CN108470782B - 一种中红外透明导电p型氧化物薄膜材料 - Google Patents

一种中红外透明导电p型氧化物薄膜材料 Download PDF

Info

Publication number
CN108470782B
CN108470782B CN201810198862.8A CN201810198862A CN108470782B CN 108470782 B CN108470782 B CN 108470782B CN 201810198862 A CN201810198862 A CN 201810198862A CN 108470782 B CN108470782 B CN 108470782B
Authority
CN
China
Prior art keywords
oxide film
transparent conductive
substrate
type oxide
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810198862.8A
Other languages
English (en)
Other versions
CN108470782A (zh
Inventor
朱嘉琦
高岗
杨磊
代兵
夏菲
郭帅
杨振怀
王鹏
耿方娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810198862.8A priority Critical patent/CN108470782B/zh
Publication of CN108470782A publication Critical patent/CN108470782A/zh
Application granted granted Critical
Publication of CN108470782B publication Critical patent/CN108470782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一种中红外透明导电P型氧化物薄膜材料,它涉及一种P型导电氧化物薄膜材料。本发明是要解决现有的P型透明氧化物薄膜导电性较差、载流子浓度较低以及中波红外透过率低的技术问题。本发明的中红外透明导电P型氧化物薄膜材料的化学式为La2SexOy,其中x为3~4,y为9~11。本发明的制备方法:一、靶材和衬底的清洗;二、La2O3薄膜的制备;三、掺杂Se。本发明制备的P型透明导电氧化物薄膜的光学带隙约为4.0eV,空穴有效质量小于电子的有效质量,具有较高的载流子浓度和电导率,中波红外光区的透过率约为70%,透过性能较为良好。

Description

一种中红外透明导电P型氧化物薄膜材料
技术领域
本发明涉及一种P型导电氧化物薄膜材料。
背景技术
光感探测器的使用范围正在逐步扩大,然而这类探测器在工作过程中经常会受到外界电磁波等其它信号的干扰,使得探测器探测信号减弱,成像质量与实际物体存在较大偏差。为了降低电磁波等信号的干扰,一般需要在探测器窗口镀制TCOs(TransparentConductive Oxides,透明导电氧化物)膜层,实现优异光学透过性和强电磁屏蔽性的统一。然而,以氧化铟锡(ITO)为代表的传统TCOs薄膜,虽然载流子浓度(1018~1021cm-3)和迁移率(5~100cm-3)可调控,但等离子波长调控最远仅在近红外波段内,故无法延伸至中红外(3~5μm)甚至长波红外区域(8~12μm),限制了传统TCOs的使用范围。当今,光感探测器正向全天候高灵敏方向发展(如:昼夜两用、适应复杂电磁干扰信号环境等),因此TCOs膜层实现优异中、长红外波段透明导电特性就显得尤为重要。常规中红外波段透明导电材料是以具有铜铁矿结构的本征P型CuAlO2以及以Cu+为基础的系列铜铁矿结构的氧化物(CuMO2,其中M=In,Ga,Sc,Y,Cr等)和镧铜氧硫化物(LaCuOCh,其中Ch=S或Se)的P型材料为主。此类P型TCOs具有中红外透过性能较好(~75%),但其空穴浓度低(~1.3×1017cm-3),无法实现优异电导特性,使光感探测器在电磁干扰方面受到了极大影响。
发明内容
本发明是要解决现有的P型透明氧化物薄膜导电性较差、载流子浓度较低以及中波红外透过率低的技术问题,而提供一种中红外透明导电P型氧化物薄膜材料。
本发明的一种中红外透明导电P型氧化物薄膜材料的化学式为La2SexOy,其中x为3~4,y为9~11;所述的中红外透明导电P型氧化物薄膜材料的光学带隙为3.5eV~4.5eV,载流子浓度为1020cm-3的数量级,电导率为110.9S/m,中波红外光区的透过率为70%。
本发明的一种中红外透明导电P型氧化物薄膜材料的制备方法按如下步骤进行:
一、靶材和衬底的清洗:
在超声功率为200W~400W的条件下,将金属La靶材依次置于丙酮、酒精和去离子水中分别清洗10min~30min,得到干净的靶材;
在超声功率为50W~150W的条件下,将衬底依次置于丙酮、酒精和去离子水中分别清洗5min~15min,得到干净的衬底材料;所述的衬底为尺寸为10mm×10mm×1mm的熔融石英;
二、La2O3薄膜的制备:
(1)安装靶材和衬底,开启设备抽真空至真空度为6×10-5Pa~4×10-5Pa;
(2)通入氩气,在氩气流量为10sccm~40sccm、气体压强为0.5Pa~1.5Pa、镀膜电源为射频电源和镀膜功率为50W~100W的条件下预溅射5min~10min;然后打开靶材的挡板,再通入氧气,在氩气流量为10sccm~40sccm、氧气流量为1sccm~6sccm、气体压强为0.5Pa~1.5Pa、镀膜电源为射频电源和镀膜功率为50W~100W的条件下溅射20min~120min;
(3)关闭所有电源,打开放气阀至真空仓气压恢复至大气压,然后开仓取样,在熔融石英上得到La2O3薄膜;此时所镀La2O3薄膜厚度为100nm~1200nm;
三、掺杂Se:
(1)、称取质量为0.02g~0.1g的Se粉末,放入直径为10mm且长度为10cm的单端开口的石英管Ⅰ内,用石英棉封住石英管Ⅰ的开口端;
(2)、依次将镀有La2O3薄膜的熔融石英和装有Se粉末的石英管Ⅰ放入直径为18mm且长度为20cm的单端开口的石英管Ⅱ内,然后抽真空至真空度为5×10-3Pa~2×10-3Pa,封闭石英管Ⅱ;
(3)、将真空封闭的石英管Ⅱ置于管式炉中进行退火处理,升温速率为5℃/min,退火温度为400℃~1000℃,退火时间为1h~4h;
(4)、管式炉自然降温至室温,打开管式炉取出样品,得到中红外透明导电P型氧化物薄膜材料。
本发明结合了射频磁控溅射(RF-MS)和硒化退火两步法制备了一种新型的Se掺杂La2O3的P型TCOs薄膜,其光学带隙约为4.0eV,空穴有效质量小于电子的有效质量,是一种很好的P型TCOs的备选材料,为P型TCOs的发展注入了新的力量,拓宽了P型TCOs的研究范围,是P型TCOs发展中的一个重大发现。本发明的材料具有较高的载流子浓度和电导率,其载流子浓度最高可达1020cm-3的数量级,电导率最高可达110.9S/m,将此P型TCOs薄膜镀制在熔融石英衬底上,当膜厚约为150nm时,中波红外光区的透过率约为70%,透过性能较为良好。此种P型TCOs材料的发现拓宽了P型TCOs的种类范围,有利于促进相关透明器件的研究。这一性能效果现有P型TCOs材料很少可以实现的,故而本发明的Se掺杂La2O3有望成为以Cu+为基础的P型TCOs的替代品,同时该材料采用射频磁控溅射(RF-MS)和硒化退火两步法制备,制备设备成本低,工艺操作简便,制备的样品性能稳定,适合批量生产,可以应用于中红外波段的光感探测器。
附图说明
图1为中波红外透过率图谱。
具体实施方式
具体实施方式一:本实施方式为一种中红外透明导电P型氧化物薄膜材料,其化学式为La2SexOy,其中x为3~4,y为9~11;所述的中红外透明导电P型氧化物薄膜材料的光学带隙为3.5eV~4.5eV,载流子浓度为1020cm-3的数量级,电导率为110.9S/m,中波红外光区的透过率为70%。
具体实施方式二:本实施方式为具体实施方式一中的中红外透明导电P型氧化物薄膜材料的制备方法,具体是按如下步骤进行:
一、靶材和衬底的清洗:
在超声功率为200W~400W的条件下,将金属La靶材依次置于丙酮、酒精和去离子水中分别清洗10min~30min,得到干净的靶材;
在超声功率为50W~150W的条件下,将衬底依次置于丙酮、酒精和去离子水中分别清洗5min~15min,得到干净的衬底材料;所述的衬底为尺寸为10mm×10mm×1mm的熔融石英;
二、La2O3薄膜的制备:
(1)安装靶材和衬底,开启设备抽真空至真空度为6×10-5Pa~4×10-5Pa;
(2)通入氩气,在氩气流量为10sccm~40sccm、气体压强为0.5Pa~1.5Pa、镀膜电源为射频电源和镀膜功率为50W~100W的条件下预溅射5min~10min;然后打开靶材的挡板,再通入氧气,在氩气流量为10sccm~40sccm、氧气流量为1sccm~6sccm、气体压强为0.5Pa~1.5Pa、镀膜电源为射频电源和镀膜功率为50W~100W的条件下溅射20min~120min;
(3)关闭所有电源,打开放气阀至真空仓气压恢复至大气压,然后开仓取样,在熔融石英上得到La2O3薄膜;此时所镀La2O3薄膜厚度为100nm~1200nm;
三、掺杂Se:
(1)、称取质量为0.02g~0.1g的Se粉末,放入直径为10mm且长度为10cm的单端开口的石英管Ⅰ内,用石英棉封住石英管Ⅰ的开口端;
(2)、依次将镀有La2O3薄膜的熔融石英和装有Se粉末的石英管Ⅰ放入直径为18mm且长度为20cm的单端开口的石英管Ⅱ内,然后抽真空至真空度为5×10-3Pa~2×10-3Pa,封闭石英管Ⅱ;
(3)、将真空封闭的石英管Ⅱ置于管式炉中进行退火处理,升温速率为5℃/min,退火温度为400℃~1000℃,退火时间为1h~4h;
(4)、管式炉自然降温至室温,打开管式炉取出样品,得到中红外透明导电P型氧化物薄膜材料。
具体实施方式三:本实施方式与具体实施方式二不同的是:步骤二(2)中通入氩气,在氩气流量为20sccm、气体压强为1Pa、镀膜电源为射频电源和镀膜功率为100W的条件下预溅射5min;然后打开靶材的挡板,再通入氧气,在氩气流量为20sccm、氧气流量为4sccm、气体压强为1Pa、镀膜电源为射频电源和镀膜功率为20W的条件下溅射60min。其他与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二不同的是:步骤三(2)中抽真空至真空度为5×10-3Pa。其他与具体实施方式二相同。
具体实施方式五:本实施方式与具体实施方式二不同的是:步骤三(3)中退火温度为600℃,退火时间为1h。其他与具体实施方式二相同。
用以下试验对本发明进行验证:
试验一:本试验为一种中红外透明导电P型氧化物薄膜材料的制备方法,具体是按如下步骤进行:
一、靶材和衬底的清洗:
在超声功率为200W的条件下,将金属La靶材依次置于丙酮、酒精和去离子水中分别清洗15min,得到干净的靶材;
在超声功率为50W的条件下,将衬底依次置于丙酮、酒精和去离子水中分别清洗5min,得到干净的衬底材料;所述的衬底为尺寸为10mm×10mm×1mm的熔融石英;
二、La2O3薄膜的制备:
(1)安装靶材和衬底,开启设备抽真空至真空度为6×10-5Pa;
(2)通入氩气,在氩气流量为20sccm、气体压强为1Pa、镀膜电源为射频电源和镀膜功率为100W的条件下预溅射5min;然后打开靶材的挡板,再通入氧气,在氩气流量为20sccm、氧气流量为1sccm、气体压强为1Pa、镀膜电源为射频电源和镀膜功率为100W的条件下溅射60min;
(3)关闭所有电源,打开放气阀至真空仓气压恢复至大气压,然后开仓取样,在熔融石英上得到La2O3薄膜;此时所镀La2O3薄膜厚度为300nm;
三、掺杂Se:
(1)、称取质量为0.05g的Se粉末,放入直径为10mm且长度为10cm的单端开口的石英管Ⅰ内,用石英棉封住石英管Ⅰ的开口端;
(2)、依次将镀有La2O3薄膜的熔融石英和装有Se粉末的石英管Ⅰ放入直径为18mm且长度为20cm的单端开口的石英管Ⅱ内,然后抽真空至真空度为5×10-3Pa,封闭石英管Ⅱ;
(3)、将真空封闭的石英管Ⅱ置于管式炉中进行退火处理,升温速率为5℃/min,退火温度为600℃,退火时间为1h;
(4)、管式炉自然降温至室温,打开管式炉取出样品,得到中红外透明导电P型氧化物薄膜材料。
试验二:本试验与试验一不同的是:步骤二(2)中氧气流量为2sccm。其它与试验一相同。
试验三:本试验与试验一不同的是:步骤二(2)中氧气流量为3sccm。其它与试验一相同。
试验四:本试验与试验一不同的是:步骤二(2)中氧气流量为4sccm。其它与试验一相同。
试验五:本试验与试验一不同的是:步骤三(1)中称取质量为0.1g的Se粉末。其它与试验一相同。
试验六:本试验与试验五不同的是:步骤二(2)中氧气流量为2sccm。其它与试验五相同。
试验七:本试验与试验五不同的是:步骤二(2)中氧气流量为3sccm。其它与试验五相同。
试验八:本试验与试验五不同的是:步骤二(2)中氧气流量为4sccm。其它与试验五相同。
试验九:本试验与试验五不同的是:步骤二(2)中氧气流量为5sccm。其它与试验五相同。
图1为中波红外透过率图谱,曲线a为试验四制备的中红外透明导电P型氧化物薄膜材料,曲线b为试验三制备的中红外透明导电P型氧化物薄膜材料,曲线c为试验二制备的中红外透明导电P型氧化物薄膜材料,通过图1可以看出,随着氧气流量的增加所得薄膜的中波红外透过率也在逐步增加,整体的中波红外透过率均在70%以上。
表1为试验一和二制备的中红外透明导电P型氧化物薄膜材料的电学性能数据,表1显示了不同氧气流量下薄膜的电学性能,当氧气流量为2sccm时,薄膜的载流子浓度已经达到6.144×1019cm-3,电导率为31.38S/m,电学性能较为良好。
表1
试验组别 载流子浓度(cm<sup>-3</sup>) 电导率(S/m)
试验一 8.440×10<sup>16</sup> 10.42
试验二 6.144×10<sup>19</sup> 31.38
表2是试验五至九制备的中红外透明导电P型氧化物薄膜材料的电学性能数据,通过表2可以看出,随着氧气流量的变化薄膜呈现出良好的电学性能,薄膜的载流子浓度最高可达1020cm-3的数量级,电导率最高可达110.9S/m。
表2
试验组别 载流子浓度(cm<sup>-3</sup>) 电导率(S/m)
试验五 4.922×10<sup>19</sup> 82.14
试验六 3.562×10<sup>19</sup> 50.94
试验七 3.603×10<sup>20</sup> 102.2
试验八 1.224×10<sup>20</sup> 107.7
试验九 1.008×10<sup>19</sup> 110.9

Claims (1)

1.一种中红外透明导电P型氧化物薄膜材料,其特征在于中红外透明导电P型氧化物薄膜材料的化学式为La2SexOy,其中x为3~4,y为9~11;所述的中红外透明导电P型氧化物薄膜材料的光学带隙为3.5eV~4.5eV,载流子浓度为1020cm-3的数量级,电导率为110.9S/m,中波红外光区的透过率为70%;
所述的中红外透明导电P型氧化物薄膜材料的制备方法是按如下步骤进行:
一、靶材和衬底的清洗:
在超声功率为200W~400W的条件下,将金属La靶材依次置于丙酮、酒精和去离子水中分别清洗10min~30min,得到干净的靶材;
在超声功率为50W~150W的条件下,将衬底依次置于丙酮、酒精和去离子水中分别清洗5min~15min,得到干净的衬底材料;所述的衬底为尺寸为10mm×10mm×1mm的熔融石英;
二、La2O3薄膜的制备:
(1)安装靶材和衬底,开启设备抽真空至真空度为6×10-5Pa~4×10-5Pa;
(2)通入氩气,在氩气流量为10sccm~40sccm、气体压强为0.5Pa~1.5Pa、镀膜电源为射频电源和镀膜功率为50W~100W的条件下预溅射5min~10min;然后打开靶材的挡板,再通入氧气,在氩气流量为10sccm~40sccm、氧气流量为1sccm~6sccm、气体压强为0.5Pa~1.5Pa、镀膜电源为射频电源和镀膜功率为50W~100W的条件下溅射20min~120min;
(3)关闭所有电源,打开放气阀至真空仓气压恢复至大气压,然后开仓取样,在熔融石英上得到La2O3薄膜;
三、掺杂Se:
(1)、称取质量为0.02g~0.1g的Se粉末,放入直径为10mm且长度为10cm的单端开口的石英管Ⅰ内,用石英棉封住石英管Ⅰ的开口端;
(2)、依次将镀有La2O3薄膜的熔融石英和装有Se粉末的石英管Ⅰ放入直径为18mm且长度为20cm的单端开口的石英管Ⅱ内,然后抽真空至真空度为5×10-3Pa~2×10-3Pa,封闭石英管Ⅱ;
(3)、将真空封闭的石英管Ⅱ置于管式炉中进行退火处理,升温速率为5℃/min,退火温度为400℃~1000℃,退火时间为1h~4h;
(4)、管式炉自然降温至室温,打开管式炉取出样品,得到中红外透明导电P型氧化物薄膜材料。
CN201810198862.8A 2018-03-09 2018-03-09 一种中红外透明导电p型氧化物薄膜材料 Active CN108470782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810198862.8A CN108470782B (zh) 2018-03-09 2018-03-09 一种中红外透明导电p型氧化物薄膜材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810198862.8A CN108470782B (zh) 2018-03-09 2018-03-09 一种中红外透明导电p型氧化物薄膜材料

Publications (2)

Publication Number Publication Date
CN108470782A CN108470782A (zh) 2018-08-31
CN108470782B true CN108470782B (zh) 2020-06-09

Family

ID=63264248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810198862.8A Active CN108470782B (zh) 2018-03-09 2018-03-09 一种中红外透明导电p型氧化物薄膜材料

Country Status (1)

Country Link
CN (1) CN108470782B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659396B (zh) * 2018-12-21 2020-07-07 哈尔滨工业大学 一种中红外透明p型半导体薄膜的制备方法
CN114112973B (zh) * 2021-12-06 2023-08-11 哈尔滨工业大学 一种基于高载流子浓度导电薄膜的气体传感架构及传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928641A (zh) * 2015-07-15 2015-09-23 哈尔滨工业大学 一种氧化硅红外增透氧化钒薄膜的制备方法
CN105112869A (zh) * 2015-08-31 2015-12-02 哈尔滨工业大学 一种钇掺杂氧化铜红外透明导电薄膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244286A1 (en) * 2008-10-06 2010-09-30 Lagsa Earl Vincent B Nanocomposites for optoelectronic devices
CN103553000B (zh) * 2013-10-26 2015-09-30 西南交通大学 制备拓扑绝缘体Bi2Se3与钙钛矿氧化物La0.7Sr0.3MnO3复合结构的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928641A (zh) * 2015-07-15 2015-09-23 哈尔滨工业大学 一种氧化硅红外增透氧化钒薄膜的制备方法
CN105112869A (zh) * 2015-08-31 2015-12-02 哈尔滨工业大学 一种钇掺杂氧化铜红外透明导电薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Easily doped p-type, low hole effective mass, transparent oxides";Nasrin Sarmadian et.al.;《scientific reports》;20160208;第1-9页 *

Also Published As

Publication number Publication date
CN108470782A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
Li et al. Optical properties of Al-doped ZnO thin films by ellipsometry
CN110277468B (zh) 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法
CN112126897B (zh) 一种alpha相氧化镓薄膜的制备方法
CN110854233B (zh) 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用
CN108470782B (zh) 一种中红外透明导电p型氧化物薄膜材料
Xu et al. Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films
Kim et al. Low temperature, high conductivity Al-doped ZnO film fabrication using modified facing target sputtering
Shi et al. Growth of high-quality Ga–F codoped ZnO thin films by mid-frequency sputtering
CN104152856A (zh) 一种磁控溅射法制备Bi2Se3薄膜的方法
CN111276277B (zh) 一种具有红外透明导电功能的窗口
CN108385062B (zh) 一种(AlxGa1-x)2O3合金薄膜的制备方法
CN112103177B (zh) 一种非晶铟铝锡氧化物半导体薄膜的制备方法
CN109449077A (zh) 一种光电性能优异的多元非晶金属氧化物半导体薄膜的制备方法
CN111710752A (zh) 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法
CN109659396B (zh) 一种中红外透明p型半导体薄膜的制备方法
CN102650044B (zh) 一种SGZO-Au-SGZO透明导电膜的制备方法
Meng et al. Optical and electrical properties of H and V co-doped ZnO films sputtered at room temperature
Liu et al. Influence of oxygen gas content on the structural and optical properties of ZnO thin films deposited by RF magnetron sputtering at room temperature
CN109468604B (zh) 高透射率igzo薄膜的制备方法
Wang et al. Enhancing β-Ga2O3-film ultraviolet detectors via RF magnetron sputtering with seed layer insertion on c-plane sapphire substrate
Terasako et al. Effects of oxygen gas flow rates and Ga contents on structural properties of Ga-doped ZnO films prepared by ion-plating with a DC arc discharge
CN103388130B (zh) ECR-PEMOCVD在ZnO缓冲层/金刚石薄膜/Si多层膜结构基片上低温沉积InN薄膜的制备方法
Shen et al. The mechanism of the oxygen-tuned morphology of Al-doped ZnO films prepared by pulsed-laser ablation
CN105489699A (zh) 用于太阳能薄膜电池前电极的AZO/Ag/AZO复合膜的制备方法
CN113193069A (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant