CN108484836B - 一种复合聚合物固态电解质膜的原位自形成制备方法 - Google Patents

一种复合聚合物固态电解质膜的原位自形成制备方法 Download PDF

Info

Publication number
CN108484836B
CN108484836B CN201810174186.0A CN201810174186A CN108484836B CN 108484836 B CN108484836 B CN 108484836B CN 201810174186 A CN201810174186 A CN 201810174186A CN 108484836 B CN108484836 B CN 108484836B
Authority
CN
China
Prior art keywords
solution
electrolyte membrane
peo
monomers
composite polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810174186.0A
Other languages
English (en)
Other versions
CN108484836A (zh
Inventor
杨晶晶
汪勋
马爱洁
罗涛
陈卫星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201810174186.0A priority Critical patent/CN108484836B/zh
Publication of CN108484836A publication Critical patent/CN108484836A/zh
Application granted granted Critical
Publication of CN108484836B publication Critical patent/CN108484836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种复合聚合物固态电解质膜的原位自形成制备方法。以克服现有技术存在的材料内部填料的分散性问题,同时制备方法复杂、不便捷,成本高且对环境不友好的问题。本发明采用的方法步骤为:1)以PEO为聚合物基体,将其与LiClO4溶解在去离子水中,搅拌溶解,得溶液A;2)称取丙烯酰胺和2‑丙烯酰胺基‑2‑甲基丙磺酸单体,以PEO质量为基准,控制聚合物基体与单体的质量比,将单体加入溶液A中搅拌溶解得溶液B;3)分别称取N,N‑亚甲基双丙烯酰胺,光引发剂加入至溶液B,搅拌溶解得到溶液C;4)将溶液C浇注于聚四氟乙烯模具中,置于紫外光辐射下,使单体聚合并交联,在PEO基体中形成交联结构;5)然后干燥得复合聚合物固态电解质膜。

Description

一种复合聚合物固态电解质膜的原位自形成制备方法
技术领域
本发明所属固态聚合物电解质膜制备技术领域,具体涉及一种复合聚合物固态电解质膜的原位自形成制备方法。
背景技术
动力电池作为发展电动汽车的核心部件之一,一直是电池领域的研究热点。其中,锂离子电池由于其拥有高能量密度及功率密度而备受关注。近年来,随着电动汽车的快速发展,人们追求锂电池的大容量和充放电速度外,更关心的是锂电池的安全问题。目前商用的锂电池,电池内部的有机电解液可能引起泄露、燃烧和爆炸等安全问题,另外,金属锂负极的枝晶生长可能造成短路的安全隐患。因此,发展高安全性的全固态锂电池成为目前获得高效、安全、可靠的动力电池的发展方向。
固体电解质作为全固电池的核心部件,开发先进的固体电解质,对于防止锂枝晶的生长和电极副反应都有着至关重要的作用。目前研究主要涉及无机和聚合物固体电解质两大类。其中,聚合物电解质具有对电极粘附性好、电化学窗口相对较高且生产工艺易控制、可量产、柔性、形状多样性等优点,在柔性锂电池方面具备更多优势。但是通常聚合物固态电解质的离子电导率较低(10-7S cm-1),需要对其进行改性来达到实际使用要求。另外,固态聚合物电解质的机械性能差也是亟待解决的问题。
目前,以聚氧化乙烯(PEO)为聚合物基体,高氯酸锂(LiClO4)为锂盐的聚合物固态电解质体系中,文献报道基本上是利用填料来进行改性,目前报道的最高室温离子电导率为5.2×10-5S cm-1(Zhai H.et al.Nano letters,2017(17):3182-3187)。但是该方法需要利用冰模板来取向纳米填料Li1+xAlxTi2-x(PO4)3(LATP),制备过程繁琐复杂,工艺条件要求高。(Zhai H.et al.Nano letters,2017(17):3182-3187)。此外,在填料改性的PEO基复合聚合物电解质体系中,填料与PEO之间多存在分相行为;纳米填料的团聚行为也限制了聚合物电解质膜的制备;PEO的溶解多采用有一定毒性的有机溶剂乙腈等;复合电解质膜的拉伸强度提高程度有限,文献报道的最大拉伸强度增幅为83%(Gomari S.et al.SolidState Ionics,2017(303):37-46)。因此,需要寻求更好的PEO基复合聚合物电解质的制备方法。
发明内容
本发明的目的是提供一种复合聚合物固态电解质膜的原位自形成制备方法,以克服现有技术存在的材料内部填料的分散性问题,同时制备方法复杂、不便捷,成本高且对环境不友好的问题。
为达到本发明的目的,本发明采用如下技术方案:
一种复合聚合物固态电解质膜的原位自形成制备方法,包括下述步骤:
一、以分子量范围为100K-4000K的PEO为聚合物基体,将其与LiClO4按照5~20:1的摩尔比溶解在去离子水中,搅拌溶解,得到溶液A;
二、称取质量比为5:1~3的丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸单体,以PEO质量为基准,控制聚合物基体与单体的质量比为1:0.1~1:0.75,将单体加入至溶液A中搅拌溶解得到溶液B;
三、分别称取单体质量0.015%~0.06%的交联剂N,N-亚甲基双丙烯酰胺(MBAA),单体质量0.75%的光引发剂α-酮戊二酸加入至溶液B,搅拌溶解得到溶液C;
四、将溶液C浇注于聚四氟乙烯模具中,置于紫外光辐射下,光照30-120min,使单体聚合并交联,在PEO基体中形成交联结构;
五、在40℃真空干燥箱中干燥得到复合聚合物固态电解质膜。
上述步骤一中,所述聚合物基体与LiClO4的摩尔比为10~20:1。
与现有技术相比,本发明具有如下优点:
第一:室温下离子电导率高:利用形成的交联聚合物网络作为三维骨架,同时协同柔性聚合物作为锂离子的传输载体,通过刚柔材料的优势互补,获得高性能的聚合物基固态电解质膜,室温下离子电导率可达到3.95×10-6~4.12×10-5,比PEO/LiClO4聚合物电解质膜室温离子电导率增加了2~3个数量级。
第二:针对传统溶液共混复合体系的分相、团聚问题,原位聚合形成均匀、自支撑的、具备交联网络的复合聚合物电解质膜,将成膜时间从传统的4days降至2days,因此方法简便、快捷。
第三:环境友好,本发明所涉及的复合聚合物电解质膜的制备过程中,以去离子水为溶剂、单体也是生物相容性材料,能够满足绿色生产的要求。
第四、力学性能好:通过在PEO/LiClO4溶液体系中引入可光引发并交联的聚合反应单体,实现在紫外光辐射条件下,一步、原位制备具备交联网络结构的复合聚合物电解质膜。复合聚合物电解质膜内部交联网络的形成,在提高聚合物基体离子电导率的基础上,同时实现电解质膜力学性能的提升,交联结构的形成,可以将电解质膜的拉伸强度提高一个数量级,显著增加电解质膜的力学性能,使其达到约6.2Mpa,能够同时兼顾复合聚合物电解质膜的离子电导率与力学性能。
附图说明
图1所示为本发明实施例复合聚合物电解质膜的实物图:(a)PEO与LiClO4摩尔比为15:1;(b)PEO与LiClO4摩尔比为10:1。
图2所示为复合聚合物电解质膜原料及不同单体含量复合聚合物电解质膜(PEO与LiClO4摩尔比为15:1)的ATR-FTIR谱图。
图3所示为不同单体含量复合聚合物电解质膜(PEO与LiClO4摩尔比为15:1)及未添加交联结构的PEO/LiClO4电解质膜的DSC升温曲线。
图4所示为未添加交联结构的PEO/LiClO4电解质膜(a)及复合聚合物电解质膜(PEO与LiClO4摩尔比为15:1)(b)的反射偏光显微镜形貌图。
图5所示为未添加交联结构的PEO/LiClO4电解质膜(a)及复合聚合物电解质膜(PEO与LiClO4摩尔比为15:1)(b)的应力-应变曲线。
图6所示为复合聚合物电解质膜原料及不同单体含量复合聚合物电解质膜(PEO与LiClO4摩尔比为10:1)的ATR-FTIR谱图。
图7所示为不同单体含量复合聚合物电解质膜(PEO与LiClO4摩尔比为10:1)的DSC升温曲线。
具体实施方式
实施例1,一种复合聚合物固态电解质膜的原位自形成制备方法,包括下述步骤:
一、将分子量范围为100K-4000K的PEO与LiClO4按照15:1的摩尔比溶解在去离子水中,搅拌溶解,得到溶液A。
二、以PEO质量为基准,控制聚合物基体与单体的质量比为1:0.25,称取单体丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPA),其中两种单体的质量比为5:1,加入至溶液A中搅拌溶解得到溶液B。
三、分别称取单体质量0.015%的MBAA,单体质量0.75%的光引发剂α-酮戊二酸加入至溶液B,搅拌溶解得到溶液C。
四、将溶液C浇注于聚四氟乙烯模具中,置于紫外光辐射下,光照40min,使单体AM、AMPA聚合并形成交联结构;
五、在40℃真空干燥箱中干燥得到复合聚合物固态电解质膜,将膜裁成19mm直径备用,如图1(a)所示。电解质膜的厚度根据溶液浓度可以控制在0.08mm~0.30mm范围,本实施例中厚度为0.11mm。
分别利用FTIR、FTIR-ATR、DSC、反射偏光显微镜万能试验机以及电化学工作站对所制备的复合聚合物电解质膜的组成、结构、热行为以及室温离子电导率进行表征。图2为复合聚合物电解质膜原料及不同单体含量复合聚合物电解质膜(PEO与LiClO4摩尔比为15:1)的ATR-FTIR谱图。由于结晶态PEO的红外谱图特征为:1350cm-1分裂为两个峰,1470cm-1也分裂为两个峰,并可以在1060cm-1观察到吸收峰。无定形态PEO的红外谱图特征为:1350cm-1和1470cm-1呈现单峰状态存在,并观察不到1060cm-1峰。从FTIR-ATR图谱中可以看出,PEO中引入LiClO4后,1470cm-1呈现单峰状态,1060cm-1峰消失,1350cm-1处的两个分裂峰开始消失,有合并为一个峰的趋势,这说明LiClO4的加入可以抑制PEO的结晶。当PEO-LiClO4体系中引入交联结构,PEO结晶被进一步抑制,1350cm-1和1470cm-1以单峰状态存在,1060cm-1峰消失。
对电解质膜进行DSC升温分析,结果如图3所示。从图中可以明显看出,交联结构的引入,一定程度上抑制了PEO的结晶,将PEO的熔点从59.4℃降低至55.6℃。这有利于PEO分子链运动能力的提高,进而提高离子电导率。电解质膜的表面形貌结果如图4所示,可以明显看出,交联结构的引入使PEO结晶尺寸明显降低,与热分析结果相吻合。聚合物复合电解质膜的力学性能测试结果如图5所示,由图可得,交联结构的形成,可以将电解质膜的拉伸强度从0.66MPa增加至6.2MPa,提高一个数量级,显著提升电解质膜的力学性能。
将制备好的聚合物电解质膜置于两片不锈钢电极之间,组成阻塞电池,测量其交流阻抗谱,交流幅度为10mV,频率范围500KHz-10Hz,通过公式
Figure BDA0001586768920000041
(其中d为电解质膜厚度,Rb为相应的本体阻抗,S为电极电解质有效的接触面积。)计算得到聚合物电解质膜的离子电导率。复合聚合物电解质膜以及PEO/LiClO4电解质膜的室温离子电导率列入表1,可以看出,交联结构的引入显著提高了聚合物电解质膜的室温离子电导率。
表1.PEO/LiClO4电解质膜与PEO/交联结构/LiClO4复合电解质膜室温离子电导率(PEO与LiClO4摩尔比为15:1)
Figure BDA0001586768920000051
实施例2,一种复合聚合物固态电解质膜的原位自形成制备方法,包括下述步骤:
一、将分子量范围为100K-4000K的PEO与LiClO4按照10:1的摩尔比溶解在去离子水中,搅拌溶解,得到溶液A。
二、以PEO质量为基准,控制聚合物基体与单体的质量比为1:0.75,称取单体AM和AMPA(其中两种单体的质量比为5:3),加入至溶液A中搅拌溶解得到溶液B。
三、分别称取单体质量0.06%的MBAA,单体质量0.75%的光引发剂α-酮戊二酸加入至溶液B,搅拌溶解得到溶液C。
四、将溶液C浇注于聚四氟乙烯模具中,置于紫外光辐射下,光照120min,使单体AM、AMPA聚合并形成交联结构;
五、在40℃真空干燥箱中干燥得到复合聚合物固态电解质膜,将膜裁成19mm直径备用,如图1(b)所示。电解质膜的厚度根据溶液浓度可以控制在0.08mm~0.3mm范围,本实施例中的厚度为0.14mm。
分别利用FTIR、FTIR-ATR、DSC以及电化学工作站对所制备的复合聚合物电解质膜的组成、结构、热行为以及室温离子电导率进行表征。图6为复合聚合物电解质膜原料及不同单体含量复合聚合物电解质膜(PEO与LiClO4摩尔比为10:1)的ATR-FTIR谱图。结合PEO结晶态与无定形态的红外特征峰,可以明显看出,交联结构的引入可以进一步抑制复合聚合物电解质中PEO的结晶。对电解质膜进行DSC升温分析,结果如图7所示。从图中可以明显看出,交联结构的引入,可以较大程度抑制PEO的结晶,将PEO的熔点进一步降低至42.7℃。这有利于提高PEO分子链的运动能力,进而提高离子电导率。将制备好的聚合物电解质膜置于两片不锈钢电极之间,组成阻塞电池,测量其交流阻抗谱,并计算得到聚合物电解质膜的离子电导率,结果如表2所示。可以看出,交联结构的引入提高了聚合物电解质膜的室温离子电导率。
表2.PEO/LiClO4电解质膜与PEO/交联结构/LiClO4复合电解质膜室温离子电导率(PEO与LiClO4摩尔比为10:1)
Figure BDA0001586768920000061

Claims (1)

1.一种复合聚合物固态电解质膜的原位自形成制备方法,其特征在于:包括下述步骤:
1)以分子量范围为100K-4000K的PEO为聚合物基体,将其与LiClO4按照5~20:1的摩尔比溶解在去离子水中,搅拌溶解,得到溶液A;
2)称取质量比为5:1~3的丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸单体,以PEO质量为基准,控制聚合物基体与单体的质量比为1:0.1~1:0.75,将单体加入至溶液A中搅拌溶解得到溶液B;
3)分别称取单体质量0.015%~0.06%的交联剂N,N-亚甲基双丙烯酰胺(MBAA),单体质量0.75%的光引发剂α-酮戊二酸加入至溶液B,搅拌溶解得到溶液C;
4)将溶液C浇注于聚四氟乙烯模具中,置于紫外光辐射下,光照30-120min,使单体聚合并交联,在PEO基体中形成交联结构;
5)在40℃真空干燥箱中干燥得到复合聚合物固态电解质膜;
电解质膜的厚度根据溶液浓度控制在0.08mm~0.30mm。
CN201810174186.0A 2018-03-02 2018-03-02 一种复合聚合物固态电解质膜的原位自形成制备方法 Active CN108484836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810174186.0A CN108484836B (zh) 2018-03-02 2018-03-02 一种复合聚合物固态电解质膜的原位自形成制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810174186.0A CN108484836B (zh) 2018-03-02 2018-03-02 一种复合聚合物固态电解质膜的原位自形成制备方法

Publications (2)

Publication Number Publication Date
CN108484836A CN108484836A (zh) 2018-09-04
CN108484836B true CN108484836B (zh) 2020-11-27

Family

ID=63341242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810174186.0A Active CN108484836B (zh) 2018-03-02 2018-03-02 一种复合聚合物固态电解质膜的原位自形成制备方法

Country Status (1)

Country Link
CN (1) CN108484836B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110230115A (zh) * 2019-06-13 2019-09-13 上海科润光电技术有限公司 一种透明可拉伸导电材料的制备方法
CN110676509B (zh) * 2019-09-02 2021-09-24 吉林省东驰新能源科技有限公司 一种室温固态聚合物电解质及其制备方法、电极/电解质复合物及其制备方法和应用
CN110808409A (zh) * 2019-09-17 2020-02-18 厦门大学 一种聚合物锂二次电池及其原位制成方法
CN112447415B (zh) * 2020-11-12 2022-09-16 同济大学 一种耐高低温的柔性超级电容器及其制备方法
CN118099540B (zh) * 2024-03-01 2024-10-01 哈尔滨理工大学 一种壳聚糖改性latp基准固态电解质的制备方法和应用
CN117976965B (zh) * 2024-04-02 2024-07-02 瑞浦兰钧能源股份有限公司 固态电解质材料、复合固态电解质及其制备方法、正极片和电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8804072D0 (en) * 1988-02-22 1988-03-23 Dobrowski S A Solid polyacrylamide electrolyte
CA2573250A1 (en) * 2004-07-06 2006-01-12 Toagosei Co., Ltd. Electrolyte membrane and fuel cell utilizing the electrolyte membrane

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AMPS对PEO/PMMA固态聚合物电解质电导率的影响;张爱玲等;《沈阳工业大学学报》;20161130;第38卷(第6期);第623-627页 *
Improvement of room-temperature conductivity and thermal stability of PEO/LiClO4 systems by addition of a small proportion of polyethylenimine;R.Tanaka,et al;《Electrochimica Acta》;20031231;第48卷;第2311-2316页 *
Polyether,Poly(N,N-dimethylacrylamide),and LiClO4 Composite Polymeric Electrolytes;W. Wieczorek, et al;《Macromolecules》;19961231;第29卷;第143-155页 *

Also Published As

Publication number Publication date
CN108484836A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN108484836B (zh) 一种复合聚合物固态电解质膜的原位自形成制备方法
RU2388088C1 (ru) Новый полимерный электролит и электрохимическое устройство
CN103509153A (zh) 一种聚合物单离子电解质及其制备方法
Ding et al. Pre-irradiation grafted single lithium-ion conducting polymer electrolyte based on poly (vinylidene fluoride)
CN110437456A (zh) 一种自愈合聚合物及其制备方法与应用
Yuan et al. A lithiated gel polymer electrolyte with superior interfacial performance for safe and long-life lithium metal battery
CN109599593B (zh) 多层复合电解质的固态电池的制备方法
CN110808409A (zh) 一种聚合物锂二次电池及其原位制成方法
CN106410270A (zh) 一种以二氧化碳基聚碳酸酯为主链的锂单离子传导固态聚合物电解质及其制备方法
CN110311138A (zh) 一种具有热动保护功能的锂离子二次电池
CN111554975A (zh) 一种固态电解质及其制备方法和锂离子电池
CN111668539A (zh) PVA/Li+/PEO互穿网状结构复合凝胶电解质的制备方法
CN110611120A (zh) 单离子导体聚合物全固态电解质及包含其的锂二次电池
CN110071328B (zh) 交联型改性聚乙烯亚胺固态电解质及其应用
CN111082135A (zh) 一种锂电池固态聚合物电解质膜的制备方法
CN116875234B (zh) 阴阳离子聚合物复合型电池正极粘结剂的制备方法
CN112151860A (zh) 用于锂电池的多孔聚合物凝胶电解质膜的制备方法
CN111224184A (zh) 一种锂离子电池固体电解质界面添加剂的制备方法及应用
CN113299987B (zh) 一种锌离子电池固态聚合物电解质的制备方法
CN114843599A (zh) 一种硼酸酯交联自修复聚合物电解质及其制备方法和应用
CN112442153B (zh) 一种电解质聚合物基材、固态电解质及其制备方法、锂离子电池
CN108134131B (zh) 一种动力锂离子电池固态聚合物电解质及制备方法
CN114551978B (zh) 一种复合固体电解质、制备方法、固体锂电池
Kim et al. Synthesis and electrochemical properties of gel polymer electrolyte using poly (2-(dimethylamino) ethyl methacrylate-co-methyl methacrylate) for fabricating lithium ion polymer battery
CN115360431B (zh) 一种聚丁二烯基高电导率聚合物电解质的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant