CN108484132B - 一种致密型复合防弹板的制备方法 - Google Patents

一种致密型复合防弹板的制备方法 Download PDF

Info

Publication number
CN108484132B
CN108484132B CN201810114932.7A CN201810114932A CN108484132B CN 108484132 B CN108484132 B CN 108484132B CN 201810114932 A CN201810114932 A CN 201810114932A CN 108484132 B CN108484132 B CN 108484132B
Authority
CN
China
Prior art keywords
reaction
ultrasonic
carrying
temperature
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810114932.7A
Other languages
English (en)
Other versions
CN108484132A (zh
Inventor
朱燕艳
潘小杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Great Wall Protection Equipment Industry Co.,Ltd.
Original Assignee
Huaibei Texu Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaibei Texu Information Technology Co ltd filed Critical Huaibei Texu Information Technology Co ltd
Priority to CN201810114932.7A priority Critical patent/CN108484132B/zh
Publication of CN108484132A publication Critical patent/CN108484132A/zh
Application granted granted Critical
Publication of CN108484132B publication Critical patent/CN108484132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Abstract

本发明属于复合陶瓷技术领域,具体涉及一种致密型复合防弹板的制备方法,步骤1,将碳酸铝铵加入至乙醇水溶液中,密封搅拌得到悬浊液;步骤2,将分散剂加入至悬浊液中,恒温超声20‑40min,得到悬浊分散液;步骤3,将硅酸钠加入去离子水中,微波反应10‑20min,形成水玻璃胶体液;步骤4,将水玻璃胶体液加入至悬浊分散液中,超声20‑40min,然后减压蒸馏反应30‑50min,得到浓缩液;步骤5,将浓缩液加入至模具中微波加压反应1‑3h,缓慢泄压后恒压微波反应1‑2h,得到预制板;步骤6,将酚醛树脂加入至无水乙醇中,然后加入碳纳米管,超声分散至形成镀膜液;步骤7,将预制板加入至镀膜液中超声反应20‑50min,减压蒸馏反应10‑30min,然后进行梯度加压加热反应2‑5h,得到致密型复合防弹板。

Description

一种致密型复合防弹板的制备方法
技术领域
本发明属于复合陶瓷技术领域,具体涉及一种致密型复合防弹板的制备方法。
背景技术
现有的陶瓷复合防弹板主要由防弹背板以及设于防弹背板上的多块防弹陶瓷块构成,虽然现有陶瓷复合防弹板的性价比很高,但是这种陶瓷复合防弹板至少还存在着如下几个问题:第一,现有陶瓷复合防弹板的整体重量普遍偏高;第二,在现有的陶瓷复合防弹板中,防弹陶瓷块之间的结合处防弹性能十分薄弱;第三,现有陶瓷复合防弹板的防弹原理是依靠增大子弹侵彻阻力来达到防弹目的的,这一防弹原理限制了现有陶瓷复合防弹板的整体性能偏低。
发明内容
针对现有技术中的问题,本发明提供一种致密型复合防弹板的制备方法,解决了现有陶瓷板的整体防护效果偏低的问题,大大提升了陶瓷板的致密性,有效的提高了防弹板内部紧密性,有效的提升了防护效果。
为实现以上技术目的,本发明的技术方案是:
一种致密型复合防弹板的制备方法,所述制备方法按照如下步骤:
步骤1,将碳酸铝铵加入至乙醇水溶液中,密封搅拌得到悬浊液;碳酸铝铵在乙醇和水中均为不溶物,通过密封搅拌的方式能够形成较为分散的悬浊液;
步骤2,将分散剂加入至悬浊液中,恒温超声20-40min,得到悬浊分散液;分散剂能够作用在碳酸铝铵表面,并且在超声调节下,保证碳酸铝铵与分散剂的结构,形成良好均匀的分散体系;
步骤3,将硅酸钠加入去离子水中,微波反应10-20min,形成水玻璃胶体液;硅酸钠在水中能够形成二氧化硅溶胶结构,采用微波反应的条件,能够形成内部加热效果,大大提升水解速度,促进水玻璃胶体的形成;
步骤4,将水玻璃胶体液加入至悬浊分散液中,超声20-40min,然后减压蒸馏反应30-50min,得到浓缩液;水玻璃胶体在超声条件下能够快速渗透,并分散至悬浊分散液,同时超声能够将分散剂从碳酸铝铵脱离,作用至二氧化硅胶体,此时分散剂能够将二氧化硅包裹,形成粒径可控的纳米二氧化硅;减压蒸馏的方式能够将大部分去离子水和乙醇去除,得到混合材料的水溶液;
步骤5,将浓缩液加入至模具中微波加压反应1-3h,缓慢卸压后恒压微波反应1-2h,得到预制板;采用微波加压的方式能够将去离子水快速,同时加压的方式能够提升模具中材料的结构紧密性,卸压后恒压微波能够保证使预制板结构稳固;
步骤6,将酚醛树脂加入至无水乙醇中,然后加入碳纳米管,超声分散至形成镀膜液;以酚醛树脂作为粘合剂,碳纳米管为悬浊材料,在乙醇中超声分散形成结构分散的覆膜液;
步骤7,将预制板加入至镀膜液中超声反应20-50min,减压蒸馏反应10-30min,然后取出预制板进行梯度加压加热反应2-5h,得到致密型复合防弹板;采用超声的方式将镀膜液中的碳纳米管和酚醛树脂作用至预制板的缝隙内,能够缝隙填补效果,然后减压蒸馏的方式能够提升缝隙填补效果,提升密封效果;采用梯度加压加热的方式将乙醇去除,加压将预制板紧实,不仅能够将缝隙全部填满,同时提升预制板紧密结构,压制完成致密型复合防弹板。
所述步骤1中的碳酸铝铵在乙醇水溶液中的浓度为30-50g/L,所述乙醇水溶液的乙醇质量浓度为70-80%,所述密封搅拌的搅拌速度为2000-4000r/min。
所述步骤2中的分散剂采用聚乙烯吡咯烷酮,加入量是碳酸铝铵质量的70-85%,所述恒温超声反应的温度为30-40℃,超声频率为5-10kHz。
所述步骤3中的硅酸钠的加入量是碳酸铝铵质量的40-60%,所述硅酸钠在去离子水中的浓度为10-20%,所述微波反应的微波功率为400-700W。
所述步骤4中的超声反应的频率为40-60kHz,温度为40-70℃,所述减压蒸馏反应的压力为大气压的50-70%,温度为80-90℃,所述浓缩液的体积是悬浊分散液体积的20-30%。
所述步骤5中的微波加压反应的微波功率为500-1000W,压力为10-30MPa,温度为100-120℃,缓慢卸压的卸压速度为0.1-0.3MPa/min,所述恒压微波反应的压力为0.1-0.3MPa,微波功率为300-500W。
所述步骤6中的酚醛树脂的加入量是碳酸铝铵质量的30-50%,碳纳米管的加入量是钛酸铝铵质量的20-30%,酚醛树脂在无水乙醇中的质量浓度为20-40g/L。
所述步骤6中的超声分散的超声频率为30-50kHz,温度为40-60℃。
所述步骤7中的超声反应的频率为50-70kHz,减压蒸馏反应的温度为70-80℃,压力为大气压的50-70%。
所述步骤7中的梯度加压加热反应的梯度如下:
压力 温度 时间
2-5MPa 150-200℃ 10-20min
10-12MPa 80-100℃ 20-30min
18-20MPa 50-60℃ 20-30min
30-35MPa 室温 剩余时间
从以上描述可以看出,本发明具备以下优点:
1.本发明解决了现有陶瓷板的整体防护效果偏低的问题,大大提升了陶瓷板的致密性,有效的提高了防弹板内部紧密性,有效的提升了防护效果。
2.本发明采用氧化铝作为框架结构,二氧化硅为辅助结构,形成致密性陶瓷结构,同时以碳纳米管为掺杂剂,酚醛树脂为连接剂,增加紧实度的同时也提升了粘合力。
3.本发明采用微波加热的方式制备预制板,能够利用整体加热的方式将内部碳酸铝铵分解形成气体排出,形成结构稳固的裂纹结构,同时加压能够使预制板保持致密稳固的结构。
4.本发明采用超声与减压蒸馏的依次反应能够将碳纳米管转移至缝隙内,在酚醛树脂作用下进行良好的缝隙填补效果,同时材料本身的性能能够很好的形成互补。
具体实施方式
结合实施例详细说明本发明,但不对本发明的权利要求做任何限定。
实施例1
一种致密型复合防弹板的制备方法,所述制备方法按照如下步骤:
步骤1,将碳酸铝铵加入至乙醇水溶液中,密封搅拌得到悬浊液;
步骤2,将分散剂加入至悬浊液中,恒温超声20min,得到悬浊分散液;
步骤3,将硅酸钠加入去离子水中,微波反应10min,形成水玻璃胶体液;
步骤4,将水玻璃胶体液加入至悬浊分散液中,超声20min,然后减压蒸馏反应30min,得到浓缩液;
步骤5,将浓缩液加入至模具中微波加压反应1h,缓慢卸压后恒压微波反应1h,得到预制板;
步骤6,将酚醛树脂加入至无水乙醇中,然后加入碳纳米管,超声分散至形成镀膜液;
步骤7,将预制板加入至镀膜液中超声反应20min,减压蒸馏反应10min,然后取出预制板进行梯度加压加热反应2h,得到致密型复合防弹板。
所述步骤1中的碳酸铝铵在乙醇水溶液中的浓度为30g/L,所述乙醇水溶液的乙醇质量浓度为70%,所述密封搅拌的搅拌速度为2000r/min。
所述步骤2中的分散剂采用聚乙烯吡咯烷酮,加入量是碳酸铝铵质量的70%,所述恒温超声反应的温度为30℃,超声频率为5kHz。
所述步骤3中的硅酸钠的加入量是碳酸铝铵质量的40%,所述硅酸钠在去离子水中的浓度为10%,所述微波反应的微波功率为400W。
所述步骤4中的超声反应的频率为40kHz,温度为40℃,所述减压蒸馏反应的压力为大气压的50%,温度为80℃,所述浓缩液的体积是悬浊分散液体积的20%。
所述步骤5中的微波加压反应的微波功率为500W,压力为10MPa,温度为100℃,缓慢卸压的卸压速度为0.1MPa/min,所述恒压微波反应的压力为0.1MPa,微波功率为300W。
所述步骤6中的酚醛树脂的加入量是碳酸铝铵质量的30%,碳纳米管的加入量是钛酸铝铵质量的20%,酚醛树脂在无水乙醇中的质量浓度为20g/L。
所述步骤6中的超声分散的超声频率为30kHz,温度为40℃。
所述步骤7中的超声反应的频率为50kHz,减压蒸馏反应的温度为70℃,压力为大气压的50%。
所述步骤7中的梯度加压加热反应的梯度如下:
Figure GDA0003160186080000041
Figure GDA0003160186080000051
结果:相比于传统工艺,本发明复合材料防弹板的防弹性能(V50值)提升18%。
实施例2
一种致密型复合防弹板的制备方法,所述制备方法按照如下步骤:
步骤1,将碳酸铝铵加入至乙醇水溶液中,密封搅拌得到悬浊液;
步骤2,将分散剂加入至悬浊液中,恒温超声40min,得到悬浊分散液;
步骤3,将硅酸钠加入去离子水中,微波反应20min,形成水玻璃胶体液;
步骤4,将水玻璃胶体液加入至悬浊分散液中,超声40min,然后减压蒸馏反应50min,得到浓缩液;
步骤5,将浓缩液加入至模具中微波加压反应3h,缓慢卸压后恒压微波反应2h,得到预制板;
步骤6,将酚醛树脂加入至无水乙醇中,然后加入碳纳米管,超声分散至形成镀膜液;
步骤7,将预制板加入至镀膜液中超声反应50min,减压蒸馏反应30min,然后取出预制板进行梯度加压加热反应5h,得到致密型复合防弹板。
所述步骤1中的碳酸铝铵在乙醇水溶液中的浓度为50g/L,所述乙醇水溶液的乙醇质量浓度为80%,所述密封搅拌的搅拌速度为4000r/min。
所述步骤2中的分散剂采用聚乙烯吡咯烷酮,加入量是碳酸铝铵质量的85%,所述恒温超声反应的温度为40℃,超声频率为10kHz。
所述步骤3中的硅酸钠的加入量是碳酸铝铵质量的60%,所述硅酸钠在去离子水中的浓度为20%,所述微波反应的微波功率为700W。
所述步骤4中的超声反应的频率为60kHz,温度为70℃,所述减压蒸馏反应的压力为大气压的70%,温度为90℃,所述浓缩液的体积是悬浊分散液体积的30%。
所述步骤5中的微波加压反应的微波功率为1000W,压力为30MPa,温度为120℃,缓慢卸压的卸压速度为0.3MPa/min,所述恒压微波反应的压力为0.3MPa,微波功率为500W。
所述步骤6中的酚醛树脂的加入量是碳酸铝铵质量的50%,碳纳米管的加入量是钛酸铝铵质量的30%,酚醛树脂在无水乙醇中的质量浓度为40g/L。
所述步骤6中的超声分散的超声频率为50kHz,温度为60℃。
所述步骤7中的超声反应的频率为70kHz,减压蒸馏反应的温度为80℃,压力为大气压的70%。
所述步骤7中的梯度加压加热反应的梯度如下:
压力 温度 时间
5MPa 200℃ 20min
12MPa 100℃ 30min
20MPa 60℃ 30min
35MPa 室温 剩余时间
结果:相比于传统工艺,本发明复合材料防弹板的防弹性能(V50值)提升15%。
实施例3
一种致密型复合防弹板的制备方法,所述制备方法按照如下步骤:
步骤1,将碳酸铝铵加入至乙醇水溶液中,密封搅拌得到悬浊液;
步骤2,将分散剂加入至悬浊液中,恒温超声30min,得到悬浊分散液;
步骤3,将硅酸钠加入去离子水中,微波反应15min,形成水玻璃胶体液;
步骤4,将水玻璃胶体液加入至悬浊分散液中,超声30min,然后减压蒸馏反应40min,得到浓缩液;
步骤5,将浓缩液加入至模具中微波加压反应2h,缓慢卸压后恒压微波反应2h,得到预制板;
步骤6,将酚醛树脂加入至无水乙醇中,然后加入碳纳米管,超声分散至形成镀膜液;
步骤7,将预制板加入至镀膜液中超声反应30min,减压蒸馏反应20min,然后取出预制板进行梯度加压加热反应4h,得到致密型复合防弹板。
所述步骤1中的碳酸铝铵在乙醇水溶液中的浓度为40g/L,所述乙醇水溶液的乙醇质量浓度为75%,所述密封搅拌的搅拌速度为3000r/min。
所述步骤2中的分散剂采用聚乙烯吡咯烷酮,加入量是碳酸铝铵质量的75%,所述恒温超声反应的温度为35℃,超声频率为8kHz。
所述步骤3中的硅酸钠的加入量是碳酸铝铵质量的50%,所述硅酸钠在去离子水中的浓度为15%,所述微波反应的微波功率为500W。
所述步骤4中的超声反应的频率为50kHz,温度为60℃,所述减压蒸馏反应的压力为大气压的60%,温度为85℃,所述浓缩液的体积是悬浊分散液体积的25%。
所述步骤5中的微波加压反应的微波功率为800W,压力为20MPa,温度为110℃,缓慢卸压的卸压速度为0.2MPa/min,所述恒压微波反应的压力为0.2MPa,微波功率为400W。
所述步骤6中的酚醛树脂的加入量是碳酸铝铵质量的40%,碳纳米管的加入量是钛酸铝铵质量的25%,酚醛树脂在无水乙醇中的质量浓度为30g/L。
所述步骤6中的超声分散的超声频率为40kHz,温度为50℃。
所述步骤7中的超声反应的频率为60kHz,减压蒸馏反应的温度为75℃,压力为大气压的60%。
所述步骤7中的梯度加压加热反应的梯度如下:
压力 温度 时间
3MPa 180℃ 15min
11MPa 90℃ 25min
19MPa 55℃ 25min
32MPa 室温 剩余时间
结果:相比于传统工艺,本发明复合材料防弹板的防弹性能(V50值)提升20%。
综上所述,本发明具有以下优点:
1.本发明解决了现有陶瓷板的整体防护效果偏低的问题,大大提升了陶瓷板的致密性,有效的提高了防弹板内部紧密性,有效的提升了防护效果。
2.本发明采用氧化铝作为框架结构,二氧化硅为辅助结构,形成致密性陶瓷结构,同时以碳纳米管为掺杂剂,酚醛树脂为连接剂,增加紧实度的同时也提升了粘合力。
3.本发明采用微波加热的方式制备预制板,能够利用整体加热的方式将内部碳酸铝铵分解形成气体排出,形成结构稳固的裂纹结构,同时加压能够使预制板保持致密稳固的结构。
4.本发明采用超声与减压蒸馏的依次反应能够将碳纳米管转移至缝隙内,在酚醛树脂作用下进行良好的缝隙填补效果,同时材料本身的性能能够很好的形成互补。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (1)

1.一种致密型复合防弹板的制备方法,其特征在于:所述制备方法按照如下步骤:
步骤1,将碳酸铝铵加入至乙醇水溶液中,密封搅拌得到悬浊液;
步骤2,将分散剂加入至悬浊液中,恒温超声20-40min,得到悬浊分散液;
步骤3,将硅酸钠加入去离子水中,微波反应10-20min,形成水玻璃胶体液;
步骤4,将水玻璃胶体液加入至悬浊分散液中,超声20-40min,然后减压蒸馏反应30-50min,得到浓缩液;
步骤5,将浓缩液加入至模具中微波加压反应1-3h,缓慢卸压后恒压微波反应1-2h,得到预制板;
步骤6,将酚醛树脂加入至无水乙醇中,然后加入碳纳米管,超声分散至形成镀膜液;
步骤7,将预制板加入至镀膜液中超声反应20-50min,减压蒸馏反应10-30min,然后取出预制板进行梯度加压加热反应2-5h,得到致密型复合防弹板;
所述步骤1中的碳酸铝铵在乙醇水溶液中的浓度为30-50g/L,所述乙醇水溶液的乙醇质量浓度为70-80%,所述密封搅拌的搅拌速度为2000-4000r/min;
所述步骤2中的分散剂采用聚乙烯吡咯烷酮,加入量是碳酸铝铵质量的70-85%,所述恒温超声反应的温度为30-40℃,超声频率为5-10kHz;
所述步骤3中的硅酸钠的加入量是碳酸铝铵质量的40-60%,所述硅酸钠在去离子水中的浓度为10-20%,所述微波反应的微波功率为400-700W;
所述步骤4中的超声反应的频率为40-60kHz,温度为40-70℃,所述减压蒸馏反应的压力为大气压的50-70%,温度为80-90℃,所述浓缩液的体积是悬浊分散液体积的20-30%;
所述步骤5中的微波加压反应的微波功率为500-1000W,压力为10-30MPa,温度为100-120℃,缓慢卸压的卸压速度为0.1-0.3MPa/min,所述恒压微波反应的压力为0.1-0.3MPa,微波功率为300-500W;
所述步骤6中的酚醛树脂的加入量是碳酸铝铵质量的30-50%,碳纳米管的加入量是钛酸铝铵质量的20-30%,酚醛树脂在无水乙醇中的质量浓度为20-40g/L;
所述步骤6中的超声分散的超声频率为30-50kHz,温度为40-60℃;
所述步骤7中的超声反应的频率为50-70kHz,减压蒸馏反应的温度为70-80℃,压力为大气压的50-70%;
所述步骤7中的梯度加压加热反应的梯度如下:
压力 温度 时间 2-5MPa 150-200℃ 10-20min 10-12MPa 80-100℃ 20-30min 18-20MPa 50-60℃ 20-30min 30-35MPa 室温 剩余时间
CN201810114932.7A 2018-02-06 2018-02-06 一种致密型复合防弹板的制备方法 Active CN108484132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810114932.7A CN108484132B (zh) 2018-02-06 2018-02-06 一种致密型复合防弹板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810114932.7A CN108484132B (zh) 2018-02-06 2018-02-06 一种致密型复合防弹板的制备方法

Publications (2)

Publication Number Publication Date
CN108484132A CN108484132A (zh) 2018-09-04
CN108484132B true CN108484132B (zh) 2021-11-02

Family

ID=63344164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810114932.7A Active CN108484132B (zh) 2018-02-06 2018-02-06 一种致密型复合防弹板的制备方法

Country Status (1)

Country Link
CN (1) CN108484132B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669982A (zh) * 2005-01-26 2005-09-21 中国科学院上海硅酸盐研究所 碳纳米管/莫来石陶瓷基复相材料及其制备方法
CN1800095A (zh) * 2005-12-09 2006-07-12 中国科学院上海硅酸盐研究所 莫来石前驱体原位包覆碳纳米管的复合粉体的制备方法
CN101734698A (zh) * 2009-09-08 2010-06-16 东北大学 一种由含铝物料制备氧化铝的方法
CN101948312A (zh) * 2010-09-17 2011-01-19 西安交通大学 一种碳化硅防弹陶瓷
CN102183177A (zh) * 2011-04-08 2011-09-14 山东合创明业精细陶瓷有限公司 整体弧形大尺寸氧化铝防弹陶瓷板及其模具和制法
JP2012116719A (ja) * 2010-12-02 2012-06-21 Toyota Motor Corp 複合酸化物前駆体、複合酸化物、並びに排ガス浄化触媒
CN102618932A (zh) * 2012-03-31 2012-08-01 合肥工业大学 一种由膨润土制取碱式碳酸铝铵晶须和氧化铝晶须联产液体硅酸钠的方法
CN103395240A (zh) * 2013-08-14 2013-11-20 苏州捷迪纳米科技有限公司 碳纳米复合材料的制备方法以及相应碳纳米复合材料
CN103980004A (zh) * 2014-05-23 2014-08-13 徐林波 一种体内复合强化的陶瓷制品
CN104045348A (zh) * 2014-06-19 2014-09-17 浙江立泰复合材料有限公司 反应烧结陶瓷防弹插板及反应烧结防弹陶瓷的制备方法
CN104848748A (zh) * 2015-05-15 2015-08-19 中国航空工业集团公司北京航空材料研究院 一种轻质装甲防弹板及其制备方法
CN105622104A (zh) * 2014-10-27 2016-06-01 天津津航技术物理研究所 一种高纯AlON透明陶瓷粉体的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106700106A (zh) * 2015-11-18 2017-05-24 青岛智信生物科技有限公司 聚乙烯醇-氧化石墨烯纳米带复合材料薄膜的制备方法
CN106048363A (zh) * 2016-05-31 2016-10-26 合肥正浩机械科技有限公司 一种高耐磨抗冲刷陶瓷密封环及其制备方法
CN106834777A (zh) * 2016-12-30 2017-06-13 梅庆波 一种低膨胀系数复合金属基陶瓷模具材料的制备方法
CN107473735B (zh) * 2017-09-29 2019-08-02 无锡特科精细陶瓷有限公司 一种钛酸铝陶瓷的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669982A (zh) * 2005-01-26 2005-09-21 中国科学院上海硅酸盐研究所 碳纳米管/莫来石陶瓷基复相材料及其制备方法
CN1800095A (zh) * 2005-12-09 2006-07-12 中国科学院上海硅酸盐研究所 莫来石前驱体原位包覆碳纳米管的复合粉体的制备方法
CN101734698A (zh) * 2009-09-08 2010-06-16 东北大学 一种由含铝物料制备氧化铝的方法
CN101948312A (zh) * 2010-09-17 2011-01-19 西安交通大学 一种碳化硅防弹陶瓷
JP2012116719A (ja) * 2010-12-02 2012-06-21 Toyota Motor Corp 複合酸化物前駆体、複合酸化物、並びに排ガス浄化触媒
CN102183177A (zh) * 2011-04-08 2011-09-14 山东合创明业精细陶瓷有限公司 整体弧形大尺寸氧化铝防弹陶瓷板及其模具和制法
CN102618932A (zh) * 2012-03-31 2012-08-01 合肥工业大学 一种由膨润土制取碱式碳酸铝铵晶须和氧化铝晶须联产液体硅酸钠的方法
CN103395240A (zh) * 2013-08-14 2013-11-20 苏州捷迪纳米科技有限公司 碳纳米复合材料的制备方法以及相应碳纳米复合材料
CN103980004A (zh) * 2014-05-23 2014-08-13 徐林波 一种体内复合强化的陶瓷制品
CN104045348A (zh) * 2014-06-19 2014-09-17 浙江立泰复合材料有限公司 反应烧结陶瓷防弹插板及反应烧结防弹陶瓷的制备方法
CN105622104A (zh) * 2014-10-27 2016-06-01 天津津航技术物理研究所 一种高纯AlON透明陶瓷粉体的制备方法
CN104848748A (zh) * 2015-05-15 2015-08-19 中国航空工业集团公司北京航空材料研究院 一种轻质装甲防弹板及其制备方法

Also Published As

Publication number Publication date
CN108484132A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN109265131B (zh) 一种气凝胶真空绝热板及其芯材的制备方法
WO2019223022A1 (zh) 一种工业用大尺寸泡沫铝夹芯板的制备方法
CN109251005B (zh) 一种增强二氧化硅气凝胶材料的制备方法
CN113896516B (zh) 一种石英陶瓷辊的制备方法
CN108484132B (zh) 一种致密型复合防弹板的制备方法
US20220275164A1 (en) Thermally insulating aerogel vacuum composite panel and preparation method thereof
CN106946583B (zh) 一种铝碳化硅一体式基板的制备方法
CN111302332B (zh) 一种超高导热石墨烯厚膜及其制备方法
CN114574787A (zh) 一种用于桥架的轻质化碳纤维钢板复合材料
CN111978092A (zh) 一种纤维增强陶瓷基复合材料的制备方法
CN102600766B (zh) 一种六面顶压机合成宝石级金刚石的方法
CN114031366A (zh) 一种气凝胶填充金属框架结构制备的复合材料及其制备方法
CN108249898B (zh) 一种高性能复合防弹板的制备方法
CN115385606B (zh) 一种轻质防火的纳米建筑材料及其制备方法
CN111333319A (zh) 一种气凝胶隔热保温玻璃及其制备方法
CN102503482A (zh) 一种低热导率改性蛭石复合隔热材料及其制备方法
CN115110311B (zh) 一种耐高温氧化铝气凝胶毡的制备方法及氧化铝气凝胶毡
CN114315326B (zh) 一种高质量陶瓷平板的制备方法
CN110814078B (zh) 一种钼铜阶梯材料的制备方法
CN110561851B (zh) 低成本非真空金属层状复合材料制备方法
CN108258231B (zh) 一种多孔氧化铝微球的制备方法
CN108387141B (zh) 一种复合防弹陶瓷板的制备方法
CN205601286U (zh) 热能设备用岩棉复合保温板
CN109748284A (zh) 一种无机气凝胶的制备方法
CN112062538A (zh) 常压微波等离子体法二氧化硅气凝胶绝热材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211015

Address after: 235000 No. 320, dahejia East team, Qiji village, Hancun Town, Suixi County, Huaibei City, Anhui Province

Applicant after: Huaibei Texu Information Technology Co.,Ltd.

Address before: 432000 Room 201, West, second floor, office building, No. 3, Chuangye Road, science and Technology Pioneer Park, Hangkong Road, Xiaogan City, Hubei Province

Applicant before: XIAOGAN AOXIN NEW MATERIAL TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221117

Address after: Room 101, 39 # Factory Building, Gongxing Industrial City, No. 666, Yaohu West Fifth Road, Nanchang Hi tech Industrial Development Zone, Jiangxi Province, 330000

Patentee after: Jiangxi Great Wall Protection Equipment Industry Co.,Ltd.

Address before: 235000 No. 320, dahejia East team, Qiji village, Hancun Town, Suixi County, Huaibei City, Anhui Province

Patentee before: Huaibei Texu Information Technology Co.,Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method for dense composite bulletproof plates

Effective date of registration: 20230704

Granted publication date: 20211102

Pledgee: Bank of China Limited Nanchang Qinghu sub branch

Pledgor: Jiangxi Great Wall Protection Equipment Industry Co.,Ltd.

Registration number: Y2023980047393