CN108486546A - 一种bdd膜电极材料及其制备方法 - Google Patents

一种bdd膜电极材料及其制备方法 Download PDF

Info

Publication number
CN108486546A
CN108486546A CN201810386838.7A CN201810386838A CN108486546A CN 108486546 A CN108486546 A CN 108486546A CN 201810386838 A CN201810386838 A CN 201810386838A CN 108486546 A CN108486546 A CN 108486546A
Authority
CN
China
Prior art keywords
diamond
base material
diamond layer
transition zone
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810386838.7A
Other languages
English (en)
Other versions
CN108486546B (zh
Inventor
徐帅
闫宁
范波
吴啸
郭兴星
吴晓磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Research Institute for Abrasives and Grinding Co Ltd
Original Assignee
Zhengzhou Research Institute for Abrasives and Grinding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Research Institute for Abrasives and Grinding Co Ltd filed Critical Zhengzhou Research Institute for Abrasives and Grinding Co Ltd
Priority to CN201810386838.7A priority Critical patent/CN108486546B/zh
Publication of CN108486546A publication Critical patent/CN108486546A/zh
Application granted granted Critical
Publication of CN108486546B publication Critical patent/CN108486546B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46147Diamond coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供了一种BDD膜电极材料及其制备方法,属于金刚石膜电极材料领域,以钼、钨或导电硅为基材,基材进行粗化处理使基材表面获得Ra0.5‑1μm的粗糙度,在基材表面沉积过渡层,然后,在所述过渡层表面形成碳化物后进行金刚石的形核和生长,且在金刚石成核期加入含硼物得到含硼的金刚石层,其中,所述过渡层为能够形成共价键碳化物的过渡族金属,所述过渡层与基材形成合金或化合物。本发明得到致密的金刚石层结构,消除了电解产生的离子对基材的损害,有利于获得金刚石膜电极材料长的使用寿命。本发明可实现基材与金刚石层的紧密结合,消除了热膨胀系数差异产生的热应力导致的金刚石层的剥落。

Description

一种BDD膜电极材料及其制备方法
技术领域
本发明属于金刚石膜电极材料领域,特别涉及一种BDD膜电极材料及其制备方法。
背景技术
通过电解可氧化废水中的有害污染物,从而将污染物的量降低至排放可接受的水质要求,适用于生物制药、纺织、垃圾处理、石油化工、工业气体等产生的废水。与化学处理相比,对废水进行电解的主要优势在于难降解污染物的降解效率增加。
已知的氧化铅、氧化钨、铂等金属和金属氧化物是用于电解的阳极电极材料,但由于电解过程发生在恶劣的化学环境下,用于电极的上述材料在使用过程中存在如下缺点:
(1)电解过程中,电极中的重金属物质被分解并进入废水中,带来二次污染问题;
(2)恶劣的化学环境下,电极被逐渐腐蚀掉,电极的有效寿命缩短;
(3)消耗了例如电极中的铂等不可再生的贵金属资源,使得处理成本增加;
(4)多数电极材料在使用过程中具有较差的能量效率。
金刚石因具有优异的化学稳定性,宽的电化学势窗等特点,是用作污水处理阳极电极的理想材料,已知通过掺杂微量的硼赋予金刚石导电性后,可用于替代上述电极材料并不引起上述问题的出现。化学气相沉积(CVD)如热丝CVD和微波等离子体CVD等方法可用于制造上述硼掺杂金刚石(BDD,即Boron-doped Diamond)膜电极材料,制造技术的关键在于:
(1)金刚石层为形成在基材表面的致密的多晶结构金刚石,以消除电解产生的离子造成对基材的损害;
(2)金刚石层与基材之间紧密结合,以消除因热膨胀系数差异产生的热应力导致的金刚石层的剥落;
(3)构成金刚石层的金刚石晶体有高的结晶度,以消除由结晶性差引起的电性能的下降。
BDD膜电极的常规制造方案通常采用由导电硅、钛、铌等构成的基材,并直接在基材表面沉积金刚石层。钛和铌基材与金刚石层之间形成共价键碳化物的能力强,可实现基材与金刚石层之间牢固的化学结合,但钛和铌的热膨胀系数与金刚石显著不同,因而,制造所述电极时因钛和铌基材与金刚石层之间热膨胀系数的差异而导致巨大残余应力,残余应力足以破坏所述电极的基材与金刚石层之间的碳化物,并导致基材与金刚石层的彼此分离,从而不利的缩短所述电极的寿命。导电硅基材与金刚石之间热膨胀系数的差异是相对小的,所述电极的导电硅基材与金刚石层之间存在较小的残余应力,但制造所述电极时导电硅基材与金刚石层之间形成共价键碳化物的能力弱,残余应力足以破坏导电硅基材与金刚石层之间的结合,并导致所述分离问题。
目前工业上没有广泛应用BDD膜电极,主要技术原因在于制造BDD膜电极存在的上述问题没有得到有效解决。因此,急需一种新的BDD膜电极制备技术来解决上述问题。
发明内容
本发明的目的在于提供一种BDD膜电极材料及其制备方法,所述BDD膜电极材料的金刚石层具有致密的结构和与基材的紧密结合,构成金刚石层的金刚石晶体具有高的结晶度。
基于上述目的,本发明采取如下技术方案:
本发明提供的BDD膜电极材料包括基材,金刚石层,以及位于基材与金刚石层之间的过渡层,其中过渡层包括与基材之间的合金或化合物,以及与金刚石层之间的碳化物,本发明BDD膜电极材料的结构示意图如图1所示。所述基材为热膨胀系数低且具有良好导电性的材料,以降低基材与金刚石层热膨胀系数的失配并使BDD膜电极材料具备优良的导电性;所述过渡层为能够形成共价键碳化物的过渡族金属,并且所述过渡族金属能够与基材形成合金或化合物,并且所述共价键碳化物在热力学上具有低的形成能,以提高基材与金刚石层的结合强度;所述金刚石层在化学气相沉积的形核期具有高的形核密度,并且所述金刚石层在化学气相沉积的生长期几乎不存在金刚石晶格或晶界中非sp3金刚石键合形式的碳,以形成致密的且结晶度高的金刚石层。
具体制备过程如下:
1. 基材表面处理
本发明提供的BDD膜电极材料的基材优选热膨胀系数低且具有良好导电性的材料,可以由诸如,但不仅限于,钨,钼,导电硅,或这些材料的组合。对所述基材表面实施粗糙化处理可以由离子刻蚀、化学刻蚀、喷砂、研磨等任何能获得Ra0.5-1μm的表面粗糙度的方法形成,以增大基材的接触面积和结合强度。
2. 基材表面沉积过渡层
通过物理气相沉积(包括真空蒸镀、离子镀、磁控溅射等),电镀,化学镀等任何形成金属镀层的方法,优选磁控溅射,在表面处理后的上述基材表面沉积过渡层,所述过渡层为能够形成共价键碳化物的过渡族金属,所述过渡族金属能够与基材形成合金或化合物,所述共价键碳化物在热力学上具有低的形成能,过渡层可以由诸如,但不仅限于,钛、钒、锆、铌、钽等过渡族金属中的一种或多种,过渡层厚度优选0.5-2 μm。
3. 基材与过渡层之间形成合金或化合物
对表面形成过渡层的上述基材在真空炉内进行退火处理,退火温度800-1200℃,时间10-120 min,以在基材与过渡层之间形成合金或化合物,上述合金或化合物的形成有利于实现基材与过渡层之间牢固的化学结合。
4. 过渡层表面形成碳化物
热丝CVD(即HFCVD)或微波等离子体CVD(即MPCVD)方法可用于在过渡层表面原位形成碳化物,以及后续在碳化物表面沉积金刚石层。分别使用氢气作为载气,甲烷作为碳源,控制甲烷相对于氢气的含量为10-16%,气压10-20kPa,基材温度800-1200℃,将步骤3处理过的基材在上述条件下保持10-60 min后,甲烷中分解的碳元素扩散进入过渡层后,在过渡层表面形成0.1-1μm厚的碳化物。上述碳化物的形成有利于提高基材与金刚石层的结合强度。
5. 碳化物表面金刚石形核
扩散进入过渡层的碳元素达到饱和后,进入金刚石形核期,在碳化物表面形成金刚石晶体核心。分别使用氢气作为载气,甲烷作为碳源,使用三甲基硼、乙硼烷等气态含硼物,硼酸三甲酯等液态含硼物,或溶于有机溶剂的三氧化二硼、硼酸作为硼源,控制甲烷相对于氢气的含量为6-10%,控制含硼物相对于甲烷的含量为100-10000ppm,气压10-16kPa,基材温度600-800℃,将步骤4处理过的基材在上述条件下保持5-20 min后,在过渡层表面形成金刚石晶体核心,此方法可形成高的金刚石形核密度,有利于后续形成致密的金刚石层。
6. 金刚石层生长
碳化物表面金刚石晶体核心达到一定尺寸后,进入金刚石生长期,控制甲烷相对于氢气的含量为2-6%,控制含硼物相对于甲烷的含量为100-10000ppm,气压10-16kPa,基材温度700-900℃,金刚石层的生长速度将保持在0.5-3μm/h,根据金刚石层的厚度需求选择工艺时间。此方法有利于形成结晶度高的金刚石晶体,金刚石层几乎不存在金刚石晶格或晶界中非sp3金刚石键合形式的碳。
对上述方法得到的BDD膜电极材料的性能进行测试,采用扫描电子显微镜(SEM)观察膜层表面的致密性,SEM图显示本发明技术方案制备的BDD膜电极材料的致密性好;采用涂层附着力划痕仪测定基材与金刚石层的结合强度,以金刚石层产生裂纹或脱落的临界载荷衡量基材与金刚石层的结合强度,结果表明本发明技术方案制备的BDD膜电极材料的结合强度高;采用拉曼光谱仪测定金刚石晶体的结晶度,以金刚石1332cm-1特征峰的强度与半高宽,sp2碳1500cm-1附近的宽带峰强度,以及拉曼光谱的荧光背底高度衡量金刚石晶体的结晶度,结果显示本发明技术方案制备的BDD膜电极材料的金刚石层有较高的结晶度;最后采用电阻率测试仪测定金刚石层的电阻率,本发明技术方案制备的BDD膜电极材料的金刚石层的电阻率为1×10-1-3×10-4Ω∙cm。
本发明采用的技术方案具有如下优点:
1. 本发明采用的技术方案可实现基材表面致密的金刚石层结构,有利于消除电解产生的离子对基材的损害,获得BDD膜电极长的使用寿命。
2.本发明采用的技术方案可实现基材与金刚石层的紧密结合,有利于消除热膨胀系数差异产生的热应力导致的金刚石层的剥落,获得BDD膜电极长的使用寿命。
3.本发明采用的技术方案可实现构成金刚石层的金刚石晶体高的结晶度,有利于消除结晶性差引起的电性能的下降,获得BDD膜电极高的电解效率。
附图说明
图1本发明BDD膜电极材料的层状结构示意图;
图2实施例2金刚石层的拉曼光谱;
图3对比例2金刚石层的拉曼光谱;
图4实施例3金刚石层的SEM图像;
图5实施例3金刚石层的SEM图像。
具体实施方式
以下结合具体实施例对本发明的技术方案做进一步详细说明。
实施例1
一种BDD膜电极材料的制备方法,本实施例具体过程如下:
(1)选用金属钼作为基材,通过金刚石颗粒研磨获得Ra0.5-1μm的基材表面粗糙度,然后利用丙酮对基材表面进行超声波清洗;
(2)通过磁控溅射在基材表面沉积厚度约2 μm的金属钛过渡层,对表面形成过渡层的上述基材在真空炉内1000℃下进行退火处理120 min,使金属钼与钛界面结合处形成钛钼合金,将退火处理后的基材在分散有金刚石微粉的乙醇中进行超声波震荡10min;
(3)利用微波等离子体CVD方法在过渡层表面原位形成碳化物,控制甲烷相对于氢气的含量为12%,气压12kPa,基材温度1000℃,将上述工艺保持30 min后,过渡层表面形成约0.5μm厚的碳化钛;
(4)在金刚石形核期,在步骤(3)条件下加入三甲基硼,控制三甲基硼相对于甲烷的含量为5000ppm,改变甲烷相对于氢气的含量为6%,基材温度700℃,将上述工艺保持10 min后,在过渡层表面形成高密度的金刚石晶体核心;
(5)在金刚石生长期,在步骤(4)条件下改变甲烷相对于氢气的含量为4%,基材温度800℃,金刚石层的生长速度将保持在3μm/h,直至生长为20μm厚的金刚石层。
所述BDD膜电极材料的层状结构依次由钼基材、钛过渡层、金刚石层组成,其中,钼基材与钛过渡层界面结合处反应形成钛钼合金,钛过渡层与金刚石层之间存在碳化钛,所获得金刚石层的电阻率为3×10-3Ω∙cm。
对比例1
和实施例1的不同之处在于省略步骤(2),直接在基材表面形成碳化物。
将实施例1与对比例1未沉积过渡层的样品作对比,采用划痕法测量金刚石层脱落的临界载荷,未沉积过渡层样品的金刚石层在临界载荷为79±27N即出现金刚石层的开裂和脱落等情况;本实施例测得的临界载荷为128±13N,表明基材与金刚石层具有较高的结合强度,从而有利于延长BDD膜电极的使用寿命。
实施例2
一种BDD膜电极材料的制备方法,本实施例具体过程如下:
(1)选用(100)晶面的P型导电硅作为基材,通过金刚石颗粒研磨获得Ra0.5-1μm的基材表面粗糙度,然后利用丙酮对基材表面进行超声波清洗;
(2)通过磁控溅射在基材表面沉积厚度约5 μm的金属钛过渡层,对表面形成过渡层的上述基材在真空炉内800℃下进行退火处理20 min,使导电硅与金属钛界面结合处形成钛硅化合物,将退火处理后的基材在分散有金刚石微粉的乙醇中进行超声波震荡15min;
(3)利用热丝CVD方法在过渡层表面原位形成碳化物,控制甲烷相对于氢气的含量为12%,气压12kPa,基材温度1000℃,将上述工艺保持30 min后,过渡层表面形成约0.5μm厚的碳化钛;
(4)在金刚石形核期,在步骤(3)条件下加入三甲基硼,控制三甲基硼相对于甲烷的含量为100ppm,改变甲烷相对于氢气的含量为8%,基材温度700℃,将上述工艺保持10min后,在过渡层表面形成高密度的金刚石晶体核心;
(5)在金刚石生长期,在步骤(4)条件下改变甲烷相对于氢气的含量为3%,基材温度800℃,金刚石层的生长速度将保持在2μm/h,直至生长为10μm厚的金刚石层。
所述BDD膜电极材料的层状结构次由导电硅基材、钛过渡层、金刚石层组成,其中,导电硅基材与钛过渡层界面结合处反应形成钛硅化合物,钛过渡层与金刚石层之间存在碳化钛,所获得金刚石层的电阻率为1×10-1Ω∙cm。
对比例2
调整步骤(5)金刚石生长期甲烷相对于氢气的含量为8%,其他同实施例2。
测得实施例2的金刚石层的拉曼光谱如图2所示,金刚石1332cm-1拉曼峰的强度较强,半高宽为4.8cm-1,sp2碳在1500cm-1附近的宽带峰强度较弱,且无明显荧光背底,表明本实施例制得的金刚石层几乎不存在金刚石晶格或晶界中非sp3金刚石键合形式的碳,金刚石层具有高的结晶度;对比例2的拉曼光谱出现图3所示明显的荧光背底和1450cm-1附近强度较强的宽带峰,金刚石1332cm-1拉曼峰的强度较弱,半高宽为7.1cm-1,表明金刚石层中存在实质量的非sp3金刚石键合形式的碳,金刚石的结晶性差,从而不利的降低金刚石层的电性能,测得对比例2金刚石层的电阻率为3×10-1Ω∙cm,高于实施例2样品测得的电阻率1×10-1Ω∙cm。
实施例3
一种BDD膜电极材料的制备方法,本实施例具体过程如下:
(1)选用金属钨作为基材,通过金刚石颗粒研磨获得Ra0.5-1μm的基材表面粗糙度,然后利用丙酮对基材表面进行超声波清洗;
(2)通过磁控溅射在基材表面沉积厚度约2 μm的金属铌过渡层,对表面形成过渡层的上述基材在真空炉内1200℃下进行退火处理120min,使金属钨与铌界面结合处形成铌钨合金,将退火处理后的基材在分散有金刚石微粉的乙醇中进行超声波震荡12min;
(3)利用微波等离子体CVD方法在过渡层表面原位形成碳化物,控制甲烷相对于氢气的含量为14%,气压16kPa,基材温度1200℃,将上述工艺保持60 min后,过渡层表面形成约0.5μm厚的碳化铌;
(4)在金刚石形核期,在步骤(3)条件下加入乙硼烷,控制乙硼烷相对于甲烷的含量为5000ppm,改变甲烷相对于氢气的含量为10%,气压14kPa,基材温度750℃,将上述工艺保持15min后,在过渡层表面形成高密度的金刚石晶体核心;
(5)在金刚石生长期,在步骤(4)条件下改变甲烷相对于氢气的含量为2.5%,基材温度850℃,金刚石层的生长速度将保持在1.5μm/h,直至生长为5μm厚的金刚石层。
所述BDD膜电极材料的层状结构次由金属钨基材、铌过渡层、金刚石层组成,其中,金属钨基材与铌过渡层界面结合处反应形成铌钨合金,铌过渡层与金刚石层之间存在碳化铌,所获得金刚石层的电阻率为3×10-4Ω∙cm。
对比例3
调整步骤(4)金刚石形核期甲烷相对于氢气的含量为3%,其他同实施例3。
实施例3和对比例3金刚石层的SEM图分别如图4与图5所示,实施例3的金刚石层的表面形貌显示金刚石层具有致密的结构,对比例3显示金刚石晶体之间出现了孔隙,金刚石层的致密性较差。

Claims (9)

1.一种BDD膜电极材料的制备方法,其特征是,以钼、钨或导电硅为基材,基材进行粗化处理使基材表面获得Ra0.5-1μm的粗糙度,在基材表面沉积过渡层,然后,在所述过渡层表面形成碳化物后进行金刚石的形核和生长,且在金刚石成核期与生长期加入含硼物得到含硼的金刚石层,其中,所述过渡层为能够形成共价键碳化物的过渡族金属,所述过渡层与基材形成合金或化合物。
2.如权利要求1所述的BDD膜电极材料的制备方法,其特征是,所述在基材表面沉积过渡层是指通过物理气相沉积、电镀或化学镀所形成金属镀层的方法,过渡层为钛、钒、锆、铌、钽中的一种或多种,过渡层厚度0.5-2μm。
3.如权利要求2所述的BDD膜电极材料的制备方法,其特征是,过渡层与基材之间形成合金或化合物过程为:在真空炉内800-1200℃温度下退火处理10-120 min。
4.如权利要求1所述的BDD膜电极材料的制备方法,其特征是,所述碳化物由热丝CVD或微波等离子体CVD原位形成,碳化物的形成条件为:甲烷相对于氢气的含量为10-16%,气压10-20kPa,基材温度800-1200℃,在上述条件下保持10-60 min,形成碳化物的厚度0.1-1μm。
5.如权利要求1所述的BDD膜电极材料的制备方法,其特征是,所述金刚石的形核条件为:甲烷相对于氢气的含量为6-10%,含硼物相对于甲烷的含量为100-10000ppm,气压10-16kPa,基材温度600-800℃,在上述条件下保持5-20 min。
6.如权利要求1所述的BDD膜电极材料的制备方法,其特征是,金刚石的生长条件为:金刚石生长速度0.5-3μm/h,甲烷相对于氢气的含量为2-6%,含硼物相对于甲烷的含量为100-10000ppm,气压10-16kPa,基材温度700-900℃,金刚石层的厚度为10-20μm。
7.如权利要求1所述的BDD膜电极材料的制备方法,其特征是,所述含硼物为三甲基硼、乙硼烷、硼酸三甲酯、三氧化二硼和硼酸中的至少一种。
8.权利要求1至7任一所述的制备方法制得的BDD膜电极材料,其特征是,所述BDD膜电极材料金刚石层的电阻率为1×10-1-3×10-4Ω∙cm。
9.权利要求8所述BDD膜电极材料用于污水电解处理的阳极电极。
CN201810386838.7A 2018-04-26 2018-04-26 一种bdd膜电极材料及其制备方法 Active CN108486546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810386838.7A CN108486546B (zh) 2018-04-26 2018-04-26 一种bdd膜电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810386838.7A CN108486546B (zh) 2018-04-26 2018-04-26 一种bdd膜电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108486546A true CN108486546A (zh) 2018-09-04
CN108486546B CN108486546B (zh) 2020-04-03

Family

ID=63313325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810386838.7A Active CN108486546B (zh) 2018-04-26 2018-04-26 一种bdd膜电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108486546B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719067A (zh) * 2019-09-05 2020-01-21 中国电子科技集团公司第十三研究所 具有热匹配结构的太赫兹倍频器
JP7322315B1 (ja) 2023-03-31 2023-08-07 住友化学株式会社 ダイヤモンド電極
JP7348422B1 (ja) * 2023-03-23 2023-09-20 住友化学株式会社 ダイヤモンド電極、およびダイヤモンド電極の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567506A (zh) * 2003-06-20 2005-01-19 中国科学院物理研究所 一种金刚石膜平面场发射阴极及其制作方法
US20060144702A1 (en) * 2003-05-26 2006-07-06 Yuichiro Seki Diamond-coated electrode and method for producing same
CN101481792A (zh) * 2008-01-08 2009-07-15 中国科学院物理研究所 一种硼掺杂金刚石超导材料的制备方法
CN102074708A (zh) * 2010-12-14 2011-05-25 天津理工大学 基于掺硼金刚石薄膜改性的pemfc双极板及其制备方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060144702A1 (en) * 2003-05-26 2006-07-06 Yuichiro Seki Diamond-coated electrode and method for producing same
CN1567506A (zh) * 2003-06-20 2005-01-19 中国科学院物理研究所 一种金刚石膜平面场发射阴极及其制作方法
CN101481792A (zh) * 2008-01-08 2009-07-15 中国科学院物理研究所 一种硼掺杂金刚石超导材料的制备方法
CN102074708A (zh) * 2010-12-14 2011-05-25 天津理工大学 基于掺硼金刚石薄膜改性的pemfc双极板及其制备方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
崔雨潇等: "基于中间过渡层技术提高金刚石薄膜与硬质合金基体间附着力的研究进展", 《中国科技论文》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719067A (zh) * 2019-09-05 2020-01-21 中国电子科技集团公司第十三研究所 具有热匹配结构的太赫兹倍频器
CN110719067B (zh) * 2019-09-05 2023-08-15 中国电子科技集团公司第十三研究所 具有热匹配结构的太赫兹倍频器
JP7348422B1 (ja) * 2023-03-23 2023-09-20 住友化学株式会社 ダイヤモンド電極、およびダイヤモンド電極の製造方法
JP7322315B1 (ja) 2023-03-31 2023-08-07 住友化学株式会社 ダイヤモンド電極

Also Published As

Publication number Publication date
CN108486546B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
JP4581998B2 (ja) ダイヤモンド被覆電極及びその製造方法
Heon et al. Continuous carbide-derived carbon films with high volumetric capacitance
US20080070049A1 (en) Method for making a highly stable diamond film on a subtrate
US20090324810A1 (en) Method for production of diamond electrodes
CN108486546A (zh) 一种bdd膜电极材料及其制备方法
JP2001348296A (ja) 針状表面を有するダイヤモンド、繊毛状表面を有する炭素系材料、その製造方法、それを使用した電極及び電子デバイス
CN109750291A (zh) 一种硼掺杂金刚石电极及其制备方法
CN207646292U (zh) 一种硼掺杂金刚石电极
TW201347282A (zh) 使用於液體中之碳電極裝置及相關方法
CN106971864A (zh) 一种基于纳米多孔掺硼金刚石电极的超级电容器的制备方法
CN112957912B (zh) 一种多层选择性氢渗透复合膜及其制备和应用
KR101209791B1 (ko) 연료전지용 금속분리판 및 이의 표면처리방법
CN115784763B (zh) 一种掺硼金刚石多孔钛复合膜及其制备方法
JP4743473B2 (ja) 導電性ダイヤモンド被覆基板
CN100465353C (zh) 含二氧化硅纳米颗粒的类金刚石碳复合薄膜的制备方法
KR101968604B1 (ko) 그래핀이 코팅된 스테인리스 스틸(sus) 지지체 및 이의 제조 방법
JP7348422B1 (ja) ダイヤモンド電極、およびダイヤモンド電極の製造方法
Zanin et al. Large-area cylindrical diamond electrodes
JP7421018B1 (ja) ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法
JP2002338387A (ja) ダイヤモンド膜の製造方法及びダイヤモンド膜
WO2008013343A1 (en) Diamond/carbon nano-materials hybrid film and the fabrication method thereof
CN1083813C (zh) 晶态α和β相氮化碳薄膜材料的制备方法
JP4205909B2 (ja) ダイヤモンド薄膜製造用シリコン基板およびダイヤモンド薄膜電極
Liao et al. Study of diamond film growth mechanism on porous silicon during hot-filament chemical vapor deposition
RU2428763C1 (ru) Способ получения канальной матрицы

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant