSe3、Nb2O5,然而其基本材质依然为NbSe2。图2为薄膜表面以及断面的场发射扫描电镜图。沉积得到NbSe2薄膜厚度约为1600 nm,结构均匀致密。此薄膜在大气环境下(30%RH、25℃)的平均摩擦系数为约0.033,磨损率约为2.26×10-6 mm3/Nm,四探针电阻测试仪测得电阻率约为1.76×10-3 Ω·cm。
实施例2
靶材及安装过程同实例1;基底表面清洗,等离子体溅射清洗过程及旋转工件盘转速同实例1;然后,进行Ti过渡层沉积。通入氩气,采用直流电源,在压强为0.8 Pa、脉冲偏压为-50 V、Ti靶电流为0.3 A的条件下,沉积Ti过渡层4 min,Ti过渡层厚度约为30 nm;之后,进行NbSe2薄膜沉积。关闭直流电源,同时开启射频电源,在射频功率密度为0.068 W/mm2、工作压强为0.5 Pa、初始温度为28℃、基底偏压为-150 V、占空比为80%的条件下,沉积NbSe2薄膜1.8 h;最后,沉积结束后,腔室温度为40℃,薄膜自然冷却至室温。
图3为NbSe2薄膜的掠角入射X射线衍射谱图,该NbSe2薄膜具有显著的NbSe2 (002)择优取向,薄膜的此类结构更有利于NbSe2的侧向滑移而表现出良好的润滑特性。图4为NbSe2薄膜在大气环境下 (50% RH、20℃) 的原位摩擦-导电曲线,平均摩擦系数约为0.038,采用四探针电阻测试仪测得该薄膜的静态接触电阻率约为1.54×10-2 Ω·cm。可见,该薄膜呈现出良好的润滑/导电双重功能特性。
与传统MoS2、WS2薄膜相比,采用射频溅射方法制备的NbSe2薄膜,不仅呈现良好润滑性能(大气环境30%RH、20℃,摩擦系数约为0.033),而且具有优异的导电性能(静态接触电阻率约为1.76×10-3 Ω·cm)。同时,在动态滑动接触模式下,该NbSe2薄膜仍呈现良好的润滑/导电性(如图4所示)。因此,无需附加其它导体材料,在简单制备工艺下,可以获得同时具有润滑/导电双功能的NbSe2薄膜,可满足电接触滑动工况下运动部件的需求。

Claims (5)

1.一种润滑/导电双功能NbSe2薄膜的低温制备方法,其特征在于采用射频磁控溅射技术在室温即基底无需额外加热的条件下制备润滑/导电双功能NbSe2薄膜,具体操作步骤如下:
步骤一、靶材的安装:
将NbSe2和Ti靶材装在溅射镀膜室的对应靶位上;
步骤二、基底的清洗及安装:
将基底用无水乙醇和丙酮分别超声清洗15 min,烘干后装入溅射沉积腔室内的旋转工件盘上;
步骤三、等离子体清洗:
开启真空系统,抽真空至7×10-4 Pa~5×10-4 Pa,通入高纯氩气,并在负偏压为-500 V~-1000 V、占空比为75%~85%、压强为1.0 Pa~ 2.5 Pa条件下进行等离子体溅射清洗基底表面,溅射时间为15 mm~ 30 mm;
步骤四、沉积Ti过渡层:
通入高纯氩气作为溅射气体,采用直流电源,在压强为0.5 Pa~ 1.5 Pa、脉冲偏压为-10 V~ -100 V、占空比为75%~85%、靶电流为0.1 A~ 0.5 A的条件下,沉积Ti过渡层1 min~8min;
步骤五、NbSe2薄膜沉积:
初始温度为20℃~30℃,关闭直流电源,同时开启射频电源,在射频功率密度为0.027W/mm2~0.070 W/mm2,采用氩气为溅射气体,在工作压强为0.3 Pa~1.5 Pa、基底脉冲偏压为-100 V~-200 V、占空比为50%~90%的条件下,进行NbSe2薄膜沉积;沉积时间为0.5 h~3.0 h,沉积结束温度为35℃~40℃,薄膜自然冷却至室温。
2.如权利要求1所述的方法,其特征在于所述过渡层的厚度为10 nm~70 nm;所述NbSe2薄膜厚度为0.1 μm~3.0 μm。
3.如权利要求1所述的方法,其特征在于所述NbSe2和Ti靶材的纯度均为99.9%;所述高纯氩气的纯度为99.99%。
4.如权利要求1所述的方法,其特征在于所述基底为单晶硅 (100)、钠钙玻璃或钢(9Cr18) 。
5.如权利要求1所述的方法,其特征在于整个溅射镀膜过程中,旋转工件盘的转速为1.0 r/min~ 2.0 r/min,基底与靶材之间的间距保持在80 mm~140 mm。
CN201810261644.4A 2018-03-28 2018-03-28 一种润滑/导电双功能NbSe2薄膜的低温制备方法 Active CN108517499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810261644.4A CN108517499B (zh) 2018-03-28 2018-03-28 一种润滑/导电双功能NbSe2薄膜的低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810261644.4A CN108517499B (zh) 2018-03-28 2018-03-28 一种润滑/导电双功能NbSe2薄膜的低温制备方法

Publications (2)

Publication Number Publication Date
CN108517499A true CN108517499A (zh) 2018-09-11
CN108517499B CN108517499B (zh) 2019-12-27

Family

ID=63432986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810261644.4A Active CN108517499B (zh) 2018-03-28 2018-03-28 一种润滑/导电双功能NbSe2薄膜的低温制备方法

Country Status (1)

Country Link
CN (1) CN108517499B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318217A (zh) * 2022-01-19 2022-04-12 中国科学院兰州化学物理研究所 一种真空滑动电接触条件下具有超低摩擦低电噪音二硒化铌薄膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125670A (ko) * 2006-11-17 2006-12-06 주식회사 맥스플라즈마 펄스 마그네트론 스퍼터링법을 이용한 박막 증착방법 및이로써 증착된 금속 박막
US20110005920A1 (en) * 2009-07-13 2011-01-13 Seagate Technology Llc Low Temperature Deposition of Amorphous Thin Films
CN102650043A (zh) * 2011-02-24 2012-08-29 中国科学院兰州化学物理研究所 一种纳米复合润滑薄膜的制备方法
CN106498344A (zh) * 2016-10-14 2017-03-15 中国科学院兰州化学物理研究所 一种弹性润滑纳米碳环/无定型碳复合薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125670A (ko) * 2006-11-17 2006-12-06 주식회사 맥스플라즈마 펄스 마그네트론 스퍼터링법을 이용한 박막 증착방법 및이로써 증착된 금속 박막
US20110005920A1 (en) * 2009-07-13 2011-01-13 Seagate Technology Llc Low Temperature Deposition of Amorphous Thin Films
CN102650043A (zh) * 2011-02-24 2012-08-29 中国科学院兰州化学物理研究所 一种纳米复合润滑薄膜的制备方法
CN106498344A (zh) * 2016-10-14 2017-03-15 中国科学院兰州化学物理研究所 一种弹性润滑纳米碳环/无定型碳复合薄膜的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318217A (zh) * 2022-01-19 2022-04-12 中国科学院兰州化学物理研究所 一种真空滑动电接触条件下具有超低摩擦低电噪音二硒化铌薄膜的制备方法

Also Published As

Publication number Publication date
CN108517499B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
CN103668095B (zh) 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法
CN108977776B (zh) 空间宽温域环境下高结合力固体润滑膜层及其制备方法
Spalvins Deposition of MoS2 films by physical sputtering and their lubrication properties in vacuum
CN101701332B (zh) 中频磁控辉光放电法制备复合类金刚石涂层的方法
CN102653855A (zh) 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法
CN104141109B (zh) 钛金属表面原位合成TiC‑DLC复合涂层的方法
CN109504945A (zh) 一种空间环境用长效抗菌固体润滑膜层及其制备方法
CN107937873A (zh) 碳掺杂的过渡金属硼化物涂层、碳‑过渡金属硼化物复合涂层、制备方法及应用和切削工具
CN109972082A (zh) 采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法
JP3166107B2 (ja) 二重イオンビームスパッタリングを用いる薄膜ガスセンサの製造方法
CN109735804B (zh) 一种金属碳化合物涂层及其制备方法
CN102965619A (zh) 一种多元金属掺杂无氢类金刚石碳膜的制备方法
CN109371360A (zh) 一种应用于低温材料上的耐磨类金刚石涂层的制备方法
CN100398693C (zh) 多功能复合磁控等离子体溅射装置
US20120188628A1 (en) Coated article and method for making the same
CN104404467A (zh) 一种过渡金属硼化物涂层及其制备方法
CN109402555A (zh) 一种运用离化原子团簇结合hipims技术制备高质量薄膜的方法
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN101921983B (zh) 一种w-s-c复合膜的制备方法
CN108517499A (zh) 一种润滑/导电双功能NbSe2薄膜的低温制备方法
CN111575652A (zh) 真空镀膜设备及真空镀膜方法
CN107675136B (zh) 一种工件表面pvd镀膜的方法
Makówka et al. Modification of magnetron sputter deposition of nc-WC/aC (: H) coatings with an additional RF discharge
CN106467959B (zh) 一种基体表面的固体润滑复合涂层及其制备方法
CN101880876B (zh) 压缩机滑片及其表面涂层处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant