CN108461299A - 柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法 - Google Patents

柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法 Download PDF

Info

Publication number
CN108461299A
CN108461299A CN201810364568.XA CN201810364568A CN108461299A CN 108461299 A CN108461299 A CN 108461299A CN 201810364568 A CN201810364568 A CN 201810364568A CN 108461299 A CN108461299 A CN 108461299A
Authority
CN
China
Prior art keywords
carbon foam
preparation
graphene
electrode material
nickel aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810364568.XA
Other languages
English (en)
Inventor
徐静
李学进
赵联明
李静
刘海军
邢伟
阎子峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201810364568.XA priority Critical patent/CN108461299A/zh
Publication of CN108461299A publication Critical patent/CN108461299A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法,其首先制备三维碳泡沫;利用水热法在该三维碳泡沫上沉积镍铝层状金属氢氧化物得到碳泡沫@镍铝层状氢氧化物;然后在碳泡沫@镍铝层状氢氧化物表面包裹石墨烯以增加其导电性;最后将碳泡沫@镍铝层状氢氧化物@石墨烯研磨成粉末置于管式炉中,通过设定管式炉中的温度等工艺条件,制备得到柔性复合电极材料。由于具有快速的电解液离子和电子传输通道,本发明制备得到的碳泡沫@NiAl‑LDO@石墨烯复合电极材料具有高的能量密度和功率密度。

Description

柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的 制备方法
技术领域
本发明涉及复合电极材料的制备技术领域,具体涉及一种柔性石墨烯复合电极材料的制备方法。
背景技术
柔性电子器件由于具有可弯折性、便携性、可折叠型及可穿戴性等优势在信息、能源、医疗、国防等领域具有广泛应用前景。目前,柔性电极材料应用于传感器、光感器、环境检测器和其他可穿戴设备等引起了科学家们广泛的研究兴趣。尤其是超级电容器由于具有快速充放电、长循环寿命及安全易组装等特性被认为极其具有应用前景。
目前常见的制备高性能柔性超级电容器电极的方法为将高活性的金属氧化物或氢氧化物与柔性的碳薄膜或碳纳米纤维进行组装。由于石墨烯、碳纳米管等具有超强机械强度和柔韧性而常被用作柔性基底。现有技术中关于柔性电极材料的研究主要有:
He等人[ACS Nano,2012,7,174-182]利用化学气相沉积法制备了柔性三维石墨烯气凝胶,然后利用电化学沉积法负载MnO2制备柔性电容器材料。所制备的电极材料比电容最高可达130F·g-1,并且在不同弯曲状态时具有几乎相同的充放电行为,说明其作为柔性电极材料具有良好的性能。Xu等人[ACS Nano,2013,7,4042-4049]也利用水热法制备了石墨烯气凝胶作为柔性电极材料,其比电容能够达到186F·g-1,并且在弯折状态时比电容性能没有受到影响。此外还可通过真空抽滤法制备柔性电极材料,Hu等人[AdvancedFunctional Materials,2015,25,7291-7299]通过真空抽滤氧化石墨烯/MnOx悬浮液,制备了MnOx/GO薄膜作为柔性电极材料,所组装的柔性电容器具有高的体积能量密度和循环稳定性。
上述现有技术在柔性电极材料的研究方面取得了一定的进步和发展,然而石墨烯、碳纳米管等柔性基底内孔道常为间隙孔,孔径大小难以控制并且相互不连通,导致电解液离子传输受阻。此外,其制备成本高,制备工艺复杂,并且制备规模小。
发明内容
本发明的目的在于提供一种柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法,通过该制备方法可以得到具有优异电化学性能的柔性电极材料。
其技术解决方案包括:
一种柔性电极材料的制备方法,所述制备方法依次包括以下步骤:
a制备三维碳泡沫的步骤;
b利用水热法在所述三维碳泡沫上沉积镍铝层状氢氧化物,得到碳泡沫@镍铝层状氢氧化物的步骤;
c在所述碳泡沫@镍铝层状氢氧化物表面包裹石墨烯,得到碳泡沫@镍铝层状氢氧化物@石墨烯;
d将碳泡沫@镍铝层状氢氧化物@石墨烯置于管式炉中,经加热、氧化,得到碳泡沫@镍铝层状氧化物@石墨烯柔性电极材料。
作为本发明的一个优选方案,步骤a中,所述三维碳泡沫的制备方法为:将密胺海绵置于管式炉中,在氩气气氛中,以2℃/min升温速率加热至850℃,在850℃碳化3h即得三维碳泡沫。
作为本发明的另一个优选方案,步骤b的具体步骤为:将Ni(NO3)2·6H2O、Al(NO3)3·9H2O和尿素溶于去离子水中得到金属盐溶液;取一定厚度的三维碳泡沫薄片浸入到所述的金属盐溶液中,然后在反应釜中晶化、烘干,即得碳泡沫@镍铝层状氢氧化物。
进一步的,在反应釜中于115℃晶化24h。
进一步的,步骤d中,在所述管式炉中,在室温下持续通入空气10min,升温至400℃保持2h,冷却,即得碳泡沫@镍铝层状氧化物@石墨烯柔性电极材料。
进一步的,空气的通入流速为200mL/min氧气。
进一步的,管式炉的升降温速率为2℃/min。
本发明所带来的有益技术效果为:
三维碳泡沫不仅可作为骨架进行NiAl-LDH的沉积,还能够增强复合物的电导性。NiAl-LDO垂直交叉分布在碳泡沫基底上,能有效防止片层堆叠,增加表面活性位含量,提高充放电过程中氧化还原反应的效率。此外,在LDO表面包裹石墨烯进一步提高电子在材料内部的传递速率。由于具有快速的电解液离子和电子传输通道,所制备的碳泡沫@NiAl-LDO@石墨烯复合电极材料具有高的能量密度和功率密度。
附图说明
下面结合附图对本发明做进一步说明:
图1、图2为本发明实施例1NiAl-LDH的扫描电子显微镜照片(SEM);
图3、4为本发明实施例1NiAl-LDH的透射电子显微镜照片(TEM);
图5为本发明实施例1SC@NiAl-LDO@G的扫描电子显微镜照片(SEM);
图6为本发明实施例1SC@NiAl-LDO@G的透射电子显微镜照片(TEM);
图7为本发明NiAl-LDH、SC@NiAl-LDH和SC@NiAl-LDO@G的X-射线衍射谱图。
具体实施方式
本发明提出了一种柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
本发明所需原料均可通过商业渠道购买获得。
实施例1:
第一步、三维泡沫碳的制备
将密胺海绵置于管式炉中,在氩气气氛中,以2℃/min升温速率加热至850℃,在850℃碳化3h得到三维碳泡沫(SC);
第二步、碳泡沫@镍铝双金属层状氢氧化物的制备
利用水热法在碳泡沫上沉积镍铝层状双金属氢氧化物(NiAl-LDH);将Ni(NO3)2·6H2O、Al(NO3)3·9H2O和尿素适量溶于50mL去离子水中得到金属盐溶液;取适量5mm厚的SC薄片浸入到上述盐溶液中,然后在反应釜中于115℃晶化24h。将样品洗涤烘干,产品命名为SC@NiAl-LDH;
第三步、碳泡沫@镍铝双金属层状氢氧化物@石墨烯的制备
在所得SC@NiAl-LDH表面包裹石墨烯以增加其导电性,将SC@NiAl-LDH浸入到20mL氧化石墨烯悬浮液中保持两小时,并于室温干燥12h,将所得产品命名为SC@NiAl-LDH@G;
第四步、碳泡沫@镍铝双金属层状氧化物@石墨烯的制备
取0.16g SC@NiAl-LDH@G,研磨成粉末,置于管式炉中,首先在室温下持续通入空气10min,空气通入流速为200mL/min氧气;设置管式炉升降温速率为2℃/min,升温至400℃保持2h,待样品冷却,将样品从管式炉中取出,即得到碳泡沫@镍铝双金属层状氧化物@石墨烯,即SC@NiAl-LDO@G。
对本实施例制备得到的SC@NiAl-LDO@G进行分析,如图1、图2所示,NiAl-LDH均匀地覆盖整个碳泡沫骨架表面。NiAl-LDH片层交叉、垂直分布在碳骨架表面,形成开放的多孔结构,有利于电解液离子的快速传输。与碳泡沫复合后,NiMn-LDH片层没有明显的堆叠现象,说明碳泡沫能够提高NiMn-LDH片层的分散性。
如图3、4所示,图3、图4表明SC@NiAl-LDH中LDH片层厚度为7-12nm,包含大约12层LDH。与碳泡沫复合后LDH层数明显降低,使得LDH中表面活性位点增多,有利于提高氧化还原反应效率。通过在LDH表面包裹石墨烯进一步提高电极材料的电导性。如图5所示,经过石墨烯包裹并氧化后,电极材料的形貌没有受到明显的影响,碳泡沫表面LDO片层仍然呈花瓣状垂直分布。石墨烯不仅能够增加材料的电导性,使电子沿着LDO片层传输,还能够连接相邻的LDO片层,增强材料的机械稳定性。图6为SC@NiAl-LDO@G的透射电镜照片,从图中能清晰地观察到石墨烯的褶皱,并且石墨烯能够将相邻的LDO片层连通,增加电子的传导性及材料的机械稳定性。所制备样品的X-射线衍射谱图如图7所示,所有样品都具有典型的层状结构衍射峰。NiAl-LDH、SC@NiAl-LDH和SC@NiAl-LDO@G分别在11.6°、23.2°、35.1°、39.6°、46.9°、61.2°和62.4°出现明显的衍射峰,分别对应的是(003)、(006)、(012)、(015)、(018)、(011)和(113)晶面。XRD结果表明,所有样品都具有典型的层状结构,与SEM和TEM表征结果一致。在SC@NiAl-LDO@G样品中没有观察到有明显的石墨烯衍射峰出现,说明石墨烯在材料内分散均匀。
本发明中未述及的部分借鉴现有技术即可实现。
需要说明的是,在本说明书的教导下本领域技术人员所做出的任何等同方式,或明显变型方式均应在本发明的保护范围内。

Claims (7)

1.一种柔性电极材料的制备方法,其特征在于,所述制备方法依次包括以下步骤:
a制备三维碳泡沫的步骤;
b利用水热法在所述三维碳泡沫上沉积镍铝层状氢氧化物,得到碳泡沫@镍铝层状氢氧化物的步骤;
c在所述碳泡沫@镍铝层状氢氧化物表面包裹石墨烯,得到碳泡沫@镍铝层状氢氧化物@石墨烯的步骤;
d将碳泡沫@镍铝层状氢氧化物@石墨烯置于管式炉中,经加热、氧化,得到碳泡沫@镍铝层状氧化物@石墨烯柔性电极材料。
2.根据权利要求1所述的一种柔性电极材料的制备方法,其特征在于,步骤a中,所述三维碳泡沫的制备方法为:将密胺海绵置于管式炉中,在氩气气氛中,以2℃/min升温速率加热至850℃,在850℃碳化3h即得三维碳泡沫。
3.根据权利要求1所述的一种柔性电极材料的制备方法,其特征在于,步骤b的具体步骤为:将Ni(NO3)2·6H2O、Al(NO3)3·9H2O和尿素溶于去离子水中得到金属盐溶液;取一定厚度的三维碳泡沫薄片浸入到所述的金属盐溶液中,然后在反应釜中晶化、烘干,即得碳泡沫@镍铝层状氢氧化物。
4.根据权利要求3所述的一种柔性电极材料的制备方法,其特征在于:在反应釜中于115℃晶化24h。
5.根据权利要求1所述的一种柔性电极材料的制备方法,其特征在于,步骤d中,在所述管式炉中,在室温下持续通入空气10min,升温至400℃保持2h,冷却,即得碳泡沫@镍铝层状氧化物@石墨烯柔性电极材料。
6.根据权利要求5所述的一种柔性电极材料的制备方法,其特征在于:空气的通入流速为200mL/min氧气。
7.根据权利要求5所述的一种柔性电极材料的制备方法,其特征在于:管式炉的升降温速率为2℃/min。
CN201810364568.XA 2018-04-23 2018-04-23 柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法 Pending CN108461299A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810364568.XA CN108461299A (zh) 2018-04-23 2018-04-23 柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810364568.XA CN108461299A (zh) 2018-04-23 2018-04-23 柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法

Publications (1)

Publication Number Publication Date
CN108461299A true CN108461299A (zh) 2018-08-28

Family

ID=63236151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810364568.XA Pending CN108461299A (zh) 2018-04-23 2018-04-23 柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN108461299A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109201061A (zh) * 2018-11-01 2019-01-15 陕西科技大学 一种树枝状双金属氢氧化物电催化剂及其制备方法
CN109437147A (zh) * 2018-10-31 2019-03-08 石狮市川大先进高分子材料研究中心 一种多功能碳泡沫的制备方法
CN109545572A (zh) * 2018-11-30 2019-03-29 北方民族大学 一种Ni1-xCox(OH)2/石墨烯复合材料的制备方法
TWI751847B (zh) * 2020-12-19 2022-01-01 逢甲大學 多孔複合結構電極及其製備方法
CN115020704A (zh) * 2022-06-15 2022-09-06 李致朋 自支撑负极材料及其制备方法和钠离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496480A (zh) * 2011-12-16 2012-06-13 江南大学 石墨烯/镍铝双金属氢氧化物复合材料的制备方法及其应用
CN102779646A (zh) * 2011-05-12 2012-11-14 北京化工大学 镍铝复合氧化物薄膜材料及其制备方法和应用
CN106328385A (zh) * 2016-09-28 2017-01-11 中国石油大学(华东) 柔性自支撑多孔炭@层状双金属氢氧化物复合材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779646A (zh) * 2011-05-12 2012-11-14 北京化工大学 镍铝复合氧化物薄膜材料及其制备方法和应用
CN102496480A (zh) * 2011-12-16 2012-06-13 江南大学 石墨烯/镍铝双金属氢氧化物复合材料的制备方法及其应用
CN106328385A (zh) * 2016-09-28 2017-01-11 中国石油大学(华东) 柔性自支撑多孔炭@层状双金属氢氧化物复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUEJIN LI, ET AL.: ""Bifuntional petaloid nickel manganese layered double hydroxides decorated on a freestanding carbon foam for flexible asymmetric supercapacitor and oxygen evolution"", 《ELECTROCHIMICA ACTA》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437147A (zh) * 2018-10-31 2019-03-08 石狮市川大先进高分子材料研究中心 一种多功能碳泡沫的制备方法
CN109201061A (zh) * 2018-11-01 2019-01-15 陕西科技大学 一种树枝状双金属氢氧化物电催化剂及其制备方法
CN109201061B (zh) * 2018-11-01 2022-01-28 陕西科技大学 一种树枝状双金属氢氧化物电催化剂及其制备方法
CN109545572A (zh) * 2018-11-30 2019-03-29 北方民族大学 一种Ni1-xCox(OH)2/石墨烯复合材料的制备方法
TWI751847B (zh) * 2020-12-19 2022-01-01 逢甲大學 多孔複合結構電極及其製備方法
CN115020704A (zh) * 2022-06-15 2022-09-06 李致朋 自支撑负极材料及其制备方法和钠离子电池

Similar Documents

Publication Publication Date Title
CN108461299A (zh) 柔性碳泡沫@镍铝双金属层状氧化物@石墨烯复合电极材料的制备方法
Li et al. Few-layered Ti 3 C 2 T x MXenes coupled with Fe 2 O 3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors
Kumar et al. One-pot synthesis of reduced graphene oxide nanosheets anchored ZnO nanoparticles via microwave approach for electrochemical performance as supercapacitor electrode
Hong et al. Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor
JP6198810B2 (ja) 触媒担体用炭素材料
Kim et al. Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors
Yin et al. Hierarchical self-supporting sugar gourd-shape MOF-derived NiCo2O4 hollow nanocages@ SiC nanowires for high-performance flexible hybrid supercapacitors
Zhu et al. Growth of ultrathin SnO2 on carbon nanotubes by atomic layer deposition and their application in lithium ion battery anodes
JP6524913B2 (ja) 導電膜、燃料電池用ガス拡散層、燃料電池用触媒層、燃料電池用電極、燃料電池用膜電極接合体、及び燃料電池
Xin et al. A self-supporting graphene/MnO2 composite for high-performance supercapacitors
CN106783230B (zh) 一种碳化钛原位生长CNTs三维复合材料及其制备方法
Song et al. Facile synthesis of Mn3O4/double-walled carbon nanotube nanocomposites and its excellent supercapacitive behavior
Han et al. Facile synthesis of hierarchical hollow ε-MnO2 spheres and their application in supercapacitor electrodes
CN105679551B (zh) 基于Ni(OH)2/NiO纳米颗粒的石墨烯纳米墙超级电容器电极制作方法
Shao et al. Enhanced-performance flexible supercapacitor based on Pt-doped MoS2
Sun et al. Microwave-assisted synthesis of graphene nanocomposites: recent developments on lithium-ion batteries
Zhang et al. Uniform growth of NiCo2S4 nanoflakes arrays on nickel foam for binder-free high-performance supercapacitors
Mohapatra et al. Designing binder-free, flexible electrodes for high-performance supercapacitors based on pristine carbon nano-onions and their composite with CuO nanoparticles
Pan et al. Controlled nanosheet morphology of titanium carbide Ti 3 C 2 T x MXene via drying methods and its electrochemical analysis
Dam et al. Ultrahigh pseudocapacitance of mesoporous Ni-doped Co (OH) 2/ITO nanowires
Oh et al. Carbon-coated Si/MnO2 nanoneedle composites with optimum carbon layer activation for supercapacitor applications
CN111082147B (zh) 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法
Gao et al. Robust hetero-MoO3/MoO2@ N-doped carbon nanobelts decorated with oxygen deficiencies as high-performance anodes for potassium/sodium storage
Pan et al. High-performance asymmetric supercapacitors based on core/shell cobalt oxide/carbon nanowire arrays with enhanced electrochemical energy storage
CN106784706A (zh) 一种炭微球作为过渡层碳化钛原位生长CNTs三维复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180828

RJ01 Rejection of invention patent application after publication