CN108449941B - OmpG变体 - Google Patents

OmpG变体 Download PDF

Info

Publication number
CN108449941B
CN108449941B CN201680054910.5A CN201680054910A CN108449941B CN 108449941 B CN108449941 B CN 108449941B CN 201680054910 A CN201680054910 A CN 201680054910A CN 108449941 B CN108449941 B CN 108449941B
Authority
CN
China
Prior art keywords
ompg
variant
nanopore
seq
polymerase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680054910.5A
Other languages
English (en)
Other versions
CN108449941A (zh
Inventor
C.切赫
T.克雷格
C.齐齐洛尼斯
A.杨
L.延森
C.杨
C.哈里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN108449941A publication Critical patent/CN108449941A/zh
Application granted granted Critical
Publication of CN108449941B publication Critical patent/CN108449941B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07007DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Abstract

本发明提供了变体OmpG多肽、包含OmpG变体多肽的组合物和使用变体OmpG多肽作为纳米孔用于确定单链核酸的序列的方法。变体OmpG纳米孔会相对于它们的来源亲本OmpG多肽减小离子电流噪音,并由此实现单个核苷酸分辨率的多核苷酸测序。减小的离子电流噪音也会提供这些OmpG纳米孔变体在其它单分子感知应用(例如,蛋白测序)中的用途。

Description

OmpG变体
技术领域
提供经工程改造的单体纳米孔变体用于确定核酸和蛋白的序列。
背景
蛋白纳米孔已经变成能够研究化学和生物学中的基础问题的有力单分子分析工具。具体地,因为其在单个生物分子(诸如DNA、RNA和蛋白)的检测和分析中的潜在应用,纳米孔已经吸引了大量注意。
通过观察流过的离子电流的调节或在施加电势过程中的跨孔电压,实现使用单个纳米孔的分子检测。通常,将跨不透性膜的纳米孔放在两个含有电解质的室之间,并使用电极跨所述膜施加电压。这些条件导致穿过所述孔的离子通量。可以驱动核酸或蛋白分子穿过所述孔,且将所述生物分子的结构特征观察为跨膜电流或电压的可测量变化。
纳米孔测序的一个挑战是在单个碱基水平分辨核苷酸序列。阻碍单个核苷酸碱基的分辨的因素之一是穿过纳米孔的离子电流的波动,其为纳米孔的结构所固有的。
发明概述
本发明提供了变体外膜蛋白G (OmpG)多肽、包含OmpG变体多肽的组合物和使用变体OmpG多肽作为纳米孔用于核酸(例如,DNA、RNA)和/或聚合物(例如,蛋白)测序和计数的方法。变体OmpG纳米孔会减小它们所来源的亲本OmpG多肽的离子电流噪音。
在一个方面,本发明提供了变体OmpG多肽。在一个实施方案中,提供了SEQ ID NO:2的亲本OmpG的分离变体或其同系物,其中所述变体包含氨基酸216-227中的一个或多个的缺失、氨基酸置换E229A和氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和E31中的一个或多个的突变,且其中所述变体保留形成纳米孔的能力。在某些实施方案中,所述OmpG变体与SEQ ID NO:2的OmpG具有至少70%同一性。在其它实施方案中,所述变体OmpG包含SEQ ID NO:16的接头-His-SpyTag构建体。
在另一个实施方案中,提供了SEQ ID NO:2的亲本OmpG的分离变体或其同系物,其中所述变体包含氨基酸216-227中的一个或多个的缺失、氨基酸置换E229A和氨基酸D215的缺失,且保留形成孔的能力。所述分离的变体还可以包含SEQ ID NO:2的氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和E31中的一个或多个的突变。在某些实施方案中,所述OmpG变体与SEQ ID NO:2的OmpG具有至少70%同一性。在其它实施方案中,所述变体OmpG包含SEQ ID NO:16的接头-His-SpyTag构建体。
在某些实施方案中,所述分离的OmpG变体包含氨基酸216-227中的一个或多个的缺失和置换Y50K。在其它实施方案中,所述OmpG变体还包含D215的缺失。
在另一个实施方案中,所述分离的OmpG变体包含“环形排列”,其中将所述亲本OmpG的一个或多个C-端β-链移动至所述蛋白序列的N-端。在一个实施方案中,将所述C-端β-链移动至N-端,从而保留亲本OmpG的倒数第二个β-链作为所述蛋白的新C-端。在其它实施方案中,将两个或更多个β-链移动至N-端。任选地,所述变体包括标签序列(例如,包含“SpyTag”或“His-SpyTag:序列,任选地在C-端处进一步包含一个或多个接头序列(例如,SEQ ID NO:16),在亲本OmpG的倒数第二个β-链的下游。任选地,所述变体包括接头序列(例如,GSG),其在从亲本OmpG的C-端移动的新N-端β-链和以前在亲本OmpG的N-端处的β-链之间。在一个实施方案中,所述变体是在SEQ ID NO:2中描述的大肠杆菌OmpG的变体或其同系物。在一个实施方案中,所述变体包含SEQ ID NO:2的氨基酸残基267-280从SEQ ID NO:2的C-端至N-端的移动,任选地具有接头(例如,GSG),其在以前的残基280和SEQ ID NO:2的N-端之间,且任选地具有在所述变体的N-端处的甲硫氨酸(M)残基,在以前的残基267前面,且任选地在所述变体的C-端处具有在SEQ ID NO:16中描述的氨基酸序列。在一个实施方案中,所述变体具有在SEQ ID NO: 17中描述的氨基酸序列。
在某些实施方案中,所述变体OmpG保留在脂质或聚合物层中形成纳米孔的能力。在其它实施方案中,当跨脂质双层施加外加电压时,所述OmpG变体表现出降低的离子电流噪音。在其它实施方案中,与具有SEQ ID NO:2的氨基酸序列的亲本大肠杆菌OmpG相比,所述变体OmpG具有减小的离子电流噪音。另外,所述变体OmpG还可以包含基因聚合酶融合,例如,所述分离的OmpG变体包含与所述变体OmpG可操作地连接的聚合酶(在连接以后仍然是有功能的)。
在其它实施方案中,所述变体OmpG能够以单个核苷酸分辨率实现所述聚合酶向生长中的核酸链中的核苷酸掺入的检测。
在另一个方面,本发明提供了分离的编码变体OmpG多肽的核酸。在一个实施方案中,提供了一种分离的核酸,其包含编码SEQ ID NO:2的亲本OmpG的变体的多核苷酸序列,其中所述变体OmpG包含氨基酸216-227中的一个或多个的缺失、氨基酸置换E229A和(i)氨基酸D215的缺失;和/或 (ii)氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和E31中的一个或多个的突变。在其它实施方案中,所述多核苷酸序列编码与SEQID NO:2的OmpG具有至少70%同一性的变体。在其它实施方案中,所述多核苷酸序列编码OmpG环形排列变体,例如,SEQ ID NO:2的环形排列变体或如上面(例如,SEQ ID NO:17)所述的其同系物。
在另一个方面,提供了包含分离的核酸的表达载体,所述核酸编码如本文中公开的变体OmpG多肽。在一个实施方案中,所述表达载体包含含有编码SEQ ID NO:2的亲本OmpG的变体的多核苷酸序列的核酸,其中所述变体OmpG包含氨基酸216-227中的一个或多个的缺失、氨基酸置换E229A和(i)氨基酸D215的缺失,即,del215;和/或(ii)氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和E31中的一个或多个的突变。在另一个实施方案中,所述表达载体包含编码多核苷酸序列的核酸,所述多核苷酸序列编码OmpG环形排列变体,例如,SEQ ID NO:2的环形排列变体或如上面(例如,SEQ ID NO:17)所述的其同系物。
在另一个方面,提供了一种宿主微生物,其包含表达本文描述的OmpG变体的表达载体。在一个实施方案中,所述宿主微生物包含含有编码SEQ ID NO:2的亲本OmpG的变体的多核苷酸序列的表达载体,其中所述变体OmpG包含氨基酸216-227中的一个或多个的缺失、氨基酸置换E229A和(i)氨基酸D215的缺失;和/或(ii)氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和E31中的一个或多个的突变。在另一个实施方案中,所述宿主微生物包含含有多核苷酸序列的表达载体,所述多核苷酸序列编码OmpG环形排列变体,例如,SEQ ID NO:2的环形排列变体或如上面(例如,SEQ ID NO:17)所述的其同系物。
在另一个方面,提供了一种用于在宿主细胞中生产变体OmpG的方法。在一个实施方案中,所述方法包括 a)用表达载体转化宿主细胞,所述表达载体包含编码SEQ ID NO:2的亲本OmpG的变体的核酸,其中所述变体OmpG包含氨基酸216-227中的一个或多个的缺失、氨基酸置换E229A和(i)氨基酸D215的缺失;和/或(ii)氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和E31中的一个或多个的突变;和b)在适合生产变体OmpG的条件下培养所述宿主细胞。在另一个实施方案中,所述方法包括a)用包含多核苷酸序列的表达载体转化宿主细胞,所述多核苷酸序列编码OmpG环形排列变体,例如,SEQ IDNO:2的环形排列变体或如上面(例如,SEQ ID NO:17)所述的其同系物;和b)在适合生产变体OmpG的条件下培养所述宿主细胞。在其它实施方案中,所述方法还包括回收生产的变体。
在另一个方面,提供了借助于变体OmpG纳米孔对核酸样品测序的方法。在一个实施方案中,所述方法包括:(a)将带标签的核苷酸提供进包含变体OmpG纳米孔的反应室中,其中所述带标签的核苷酸的单个带标签的核苷酸含有与核苷酸偶联的标签,所述标签借助于所述纳米孔是可检测的; (b)借助于与所述变体OmpG纳米孔偶联的单个聚合酶进行聚合反应,由此将所述带标签的核苷酸的单个带标签的核苷酸掺入与来自核酸样品的单链核酸分子互补的生长链中;和(c)借助于所述变体OmpG纳米孔,检测在单个带标签的核苷酸的掺入过程中与所述单个带标签的核苷酸结合的标签,其中当所述核苷酸与所述聚合酶结合时,借助于所述变体OmpG纳米孔检测所述标签。
在另一个方面,提供了用于对核酸样品测序的芯片。在一个实施方案中,所述芯片包含多个本文中公开的变体OmpG纳米孔,所述多个OmpG纳米孔设置在电极邻近或附近,其中所述纳米孔是可单独寻址的且具有附接到所述纳米孔的单个聚合酶;且其中单个纳米孔检测在所述聚合酶向生长的核酸链中掺入核苷酸的过程中与带标签的核苷酸结合的标签。
在另一个方面,提供了一种组合物。在一个实施方案中,所述组合物包含多个聚合酶和核酸测序试剂,每个聚合酶与模板核酸形成复合物,每个聚合酶附接到如本文中公开的变体OmpG纳米孔或附接在所述变体OmpG纳米孔近侧,所述核酸测序试剂包括至少一种带标签的核苷酸或核苷酸类似物。
附图说明
图1A和1B描绘了作为带状结构(图1A)和作为表面呈现(图1B)的来自大肠杆菌的野生型OmpG孔的体系结构。显示了OmpG纳米孔的缢缩区(constriction zone)。
图2是在纳米孔装置中使用的电路的一个实施方案的示意图,所述电路用于控制电刺激和用于检测分析物分子的电特征(electrical signatures)。
图3A-3B显示了包括纳米孔装置阵列的芯片的一个实施方案的示意图。在图3A中显示了一个透视图。在图3B中显示了所述芯片的横截面视图。
图4A-4E描绘了在施加的恒定电压得到的OmpG变体的单通道电流迹线,所述OmpG变体包含氨基酸216-227的缺失和氨基酸置换E229A (ΔL6/E229A) (如在(SEQ ID NO:5)中所示)和氨基酸置换Y50K (SEQ ID NO:6;(图4A))、R68N (SEQ ID NO:7;(图4B))、R211N(SEQ ID NO:8;(图4C))、E17K (SEQ ID NO:9: (图4D))和氨基酸缺失del215 (SEQ ID NO:10;(图4E))。
图5A-5B描绘了为ΔL6/E229A (SEQ ID NO:5)和氨基酸置换ΔL6/E229A-Y50K(SEQ ID NO:6)、ΔL6/E229A-R68N (SEQ ID NO:7)、ΔL6/E229A-R211N (SEQ ID NO:8)、ΔL6/E229A-E17K (SEQ ID NO:9)和氨基酸缺失ΔL6/E229A-del215 (SEQ ID NO:10),(del215))、ΔL6/E229A-del215-Y50K (SEQ ID NO:11)的OmpG变体中的每一种确定的平均开放通道(OC)电流(实心条)和所述平均开放通道在更高和更低方向大于1个标准差的事件的百分比(图5A)以及黑色的平均开放通道电流(实心条)和所述平均开放通道仅在更低方向(仅向下电流)大于1个标准差的事件的百分比(图5B)。
图6描绘了随着通过变体OmpG纳米孔ΔL6/E229A-del215 (SEQ ID NO:10)检测每种带标签的核苷酸,显示为基线开放通道直流电的变化的四种不同的带标签的核苷酸的混合物的单个核苷酸分辨率。在施加直流电(DC)下做出测量。
图7A-7D描绘了将在图6中检测的每种带标签的核苷酸通过变体OmpG纳米孔ΔL6/E229A-del215 (SEQ ID NO:10)鉴别为四种带标签的核苷酸中的每一种的基线开放通道电流的单独变化。在施加直流电(DC)下做出测量。
图8描绘了通过变体OmpG纳米孔ΔL6/E229A-del215 (SEQ ID NO:10)检测的、在图6中显示的四种不同的带标签的核苷酸的混合物的单个核苷酸分辨率的放大视图。在施加直流电(DC)下做出测量。
图9A -9E描绘了来自大肠杆菌的OmpG的细菌膜蛋白同系物的蛋白比对(按出现的顺序,分别是SEQ ID NO 1和12-15)
图10A - 10B示意地描绘了OmpG反平行的β-链(图10A)和其环形排列变体的一个实施方案(图10B)。
图11显示了相对于纳米孔蛋白的缢缩部位,野生型亲本OmpG中的OmpG的C-端相对于如本文中所述的环形排列变体的布置。
发明详述
在下面与解释本发明的原理的附图一起提供了本发明的一个或多个实施方案的详细描述。结合这样的实施方案描述了本发明,但是本发明不限于任何实施方案。本发明的范围仅由权利要求限定,并且本发明包括众多替代方案、改善方案和等同方案。为了提供本发明的彻底理解,在以下描述中阐述了众多具体细节。这些细节为了示例的目的而提供,且可以在没有这些具体细节的一些或全部的情况下根据权利要求实践本发明。为了澄清的目的,没有详细描述在技术领域中已知的与本发明有关的技术材料,使得本发明不会不必要地模糊。
革兰氏阴性细菌的外膜(OM)含有大量通道蛋白,所述通道蛋白介导细胞的生长和功能所必需的离子和营养物的摄取。不同于其它多聚体蛋白性纳米孔诸如α-溶血素和ClyA,来自大肠杆菌(E. coli)的外膜蛋白G (OmpG)作为单体起作用。已经确定了大肠杆菌K12 OmpG的晶体结构(Subbarao和van den Berg, J Mol Biol, 360:750-759 [2006])。结构表明,OmpG筒由14个β-链组成,所述β-链通过细胞外侧上的7个柔性环和周质侧上的7个短转角连接(图1A)。所述OmpG通道在周质出口处具有它的最大直径(20-22Å),且逐渐变小至位于细胞外侧附近的缢缩(图1B)。所述缢缩由筒壁的指向内部的残基的侧链形成,且不是由向内折叠的表面环形成。该体系结构产生具有圆形形状和约13Å直径的相对大的中央孔。
当跨野生型OmpG纳米孔测量电流时,纳米孔在施加电势过程中自发地在开放和封闭状态之间转变,这会产生闪烁的单通道电流。OmpG的细胞外环中的最长者(环6)已经被视作在低pH封闭所述孔和在高pH打开所述孔的主要门控环。
本发明提供了变体OmpG多肽、包含变体OmpG多肽的组合物和使用变体OmpG多肽作为纳米孔用于确定单链核酸的序列的方法。变体OmpG纳米孔会减小它们的来源亲本OmpG多肽的离子电流噪音,并由此实现以单个核苷酸分辨率对多核苷酸的测序。减小的离子电流噪音也提供这些OmpG纳米孔变体在其它单分子感知应用(例如,蛋白测序)中的应用。
定义
术语“变体”在本文中表示从另一种(即,亲本) OmpG衍生出的OmpG,且含有相对于亲本OmpG的一个或多个氨基酸突变(例如,氨基酸缺失、插入或置换)。
术语“分离的”在本文中表示这样的分子,例如,核酸分子:其与至少一种通常结合它(例如,在它的天然环境中)的其它分子分离。分离的核酸分子包括被包含在通常表达所述核酸分子的细胞中的核酸分子,但是所述核酸分子存在于染色体外或在不同于其天然染色体位置的染色体位置。
术语“突变”在本文中表示引入亲本序列中的变化,包括但不限于,置换、插入、缺失(包括截短)。突变的后果包括但不限于在由亲本序列编码的蛋白中未发现的新特征、性质、功能、表型或特质的建立。
术语“野生型”在本文中表示这样的基因或基因产物:其具有当从天然存在的来源分离时该基因或基因产物的特征。
术语“核苷酸”在本文中表示由糖部分(戊糖)、磷酸酯和含氮杂环碱基组成的DNA或RNA的单体单元。所述碱基通过糖苷碳(戊糖的1′碳)连接至糖部分,并且碱基和糖的该组合是核苷。当所述核苷含有键合至戊糖的3′或5′位置的磷酸酯基团时,它被称作核苷酸。可操作地连接的核苷酸的序列通常在本文中被称作“碱基序列”或“核苷酸序列”,并且在本文中用通式表示,所述通式的从左至右取向是在5′-端至3′-端的常规方向。
术语“多核苷酸”和“核酸”在本文中互换使用以表示由在链中共价地键合的核苷酸单体组成的聚合物分子。DNA (脱氧核糖核酸)和RNA (核糖核酸)是多核苷酸的例子。
术语“聚合酶”在本文中表示催化核苷酸的聚合的酶(即,聚合酶活性)。术语聚合酶包括DNA聚合酶、RNA聚合酶和逆转录酶。“DNA聚合酶”催化脱氧核糖核苷酸的聚合。“RNA聚合酶”催化核糖核苷酸的聚合。“逆转录酶”催化与RNA模板互补的脱氧核糖核苷酸的聚合。
术语“模板DNA分子”在本文中表示DNA聚合酶从其合成互补核酸链(例如,在引物延伸反应中)的核酸链。
术语“模板依赖性的方式”表示包含引物分子的模板依赖性延伸(例如,通过DNA聚合酶的DNA合成)的过程。术语“模板依赖性的方式”通常表示RNA或DNA的多核苷酸合成,其中新合成的多核苷酸链的序列取决于众所周知的互补碱基配对规则(参见,例如,Watson,J. D. 等人,见:Molecular Biology of the Gene, 第4版, W. A. Benjamin, Inc.,Menlo Park, Calif. (1987))。
术语“标签”表示可以为一个或多个原子或分子、或原子和分子的集合的可检测部分。标签可以提供光学的、电化学的、磁的或静电的(例如,感应的、电容的)特征。标签可以阻断穿过纳米孔的电流。
术语“纳米孔”在本文中表示在膜中形成的或以其它方式提供的孔、通道或通路。膜可以是有机膜,诸如脂质双层,或合成的膜,诸如由聚合材料形成的膜。所述纳米孔可以被设置邻近或附近感知电路或与感知电路联接的电极(例如,互补金属氧化物半导体(CMOS)或场效应晶体管(FET)电路)。在某些实例中,纳米孔具有在0.1 nm至约1000 nm的量级的特征宽度或直径。一些纳米孔是蛋白。OmpG是蛋白纳米孔的一个例子。
术语“自发门控”表示与通道的固有结构变化有关的离子电流变化。例如,在平面脂质双层中的OmpG会在孔的开放和封闭状态之间经历pH依赖性的快速波动,其将自身表现为电流记录中的强烈“闪烁”并为通道的总噪音做出贡献。
术语“噪音”和“离子电流噪音”在本文中互换使用且表示电信号的随机波动,其包括由自发门控促成的电流波动和由纳米孔筒的固有体系结构促成的电流波动。例如,纳米孔筒的第三构成(tertiary make-up)可以包含分析物的超过一个识别位点,所述分析物被纳米孔感知,由此诱导为通道的总噪音做出贡献的另外信号。
术语“向上噪音”在本文中表示达到大于平均开放通道电流的水平的离子电流波动。
术语“向下噪音”在本文中表示达到低于平均开放通道电流的水平的离子电流波动。
术语“正电流”在本文中表示这样的电流:其中正电荷(例如,K+)穿过所述孔从反侧移动至顺侧,或负电荷(例如,Cl-)从顺侧移动至反侧。例如,参考图2,顺侧对应于106且反侧对应于116。
术语“缢缩氨基酸”在本文中表示在缢缩区处决定OmpG孔的大小的氨基酸。所述缢缩区可以与野生型OmpG的缢缩区相同,或者它可以是通过蛋白质工程或通过分子连接物的引入而引入的缢缩区。
术语“亲本的”或“亲本”在本文中表示这样的OmpG:对其做出修饰(例如,置换、插入、缺失和/或截短)以产生本文中公开的OmpG变体。该术语也表示与变体进行对比和比对的多肽。所述亲本可以是通过任意合适的方式制备的天然存在的(野生型)多肽,或它可以是其变体。在优选的实施方案中,“亲本”蛋白是彼此的同系物。
术语“纯化的”在本文中表示这样的多肽,例如,变体OmpG多肽:其以含有它的样品的至少95重量%或至少98重量%的浓度存在于所述样品中。
术语“核苷酸类似物”在本文中表示核苷三磷酸(例如,常见核苷碱基腺嘌呤、胞嘧啶、鸟嘌呤、尿嘧啶和胸苷的(S)-甘油核苷三磷酸(gNTP))的类似物(Horhota等人, Organic Letters, 8:5345-5347 [2006])。也包括核苷四磷酸、核苷五磷酸和核苷六磷酸。
术语“带标签的核苷酸”在本文中表示这样的核苷酸:其包括与所述核苷酸的任意位置偶联的标签(或标签物质),包括但不限于所述核苷酸的磷酸酯(例如,末端磷酸酯)、糖或含氮碱基部分。标签可以是一个或多个原子或分子、或原子和分子的集合。标签可以提供光学的、电化学的、磁的或静电的(例如,感应的、电容的)特征,所述特征可以借助于纳米孔检测到(US2014/013616)。标签还可以附接到在US2014/013616的图13中所示的多磷酸酯。
变体OmpG多肽
在一个方面,本发明提供了变体OmpG多肽。变体OmpG多肽可以源自大肠杆菌的亲本OmpG,例如,在SEQ ID NO:2中描绘的亲本OmpG。亲本OmpG可以是来自大肠杆菌的亲本OmpG的同系物。
尽管在本文中使用大肠杆菌菌株K12 OmpG (SEQ ID NO: 2)作为讨论变体OmpG的起始点,但是应当理解,与大肠杆菌菌株K12 OmpG具有高度同源性的其它革兰氏阴性细菌OmpG可以充当在本文公开的组合物和方法的范围内的亲本OmpG。这特别适用于为本发明的主题的其它天然存在的细菌OmpG,其与大肠杆菌菌株K12 OmpG相比仅包括微小序列差异,不包括置换、缺失和/或插入。例如,在沙门氏菌属种(Salmonella sp.)、志贺氏菌属种(Shigella sp.)和假单胞菌属种(Pseudomonas sp.)中表达的OmpG同系物可以用作可从其衍生出变体形式的亲本OmpG多肽。在某些实施方案中,所述纳米孔是来自线粒体膜的孔。
来自大肠杆菌的亲本OmpG的同系物可以与来自大肠杆菌的OmpG(SEQ ID NO:1)具有至少70%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%的序列同一性。例如,变体OmpG可以源自与来自大肠杆菌的亲本OmpG具有至少70%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%同一性的大肠杆菌OmpG的同系物。在某些实施方案中,所述亲本OmpG是来自大肠杆菌菌株K12的OmpG。全长大肠杆菌OmpG的多肽序列(SEQ ID NO:1)以及来自弗氏志贺氏菌(Shigella flexneri)(SEQ ID NO: 12)、肠道沙门氏菌(Salmonella enterica)(SEQ ID NO:13和14)和法氏柠檬酸杆菌(Citrobacter farmeri)(SEQ ID NO:15)的同系物的实施例提供在图9中。SEQ ID NO:2是在SEQ ID NO:1中描绘的全长大肠杆菌OmpG多肽的成熟形式。
在某些实施方案中,所述亲本多肽是野生型OmpG多肽。在其它实施方案中,所述亲本多肽是这样的OmpG变体:可以向其引入另外的突变以改善OmpG多肽的减小离子电流噪音的能力。变体OmpG保留形成纳米孔的能力。在一个实施方案中,所述亲本OmpG多肽是SEQ IDNO:1的野生型大肠杆菌OmpG多肽或其成熟形式(SEQ ID NO:2)。应当理解,可以表达具有N-端Met的变体OmpG多肽。
在另一个实施方案中,所述亲本OmpG多肽是从其缺失了构成环6的氨基酸的变体OmpG多肽。例如,亲本OmpG是已经从其缺失了构成环6的氨基酸的SEQ ID NO:2的OmpG。SEQID NO:3的OmpG是已经从其缺失氨基酸216-227且用Ala替代氨基酸229的野生型OmpG (SEQID NO:2)的成熟形式,即,Δ216-227/E229A。SEQ ID NO:3包含在C-端处的表示如本文别处所述的接头-His6-接头-SpyTag序列(“His6”公开为SEQ ID NO: 18)的氨基酸序列。包含环6的缺失和在氨基酸229处的Ala置换的变体OmpG(即,Δ216-227/E229A)可互换地用ΔL6/E229A表示。在某些实施方案中,通过缺失SEQ ID NO:2的氨基酸216-227中的一个或多个,可以做出环6的截短。在其它实施方案中,缺失氨基酸216-227(包括端点)。氨基酸的编号表示SEQ ID NO: 2的氨基酸位置。
在一个实施方案中,所述变体OmpG是包含氨基酸216-227的缺失的SEQ ID NO:2的亲本OmpG的变体,即,Δ216-227。在另一个实施方案中,所述变体OmpG包含E229A,即,Δ216-227/E229A。在还另一个实施方案中,所述变体OmpG包含D215的缺失,即,Δ215-227/E229A。
在细胞外表面的OmpG孔的缢缩区(纳米孔的最小“瓶颈”)处的氨基酸被鉴别为促成衬里的对称性和/或OmpG的缢缩的长度。在某些实施方案中,可以将所述缢缩区氨基酸突变以缩短缢缩的长度和/或甚至缢缩的内径的宽度。可以设计缢缩氨基酸的诱变以建立独特的缢缩区。当与衍生出所述变体的亲本OmpG对比时,缢缩区的突变会减小变体OmpG的离子电流噪音。因此,在某些实施方案中,提供的变体OmpG多肽包含一个或多个氨基酸突变,所述突变位于在OmpG纳米孔的细胞外侧处的缢缩区。在其它实施方案中,可以将所述变体OmpG多肽进一步突变以结合分子连接物,其当停留在所述孔中时会减慢分析物(例如,核苷酸碱基)穿过所述孔的移动,且由此改善分析物的鉴别准确度(Astier等人,J Am Chem Soc10.1021/ja057123+,2005年12月30日在线公开)。
在某些实施方案中,在缢缩区中的突变,例如,在SEQ ID NO:2中描绘的OmpG的突变,选自氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和/或E31。在缢缩区处的氨基酸的突变可以是置换、缺失或插入中的一个或多个,例如,氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和/或E31中的一个或多个的置换。在某些实施方案中,至少一个氨基酸突变位于OmpG的缢缩区中。在其它实施方案中,所述缢缩区的至少两个、至少三个、至少四个、至少五个或至少六个氨基酸被突变。在某些实施方案中,在缢缩区处的至少一个氨基酸突变是置换Y50K。在一些其它的实施方案中,在缢缩区处的至少一个氨基酸突变是置换Y50N。在缢缩区处的至少一个氨基酸突变可以与环6的一个或多个氨基酸的缺失组合。因而,在某些实施方案中,所述变体OmpG源自亲本OmpG,例如,在SEQ ID NO:2中描绘的OmpG,且包含氨基酸216-227的缺失和在氨基酸229处的Ala的置换,即,Δ216-227/E229A,和野生型OmpG的缢缩区的至少一个氨基酸的突变,例如,氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和/或E31中的一个或多个的突变。在其它实施方案中,所述变体OmpG包含环6的缺失、在缢缩区处的一个或多个氨基酸的突变、和缺失D215。例如,变体OmpG是SEQ ID NO:2的亲本OmpG的变体,且包含氨基酸216-227的缺失和在氨基酸229处的Ala的置换(即,Δ216-227/E229A)、缢缩区的至少一个氨基酸的突变(例如,氨基酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66和/或E31中的一个或多个的突变)和del215。在一个实施方案中,所述变体OmpG是SEQID NO:2的亲本OmpG的变体,且包含氨基酸216-227的缺失(即,Δ216-227)、置换E229A、D215的缺失和氨基酸置换Y50K。
在某些实施方案中,提供了OmpG的“环形排列变体”,其中将亲本OmpG的C-端β-链移动至蛋白序列的N-端,从而保留亲本OmpG的倒数第二个β-链作为所述蛋白的新C-端。这示意地描绘在图10和11中。以此方式移动C-端β-链的结果是,与在衍生出所述变体的亲本OmpG中相比,所述变体的新C-端更靠近纳米孔的缢缩部位(参见图11)。与缢缩点的靠近是有利的,因为它允许改善的纳米孔对分子的捕获以用于分析。该改善的捕获可以是由于NanoTag穿入(threading)的能量壁垒的减小。N-端和C-端在脂质或聚合物层的对侧的安置也允许两种核酸修饰酶的附接,从而使基于纳米孔的仪器的处理量倍增。
任选地,如本文中所述的环形排列变体包括标签序列(例如,包含“SpyTag”或“His-SpyTag”序列),任选地还包含在C-端处的一个或多个接头序列(例如,SEQ ID NO:16),在亲本OmpG的倒数第二个β-链的下游。任选地,所述变体包括接头序列(例如,GSG),其在从亲本OmpG的C-端移动的新N-端β-链和以前在亲本OmpG的N-端处的β-链之间。在一个实施方案中,所述变体是在SEQ ID NO:2中描述的大肠杆菌OmpG的变体或其同系物。在一个实施方案中,所述变体包含SEQ ID NO:2的氨基酸残基267-280向SEQ ID NO:2的N-端的移动,任选地具有接头(例如,GSG),其在以前的残基280和SEQ ID NO:2的N-端之间,且任选地具有在所述变体的N-端处的甲硫氨酸(M)残基,在以前的残基267前面,且任选地在所述变体的C-端处具有在SEQ ID NO:16中描述的氨基酸序列。在一个实施方案中,所述变体具有在SEQ ID NO: 17中描述的氨基酸序列。
编码OmpG变体的DNA序列
使用本领域众所周知的多种方法,可以从生产目标OmpG的任何细胞或微生物分离出编码亲本OmpG的DNA序列。首先,使用来自生产要研究的OmpG的生物的染色体DNA或信使RNA,可以构建基因组DNA和/或cDNA文库。然后,如果OmpG的氨基酸序列是已知的,可以合成同源的、经标记的寡核苷酸探针并用于鉴别来自从目标生物制备的基因组文库的编码OmpG的克隆。可替换地,使用较低严谨性的杂交和洗涤条件,可以将经标记的寡核苷酸探针(其含有与已知的OmpG基因同源的序列)用作探针来鉴别编码OmpG的克隆。
可替换地,通过确定的标准方法,例如,S. L. Beaucage和M. H. Caruthers(1981) Tetrahedron Letters 22:1859-1862描述的亚磷酰胺方法或Matthes等人(1984)EMBO J. 3(4):801-5描述的方法,可以合成地制备编码OmpG的DNA序列。在亚磷酰胺方法中,将寡核苷酸合成(例如,在自动DNA合成仪中),纯化,退火,连接和克隆在适当的载体中。
最后,所述DNA序列可以具有根据标准技术通过连接合成起源、基因组起源或cDNA起源的片段(在适当时,所述片段对应于整个DNA序列的不同部分)而制备的混合的基因组和合成起源、混合的合成和cDNA起源、或混合的基因组和cDNA起源。使用特异性的引物,例如在美国专利号4,683,202或R. K. Saiki等人(1988) Science 239(4839):489-91中所述的引物,通过聚合酶链式反应(PCR)也可以制备DNA序列。
定位诱变
一旦已经分离编码OmpG的DNA序列并已经鉴别出合乎需要的突变位点,就可以使用合成的寡核苷酸引入突变。这些寡核苷酸含有侧接期望的突变位点的核苷酸序列;在寡核苷酸合成过程中插入突变体核苷酸。在一种具体的方法中,在携带OmpG基因的载体中产生桥连OmpG-编码序列或其部分的DNA的单链缺口。然后,使带有期望的突变的合成核苷酸与单链DNA的同源部分对合。然后将剩余的缺口用DNA聚合酶I (克列诺片段)填充,并将构建体使用T4连接酶连接。该方法的一个具体例子描述在Morinaga等人(1984) Nature Biotechnology 2:636-639中。美国专利号4,760,025公开了通过执行所述盒的微小改变而引入编码多个突变的寡核苷酸。但是,通过Morinaga方法可以在任何一次引入甚至更大种类的突变,因为可以引入许多不同长度的寡核苷酸。实现定位诱变的其它方法包括Kunkel的方法、盒式诱变和PCR定位诱变。用于提供变体的替代方法包括基因改组,例如,如在WO95/22625 (来自Affymax Technologies N.V.)或WO 96/00343 (来自Novo Nordisk A/S)中所述,或产生杂合酶的其它对应技术,其包含目标突变,例如,置换和/或缺失。
OmpG变体的表达
使用表达载体可以用编码OmpG变体的DNA序列表达变体OmpG,所述表达载体通常包括编码启动子、操纵基因、核糖体结合位点、翻译起始信号、和任选的阻遏物基因或各种活化剂基因的控制序列。可以用于表达变体OmpG的载体的例子包括pET表达系统的载体(Novagen)。
携带编码OmpG变体的DNA序列的重组表达载体可以是任意载体,其可以方便地进行重组DNA程序,并且载体的选择经常取决于它要引入其中的宿主细胞。因而,所述载体可以是自主复制的载体,即,作为染色体外实体存在的载体,其复制独立于染色体复制,例如,质粒、细菌噬菌体或染色体外元件、微型染色体或人工染色体。可替换地,所述载体可以是这样的载体:其当被引入宿主细胞中时,掺入宿主细胞基因组中并与它已经整合在其中的染色体一起复制。
用于连接编码OmpG变体的DNA构建体并将它插入含有复制所必需的信息的合适载体中的程序是本领域技术人员众所周知的(参见, 例如,Sambrook等人, Molecular Cloning: A Laboratory Manual, 第四版, Cold Spring Harbor, 2012)。
可以在细胞中生产OmpG变体,所述细胞可以属于高等生物诸如哺乳动物或昆虫,但是优选地是微生物细胞,例如,细菌或真菌(包括酵母)细胞。合适的细菌的例子是革兰氏阴性细菌诸如大肠杆菌或革兰氏阳性细菌诸如芽孢杆菌属种(Bacillus sp.),例如,枯草芽孢杆菌(Bacillus subtilis)、地衣芽孢杆菌(Bacillus licheniformis)、迟缓芽孢杆菌(Bacillus lentus)、短芽孢杆菌(Bacillus brevis)、嗜热脂肪土芽孢杆菌(Geobacillus stearothermophilus)、嗜碱芽孢杆菌(Bacillus alkalophilus)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、凝结芽孢杆菌(Bacillus coagulans)、环状芽孢杆菌(Bacillus circulars)、灿烂芽孢杆菌(Bacillus lautus)、巨大芽孢杆菌(Bacillus megaterium)或苏云金芽孢杆菌(Bacillus thuringiensis),或链霉菌属种(Streptomyces sp.),例如,浅青紫链霉菌(Streptomyces lividans)或鼠灰链霉菌(Streptomyces murinus)。酵母生物可以选自酵母属(Saccharomyces)或裂殖酵母属(Schizosaccharomyces)的种,例如,酿酒酵母(Saccharomyces cerevisiae),或选自丝状真菌,诸如曲霉菌属种(Aspergillus sp.),例如,米曲霉(Aspergillus oyzae)或黑曲霉(Aspergillus niger)。所述宿主细胞通常是细菌,且优选地是大肠杆菌。
在另一个方面,提供了生产OmpG变体的方法,所述方法包括在有助于所述变体产生的条件下培养如上所述的宿主细胞和从所述细胞和/或培养基回收所述变体。用于培养所述细胞的培养基可以是适合用于培养目标宿主细胞和得到OmpG变体的表达的任何常规培养基。合适的培养基可得自商业供应商,或可以根据公开的配方(例如,如在美国典型培养物保藏中心的目录中所述)制备。
通过众所周知的程序可以方便地从培养基回收从宿主细胞分泌的OmpG变体,所述程序包括通过离心或过滤从培养基分离细胞和借助于盐(诸如硫酸铵)沉淀培养基的蛋白性组分,随后使用色谱操作诸如离子交换色谱法、亲和色谱法等。在某些实施方案中,通过与亲和标签连接的OmpG多肽的亲和色谱法,可以得到变体OmpG的纯化。可以用在OmpG变体的纯化中的几种亲和标签或表位标签包括六组氨酸标签(SEQ ID NO: 18)、FLAG标签、Strep II标签、抗生蛋白链菌素-结合肽(SBP)标签、钙调蛋白-结合肽(CBP)、谷胱甘肽S-转移酶(GST)、麦芽糖-结合蛋白(MBP)、S-标签、HA标签和c-Myc标签。在某些实施方案中,将六组氨酸标签(SEQ ID NO: 18)用在OmpG的纯化中。可以将亲和标签通过蛋白接头共价地附接到变体OmpG多肽。预见到可用于将纳米孔连接至聚合酶的具体接头包括(GGGGS)1-3 (SEQID NO: 19)、EKEKEKGS (SEQ ID NO: 20)、His6-GSGGK (SEQ ID NO: 21)和AHIVMVDAYKPTK(SEQ ID NO: 22) (SpyTag)。所述蛋白接头可以由包含变体OmpG的编码序列的核酸编码,且可以表达为融合蛋白。例如,可以将变体OmpG表达为OmpG-(EK)3-His6-GSGG-SpyTag (EK EKEKGSHHHH HHGSGGAHIV MVDAYKPTK (SEQ ID NO:16)),表达为例如SEQ ID NO:3的氨基酸269-299。在某些情况下,在变体OmpG多肽的N-端表达His6标签(SEQ ID NO: 18)。
纳米孔组装
变体OmpG的表征可以包括确定造成可测量的电特征的差异的分子的任何性质。例如,门控频率的减小可以源自在跨变体OmpG纳米孔施加恒定电压时测量穿过纳米孔的向上和/或向下门控的降低。另外,变体OmpG的表征可以包括如下鉴别与DNA或RNA链互补的单个带标签的核苷酸的标签:当在OmpG纳米孔附近或穿过OmpG纳米孔检测到单个核苷酸的标签时,测量穿过纳米孔的离子电流的差异。在合成生长中的核酸链时,通过对比和关联带标签的核苷酸的标签的测得电特征,可以确定DNA或RNA分子的片段的碱基序列。
通常,跨已经重构进脂质膜中的纳米孔做出穿过OmpG纳米孔的离子电流的测量。在某些情况下,将OmpG纳米孔插入膜中(例如,通过电穿孔)。通过刺激信号诸如电刺激、压强刺激、液体流动刺激、气泡刺激、超声处理、声音、振动或它们的任意组合,可以插入纳米孔。在某些情况下,在气泡辅助下形成膜,并在电刺激的辅助下将纳米孔插入膜中。
用于组装脂质双层、在脂质双层中形成纳米孔和对核酸分子测序的方法可以参见PCT专利公开号WO2011/097028和WO2015/061510,它们通过引用整体并入本文。
图2是可以用于表征多核苷酸或多肽的纳米孔装置100的示意图。纳米孔装置100包括在导电固体基底106的脂质双层相容表面104上形成的脂质双层102,其中脂质双层相容表面104可以被脂质双层不相容表面105分离,且导电固体基底106可以被绝缘材料107电分离,且其中脂质双层102可以被在脂质双层不相容表面105上形成的无定形脂质103包围。包含纳米孔的脂质双层可以设置在孔上面,其中传感器形成所述孔的表面的部分。在孔上面的脂质双层中的纳米孔的位置的描述可以参见例如WO2015/061509。在脂质双层102的两个侧面之间给脂质双层102嵌入具有纳米孔110的单个纳米孔结构108,所述纳米孔110足够大以穿过正在表征的分子112的至少一部分和/或小离子(例如,Na+、K+、Ca2+、CI-)。可以将一层水分子114吸附在脂质双层相容表面104上并夹在脂质双层102和脂质双层相容表面104之间。吸附在亲水的脂质双层相容表面104上的水性膜114可以促进脂质分子的排序并促进脂质双层相容表面104上的脂质双层的形成。可以将含有分子112的溶液的样品室116提供在脂质双层102上面用于引入分子112进行表征。所述溶液可以是含有电解质的水溶液并且被缓冲至最适离子浓度和维持在最适pH以保持纳米孔110开放。所述装置包括联接到可变电压源120的一对电极118 (包括负节点118a和正节点118b),所述电极118用于提供跨脂质双层的电刺激(例如,电压偏置)和用于感知脂质双层的电特征(例如,电阻、电容和离子电流)。正电极118b的表面是或形成脂质双层相容表面104的部分。导电固体基底106可以联接到或形成电极118之一的部分。装置100还可以包括用于控制电刺激和用于处理检测到的信号的电路122。在某些实施方案中,包括可变电压源120作为电路122的部分。电路122可以包括放大器、积分仪、噪音过滤器、反馈控制逻辑和/或各种其它部件。电路122可以是集成在硅基底128内的集成电路,且可以进一步联接到计算机处理器124(其联接到存储器126)。
在一个实施例中,图2的纳米孔装置100是具有单个OmpG蛋白108(例如,如本文中所述的变体OmpG)的OmpG纳米孔装置,其嵌入在脂质双层102中,所述脂质双层102形成在脂质双层相容的银-金合金表面104上面,所述银-金合金表面104包被在铜材料106上。脂质双层相容的银-金合金表面104被脂质双层不相容的氮化硅表面105分离,且铜材料106被氮化硅材料107电绝缘。将铜106联接到集成在硅基底128中的电路122。放在芯片上或从盖板128向下延伸的银-氯化银电极接触含有dsDNA分子的水溶液。
脂质双层可以包含磷脂或由磷脂组成,例如,所述磷脂选自二植烷酰基-磷脂酰胆碱(DPhPC)、1,2-二植烷酰基-sn-甘油-3磷酸胆碱、1,2-二-O-植烷基-sn-甘油-3-磷酸胆碱(DoPhPC)、棕榈酰基-油酰基-磷脂酰胆碱(POPC)、二油酰基-磷脂酰-甲基酯(DOPME)、二棕榈酰磷脂酰胆碱(DPPC)、磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酸、磷脂酰肌醇、磷脂酰甘油、鞘磷脂、1,2-二-O-植烷基-sn-甘油;1,2-二棕榈酰基-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-350]; 1,2-二棕榈酰基-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-550]; 1,2-二棕榈酰基-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-750];1,2-二棕榈酰基-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-1000]; 1,2-二棕榈酰基-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000]; 1,2-二油酰基-sn-甘油-3-磷酸乙醇胺-N-乳糖苷; GM1神经节苷脂、溶血磷脂酰胆碱(LPC)或它们的任意组合。
纳米孔可以形成阵列。本发明提供了纳米孔检测器(或传感器)的阵列。图3A是具有可单独寻址的纳米孔装置100的阵列302的纳米孔芯片300的一个实施方案的示意图的顶视图,所述纳米孔装置100具有被脂质双层不相容表面105分离的脂质双层相容表面104。每个纳米孔装置100与集成在硅基底128上的控制电路122是一体。在某些实施方案中,可以包括侧壁136以分离纳米孔装置100的集合,使得每个集合可以接受不同的样品用于表征。在某些实施方案中,纳米孔芯片300可以包括盖板128。纳米孔芯片300还可以包括多个插针304用于与计算机处理器交接。在某些实施方案中,纳米孔芯片300可以联接到(例如,连接至)纳米孔工作站306,其可以包括用于实施(例如,自动地实施)本发明的方法的不同实施方案的各个部件,包括例如,分析物递送机构诸如用于递送脂质悬浮液、分析物溶液和/或其它液体、悬浮液或固体的移液器、机器人臂、计算机处理器和/或存储器。图3B是纳米孔芯片300的横断面视图。参考图3A和3B,可以在纳米孔检测器的阵列上检测到多个多核苷酸。在这里,每个纳米孔位置包含纳米孔,在某些情况下,所述纳米孔附接到如本文别处所述的聚合酶。每个纳米孔可以是可单独寻址的。
本发明的方法包括测量在与核苷酸相互作用过程中穿过所述孔的电流。在某些实施方案中,对核酸分子的测序可以需要施加直流电(例如,使得所述分子在纳米孔中移动的方向不会反转)。但是,使用直流电运行纳米孔传感器长时间段可以改变电极的组成,使横过纳米孔的离子浓度失衡,和具有其它不希望的效应。应用交流电(AC)波形可以避免这些不希望的效应且具有如下所述的某些优点。本文描述的利用带标签的核苷酸的核酸测序方法与AC施加电压完全相容,且AC因此可以用于实现所述优点。
用于测量穿过跨膜蛋白孔的离子电流的合适条件是本领域已知的,且例子提供在本文实验部分中。用跨所述膜和孔施加的电压实施所述方法。使用的电压通常是从-400 mV至+400 mV。使用的电压优选地是在具有选自-400 mV、-300 mV、-200 mV、-150 mV、-100mV、-50 mV、-20 mV和0 mV的下限和独立地选自+10 mV、+20 mV、+50 mV、+100 mV、+150 mV、+200 mV、+300 mV和+400 mV的上限的范围内。使用的电压更优选地是在100 mV至240 mV范围内,且最优选地是在160 mV至240 mV的范围内。通过使用增加的施加电势,可能增加本发明的孔在不同核苷酸之间的辨别。使用AC波形和带标签的核苷酸对核酸测序描述在2013年11月6日提交的标题为“Nucleic Acid Sequencing Using Tags”的美国专利公开US2014/0134616中,其通过引用整体并入本文。除了在US2014/0134616中描述的带标签的核苷酸以外,使用缺乏糖或无环部分的核苷酸类似物,例如,五种常见核苷碱基腺嘌呤、胞嘧啶、鸟嘌呤、尿嘧啶和胸苷的(S)-甘油核苷三磷酸(gNTP),可以执行测序(Horhota等人. Organic Letters, 8:5345-5347 [2006])。
纳米孔-聚合酶复合物
在某些情况下,将聚合酶(例如,DNA聚合酶)附接到纳米孔和/或定位在纳米孔附近。在将纳米孔掺入膜中之前或之后,可以将聚合酶附接到纳米孔。在某些情况下,将聚合酶附接到OmpG蛋白单体,并然后可以将纳米孔聚合酶复合物插入膜中。
用于将聚合酶附接到纳米孔的一种示例性方法包括将接头分子附接到OmpG单体,或将OmpG突变成具有附接位点或附接接头,并然后将聚合酶附接到附接位点或附接接头(例如,以批量(bulk),在插入膜中之前)。还可以在膜中形成纳米孔以后将聚合酶附接到附接位点或附接接头。在某些情况下,将多个纳米孔-聚合酶对插入生物芯片的多个膜(例如,设置在孔和/或电极上面)中,由此形成如本文中所述的纳米孔芯片。在某些情况下,聚合酶与纳米孔附接以形成纳米孔-聚合酶复合物发生在位于每个电极上面的生物芯片上。
用任意合适的化学法(例如,共价键和/或接头),可以将聚合酶附接到纳米孔。在某些情况下,将聚合酶表达为包含SpyCatcher多肽的融合蛋白,其可以共价地结合至包含SpyTag肽的OmpG纳米孔。在某些情况下,用分子钉将聚合酶附接到纳米孔。在某些情况下,分子钉包含三个氨基酸序列(称作接头A、B和C)。接头A可以从OmpG多肽延伸,接头B可以从聚合酶延伸,且接头C然后可以结合接头A和B (例如,通过环绕接头A和B)并因而使聚合酶结合至纳米孔。还可以将接头C构建为接头A或接头B的部分,因而减少接头分子的数目。
在某些情况下,使用Solulink™化学法将聚合酶连接至纳米孔。Solulink™可以是HyNic (6-肼基-烟酸,一种芳族肼)和4FB (4-甲酰基苯甲酸盐,一种芳族醛)之间的反应。在某些情况下,使用点击化学(可得自例如LifeTechnologies)将聚合酶连接至纳米孔。在某些情况下,将锌指突变引入OmpG分子,并然后使用分子(例如,DNA中间分子)将聚合酶连接至OmpG上的锌指位点。
可以用于将聚合酶附接至纳米孔的其它接头是直接遗传连锁(例如,(GGGGS)1-3氨基酸接头(SEQ ID NO: 19))、转谷氨酰胺酶介导的连接(例如,RSKLG (SEQ ID NO: 23))、分选酶介导的连接和通过半胱氨酸修饰实现的化学连接。预见到在本文中有用的具体接头是(GGGGS)1-3 (SEQ ID NO: 19)、在N-端上的K-标签(RSKLG (SEQ ID NO: 23))、ΔTEV位点(12-25)、ΔTEV位点+ SpyCatcher的N-端(12-49)。
通过任意合适的方式可以将聚合酶偶联到纳米孔。参见,例如,PCT/US2013/068967 (公开为WO2014/074727; Genia Technologies, Inc.), PCT/US2005/009702 (公开为WO2006/028508; President and Fellows of Harvard College),和PCT/US2011/065640 (公开为WO2012/083249; Columbia University)。
在某些情况下,将纳米孔和聚合酶生产为融合蛋白(即,单个多肽链),并原样掺入膜中。
可以将聚合酶突变以降低所述聚合酶向核酸链(例如,生长中的核酸链)中掺入核苷酸的速率。在某些情况下,通过将核苷酸和/或模板链官能化以提供位阻(例如,通过模板核酸链的甲基化),可以降低核苷酸向核酸链中的掺入速率。在某些情况下,通过掺入甲基化的核苷酸来降低所述速率。
用于对多核苷酸测序的方法
使用本文描述的变体OmpG多肽表征的分子可以属于多种类型,包括带电荷的或极性的分子诸如带电荷的或极性的聚合物分子。具体例子包括核糖核酸(RNA)和脱氧核糖核酸(DNA)分子。所述DNA可以是单链DNA (ssDNA)或双链DNA (dsDNA)分子。
在一个方面,提供了使用本发明的OmpG变体纳米孔对核酸测序的方法。在本发明中提供的OmpG变体可以用于根据本领域已知的其它纳米孔测序平台确定核酸的序列。例如,在本发明中提供的OmpG变体可以适合用于根据Oxford Nanopore (Oxford, UK)的基于外切核酸酶的方法、NABsys (Providence, RI)的基于纳米孔的杂交测序、NobleGenBiosciences (Concord、MA)、Illumina (San Diego、CA)的基于荧光的光学纳米孔测序、和Stratos Genomics (Seattle, WA)的纳米孔扩增测序对核酸测序。在某些实施方案中,使用带标签的核苷酸可以执行使用OmpG变体的核酸测序,如在PCT/US2013/068967 (标题为“Nucleic Acid Sequencing Using Tags”,2013年11月7日提交,其通过引用整体并入本文)中所述。例如,随着核苷酸碱基掺入多核苷酸链中和纳米孔检测核苷酸的标签,在膜(例如,脂质双层)中位于一个或多个感知电极邻近或感知附近的变体OmpG纳米孔可以检测聚合酶对带标签的核苷酸的掺入。聚合酶可以与如上所述的纳米孔结合。
带标签的核苷酸的标签可以包括能够被纳米孔检测到的化学基团或分子。用于提供带标签的核苷酸的标签的例子至少描述在PCT/US2013/068967的段落[0414]至[0452]中。可以从不同核苷酸的混合物(例如,带标签的dNTP的混合物,其中N是腺苷(A)、胞苷(C)、胸苷(T)、鸟苷(G)或尿嘧啶(U))掺入核苷酸。可替换地,可以从各种带标签的dNTP(即,带标签的dATP,其次是带标签的dCTP,其次是带标签的dGTP,)的交替溶液掺入核苷酸。随着纳米孔检测所述标签(随着它们流动穿过纳米孔或邻近纳米孔)、随着所述标签安设在纳米孔中和/或随着所述标签被呈递给纳米孔,多核苷酸序列的确定可以发生。每个带标签的核苷酸的标签可以在任何位置偶联至核苷酸碱基,所述位置包括但不限于核苷酸的磷酸酯(例如,γ磷酸酯)、糖或含氮碱基部分。在某些情况下,在核苷酸标签掺入过程中当标签与聚合酶结合时,检测标签。在核苷酸掺入以后和随后切割和/或释放标签以后,可以继续检测标签直到标签穿过纳米孔转移。在某些情况下,核苷酸掺入事件从带标签的核苷酸释放标签,并且所述标签穿过纳米孔和被检测到。所述标签可以被聚合酶释放,或以任意合适的方式切割/释放,包括但不限于位于聚合酶附近的酶实现的切割。以此方式,可以鉴别掺入的碱基(即,A、C、G、T或U),因为独特标签从每类核苷酸(即,腺嘌呤、胞嘧啶、鸟嘌呤、胸腺嘧啶或尿嘧啶)释放。在某些情况下,核苷酸掺入事件不会释放标签。在这样的情况下,借助于纳米孔检测与掺入的核苷酸偶联的标签。在某些实施例中,所述标签可以穿过纳米孔或在纳米孔附近移动,且可以借助于纳米孔检测到。
在某些情况下,没有掺入的带标签的核苷酸会穿过纳米孔。所述方法可以基于纳米孔检测带标签的核苷酸的时间长度在与未掺入的核苷酸结合的标签和与掺入的核苷酸结合的标签之间区分。在一个实施方案中,纳米孔检测未掺入的核苷酸小于约1毫秒,且纳米孔检测掺入的核苷酸至少约1毫秒。
因而,在一个方面,本发明提供了借助于变体OmpG纳米孔对核酸测序的方法。在一个实施方案中,提供了如下借助于在感知电极附近的变体OmpG纳米孔对核酸测序的方法:(a)将带标签的核苷酸提供进包含纳米孔的反应室,其中所述带标签的核苷酸的单个带标签的核苷酸含有与核苷酸偶联的标签,所述标签可借助于所述纳米孔检测到;(b)借助于聚合酶实施聚合反应,由此将所述带标签的核苷酸的单个带标签的核苷酸掺入与来自核酸样品的单链核酸分子互补的生长链;和(c)在单个带标签的核苷酸的掺入过程中和/或以后,借助于所述纳米孔检测与单个带标签的核苷酸结合的标签,其中当核苷酸与聚合酶结合时借助于纳米孔检测所述标签。包括将带标签的核苷酸与本发明的变体OmpG纳米孔一起用于对多核苷酸测序的测序方法的其它实施方案提供在WO2014/074727中,其通过引用整体并入本文。
实施例
实施例1
OmpG-EXT的表达和纯化
基于Grosse等人(Biochemistry 53:4826-4838 [2014])描述的ΔL6II构建体,合成编码成熟OmpG蛋白形式(残基22-301; Uniprot条目P76045)的DNA(Genscript, NJ),所述成熟OmpG蛋白形式缺乏环6且具有置换E229A (OmpG-EXT)。合成的DNA (OmpG-ΔL6/E229A)编码具有以下的OmpG构建体:环6的缺失和C-端序列:接头1-His tag-接头2-Spytag(SEQ ID NO:3)。将源自野生型序列(SEQ ID NO:4)且编码环6的截短(ΔL6)和置换E229A的合成DNA序列克隆进pET-26b载体中并在OmpG-缺陷型Bl21DE3大肠杆菌(www.neb.com/products/c2527-bl21de3-competent-e-coli)中生产为包涵体。
在Bl21DE3大肠杆菌细胞中通过IPTG诱导的OmpG-ΔL6/E229A DNA的转录得到OmpG-ΔL6/E229A的表达,所述Bl21DE3大肠杆菌细胞在MagicMedia™(Invitrogen,Carlsbad, CA)中生长大约24小时。将细胞离心,然后再悬浮于50mM Tris, PH8.0 (5ml缓冲液:1g细胞沉淀物)。接着,将细胞超声处理,并将裂解物离心(10,000 x g/20 min/4℃)。将沉淀物通过离心和重悬浮洗涤2次,并将最终的沉淀物以200 mg/ml的浓度再悬浮于50mM Tris pH8.0。将包涵体等分并在- 80℃保存。
在60℃将包涵体溶解在50 mM Tris pH8.0、6 M脲和2.4mM TCEP中10分钟。将未溶解的包涵体通过离心除去,并将存在于上清液中的溶解蛋白在重折叠缓冲液(25mM TrispH8.0、1.8M脲、1mM TCEP和3%β-OG)中稀释至1 mg/ml。将OmpG-ΔL6/E229A蛋白在37℃重折叠16小时,然后使用50 mM Tris pH8.0、200mM NaCl、5mM咪唑1%β-OG稀释以得到1%β-OG和0.8M脲的终浓度。将重折叠的蛋白使用TALON®(Clontech, Mountain View, CA)通过亲和色谱法纯化,并在50 mM Tris pH8.0、200 mM NaCl、200 mM咪唑和0.1%Tween-20中洗脱。TALON是固定化的带有钴离子的金属亲和色谱法(IMAC)树脂,其以比带有镍离子的树脂更高的特异性结合his-标记的蛋白。
基于在pET-26b载体中编码OmpG-ΔL6/E229A构建体的DNA,通过定位诱变得到OmpG-ΔL6/E229A蛋白的变体。如关于如上所述的OmpG-ΔL6所描述的,表达和纯化所有OmpG-ΔL6/E229A变体。
实施例2
OmpG变体的表征
为了证实变体OmpG多肽的减少自发门控的能力,将各个变体重构为:在半导体传感器芯片上的孔(well)的上面的脂质双层中的孔(a),和关于每个OmpG变体孔得到的单通道记录(b)。
(a)将OmpG变体重构进脂质双层中
如在实施例1中所述,将变体OmpG蛋白表达和纯化,所述变体OmpG蛋白包含环6的缺失(ΔL6)和氨基酸置换E229A的(即,ΔL6/E229A),其与选自Y50K、Y50N、R68N、R211N或E17K的氨基酸置换之一组合,并且/或与D215的缺失组合。如在PCT/US2014/061853 (标题为“Methods for Forming Lipid Bilayers on Biochips”并于2014年10月22日提交)中所述,形成脂质双层并将纳米孔插入。
(b)在脂质双层中的单通道记录
为了确定突变对电流的影响,针对穿过OmpG-EXT纳米孔的变体的电流做出单通道记录。使用DC做出穿过OmpG纳米孔的离子电流的测量。
除非另外指出,给室填充20 mM HEPES pH 8.0、300 mM NaCl、3mM CaCl2。使用内部构建的GeniaChipTM DNA测序仪测量电流。
OmpG-ΔL6/E229A -Y50K (SEQ ID NO:6)、OmpG- ΔL6/E229A -R68N (SEQ IDNO:7)、OmpG- ΔL6/E229A -R211N (SEQ ID NO:8)、OmpG-ΔL6/E229A -E17K (SEQ ID NO:9)和OmpG-ΔL6/E229A -del215 (SEQ ID NO:10)的通道电流迹线显示在图4A-4E中。所述迹线表明,OmpG-ΔL6/E229A -R68N (B)、OmpG-ΔL6/E229A -R211N (C)、OmpG-ΔL6/E229A-E17K (D)表现出大量闪烁,即,向上和向下电流。OmpG-ΔL6/E229A-Y50K (A)表现出更少闪烁和约30 pA的更低开放通道电流水平。OmpG-ΔL6/E229A-del215 (E)显示出最低自发门控水平,并维持约35pA的开放通道水平。
分析针对OmpG-ΔL6/E229A变体和针对变体OmpG-ΔL6/E229A-del215-Y50K测量的抗性事件的数目(图4A-4E)以计算突变对门控频率的影响。图5A显示了一种直方图,其将开放通道(OC)电流噪音(向上和向下电流)的平均值和S.D.与在平均测量结果的1个S.D.之外发生的相同测量的百分比相关联。直方图表明,当与亲本OmpG -ΔL6/E229A (图5A和5B中的“ΔL6”)和其它变体OmpG-ΔL6/E229A-Y50K (图5A和5B中的“ΔL6-Y50K”)、OmpG-ΔL6/E229A-R68N (图5A和5B中的“ΔL6-R68N”)、OmpG-ΔL6/E229A-R211N (图5A和5B中的“ΔL6-R211N”)、OmpG-ΔL6/E229A-E17K (图5A和5B中的“ΔL6-E17K”)、和OmpG-ΔL6/E229A-del215-Y50K (图5A和5B中的“ΔL6-Y50K”)对比时,OmpG-ΔL6/E229A-del215(del215) (图5A和5B中的“ΔL6-del215”)具有最低量的噪音,并维持约35 pA的开放通道电流。
向下电流的平均值和S.D.仅提供在图5B中。当与例如亲本OmpG -ΔL6/E229A对比时,OmpG-ΔL6/E229A-Y50K、OmpG-ΔL6/E229A-del215和OmpG-ΔL6/E229A-del215-Y50K显示最小量的向下电流。
实施例3
聚合酶与OmpG纳米孔的附接
编码His-标记的聚合酶的DNA序列pol6购自商业来源(DNA 2.0, Menlo Park,California),然后经工程改造成在它的C-端包含SpyCatcher结构域(Li等人,J Mol Biol23:426(2):309-317 [2014])。将Pol6连接进pD441载体(表达质粒)中,随后将其转化进感受态大肠杆菌1 ml起子培养物(在含有0.2%葡萄糖和100µg/ml卡那霉素的LB中)中大约8小时。将25µl对数期起子培养物转移进在96-深孔板中的1 ml表达培养基(补充了0.2%葡萄糖、50 mM磷酸钾、5mM MgCl2和100µg/ml卡那霉素的Terrific Broth (TB)自诱导培养基)中。将平板在28℃在250-300 rpm摇动下温育36-40小时。
然后将细胞通过在4℃在3200 x g离心30分钟进行收获。将培养基倾析出,并将细胞沉淀物再悬浮于200µl预冷却的裂解缓冲液(20mM磷酸钾pH 7.5, 100 mM NaCl, 0.5%Tween20, 5mM TCEP, 10mM咪唑, 1mM PMSF, 1X BugBuster®蛋白提取试剂, 100µg/ml溶菌酶和蛋白酶抑制剂)中,并在轻微搅拌下在室温温育20 min。然后将20µl试剂从10倍储备液加入至100µg/ml DNA酶、5 mM MgCl2、100µg/ml RNA酶I的终浓度,并在冰上温育5-10min以产生裂解物。给裂解物补充200µl 1M磷酸钾pH 7.5 (终浓度是约0.5M磷酸钾在400µl裂解物中),并通过在大约1500 rpm在4℃离心10分钟穿过Pall滤板(Part# 5053, 3微米过滤器)过滤。然后将经澄清的裂解物应用于经平衡的96-孔His-Pur Cobalt平板(PiercePart# 90095)并结合15-30 min。
通过在500 x g离心3 min,收集穿流液(FT)。然后将FT用400 μl洗涤缓冲液1(0.5M磷酸钾pH 7.5, 1M NaCl 5mM TCEP, 20mM咪唑,和0.5%Tween20)洗涤3次。然后将FT在400µl洗涤缓冲液2 (50mM Tris pH 7.4, 200mM KCl, 5mM TCEP, 0.5%Tween20, 20mM咪唑)中洗涤2次。将Pol6用200µl洗脱缓冲液(50mM Tris Ph7.4, 200mM KCl, 5mM TCEP,0.5%Tween20, 300mM咪唑, 25%甘油)洗脱,并在1-2 min温育以后收集。将洗脱液重新应用于相同的His-Pur平板2-3次以得到浓缩的Pol6。如通过SDS-PAGE评价的,纯化的聚合酶是>95%纯的。如通过NanoDrop®评价的,蛋白浓度是~3uM (0.35mg/ml),具有0.6的260/280比率。通过荧光位移测定检查聚合酶活性。
将Pol6-His-SpyCatcher蛋白在含有OmpG-EXT-His-SpyTag (SEQ ID NO:3)的3mM SrCl2中在4℃温育过夜以允许SpyCatcher与SpyTag的共价连接,由此形成OmpG-聚合酶复合物。将OmpG-聚合酶复合物使用亲和色谱法纯化,并如在实施例4中所述针对它的捕获和鉴别带标签的核苷酸的能力进行测试。
实施例4
通过聚合酶-变体OmpG复合物检测核苷酸碱基
在300 mM NaCl、3 mM CaCl2、20 mM HEPES(pH 7.5)中在有DNA模板JAM1A存在下使用与聚合酶Pol6形成复合物的OmpG-EXT-del215评估OmpG-EXT-del215 (SEQ ID NO:10)(即,OmpG-ΔL6/E229A-del215)鉴别被聚合酶捕获的核苷酸的能力。模板JAM1A是一种DNA模板,其提供与在测定中使用的带标签的胸苷核苷酸(由Roche 合成,Penzberg, 德国)互补的腺嘌呤核苷酸碱基且其被所述聚合酶捕获。
在施加10分钟的100 mV恒定电压下进行DC电流测量。使用带标签的核苷酸的不同集合。图6显示了迹线的一个例子,所述迹线证实,OmpG-EXT-del215-聚合酶复合物鉴别被聚合酶捕获的四种不同的带标签的核苷酸:T-T30、T-dSp30、T-Tmp6和T-dSp5。四种核苷酸各自的捕获反映为随着纳米孔检测对应的核苷酸标签穿过OmpG-EXT-del215纳米孔流动的电流的四种不同变化(图6)。箭头指示带标签的核苷酸的四种标签会将通道电流减少至四种不同水平。在类似的测量中鉴别四种核苷酸中的每一种,在此过程中随着核苷酸各自加入纳米孔中测量电流。图7显示了随着它们被纳米孔检测到通过对应的标签的减少开放通道电流的各种效应对核苷酸的鉴别。图8显示了在DC条件下检测到的四种核苷酸的捕获的放大视图,并由图6中的箭头指示。
序列表自由正文
SEQ ID NO:1 (野生型OmpG; >sp|P76045|OMPG_ECOLI外膜蛋白G; OS=大肠杆菌(菌株K12))
Figure DEST_PATH_IMAGE001
SEQ ID NO:2 (来自大肠杆菌(菌株K12)的成熟野生型OmpG;用于编号的序列))
Figure DEST_PATH_IMAGE002
SEQ ID NO:3 (在大肠杆菌中表达的合成的OmpG-ΔL6融合蛋白- HisTag-SpyTag)
Figure DEST_PATH_IMAGE003
SEQ ID NO:4 (野生型OmpG;大肠杆菌孔蛋白(ompG)基因GI:1806593)
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
SEQ ID NO:12 (膜蛋白(弗氏志贺氏菌);KGY82041)
Figure DEST_PATH_IMAGE012
SEQ ID NO:13 (外膜蛋白G (肠道沙门氏菌);
WP_023246462)
Figure DEST_PATH_IMAGE013
SEQ ID NO:14 (外膜蛋白G (肠道沙门氏菌);
WP_023220551)
Figure DEST_PATH_IMAGE014
SEQ ID NO:15 (膜蛋白(法氏柠檬酸杆菌);WP_042318786)
Figure DEST_PATH_IMAGE015
SEQ ID NO:16 ((EK)3-His6-GSGG-SpyTag - 接头-HisSpyTag构建体)
Figure DEST_PATH_IMAGE016
SEQ ID NO:17 大肠杆菌OmpG的环形排列变体
Figure DEST_PATH_IMAGE017
引文列表
专利文献
[1]PCT/US2005/009702 (在2006年3月16日公开为WO2006/028508;Presidentand Fellows of Harvard College;标题为METHODS AND APPARATUS FOR CHARACTERIZINGPOLYNUCLEOTIDES。
[2]PCT/US2011/065640 (在2012年6月21日公开为WO2012/083249; ColumbiaUniversity;标题为DNA SEQUENCING BY SYNTHESIS USING MODIFIED NUCLEOTIDES ANDNANOPORE DETECTION)。
[3]PCT/US2013/068967 (在2014年5月15日公开为WO2014/074727; GeniaTechnologies;标题为NUCLEIC ACID SEQUENCING USING TAGS)。
[4]US20140134616 (在2014年5月15日公开; Genia Technologies;标题为NUCLEIC ACID SEQUENCING USING TAGS)。
[5]PCT/US2014/061853 (在2015年4月30日公开为WO2015/061510; GeniaTechnologies;标题为METHODS FOR FORMING LIPID BILAYERS ON BIOCHIPS)。
[6]PCT/US2011/000205 (Genia Technologies, Inc. 标题为SYSTEMS FORMANIPULATING A MOLECULE IN A NANOPORE,在2011年8月11日公开为WO2011/097028)。
非专利文献
[1]Conlan和Bayley, Folding of a Monomeric Porin, OmpG, 见Detergent Solution; Biochemistry 42;9453-9465 (2003)。
[2]Subbarao和van den Berg, Crystal Structure of the monomeric PorinOmpG; J Mol Biol 360:750-759 (2006)。
[3]Grosse等人, Structural and functional characterization of asynthetically modified OmpG; Bioorganic and Medicinal Chem 18:7716-7723(2010)。
[4]Anbazhagan等人, Incorporation of Outer Membrane Protein OmpG inLipid Membranes: Protein-lipid Interactions andβ-Barrel Orientation;Biochemistry 47:6189-698 (2008)。
[5]Fahie等人, Resolved Single-Molecule Detection of IndividualSpecies within a Mixture of anti-Biotin Antibodies using an EngineeredMonomeric Nanopore; ACS Nano 9:1089-1098 (2015)。
[6]Chen等人, Outer membrane protein G: Engineering a quiet pore forbiosensing, Proc Natl Acad Sci 105:6272-6277 (2008)。
[7]Grosse等人, Structure-based Engineering of a Minimal Porin RevealsLoop-Independent Channel closure; Biochemistry 53:4826-4838 (2014)。
[8]Astier等人,J Am Chem Soc 10.1021/ja057123+, 2005年12月30日在线公开。
Figure IDA0001603616700000011
Figure IDA0001603616700000021
Figure IDA0001603616700000031
Figure IDA0001603616700000041
Figure IDA0001603616700000051
Figure IDA0001603616700000061
Figure IDA0001603616700000071
Figure IDA0001603616700000081
Figure IDA0001603616700000091
Figure IDA0001603616700000101
Figure IDA0001603616700000111
Figure IDA0001603616700000121
Figure IDA0001603616700000131
Figure IDA0001603616700000141
Figure IDA0001603616700000151
Figure IDA0001603616700000161
Figure IDA0001603616700000171
Figure IDA0001603616700000181
Figure IDA0001603616700000191
Figure IDA0001603616700000201
Figure IDA0001603616700000211
Figure IDA0001603616700000221
Figure IDA0001603616700000231
Figure IDA0001603616700000241
Figure IDA0001603616700000251
Figure IDA0001603616700000261
Figure IDA0001603616700000271
Figure IDA0001603616700000281
Figure IDA0001603616700000291
Figure IDA0001603616700000301
Figure IDA0001603616700000311
Figure IDA0001603616700000321
Figure IDA0001603616700000331
Figure IDA0001603616700000341
Figure IDA0001603616700000351
Figure IDA0001603616700000361
Figure IDA0001603616700000371
Figure IDA0001603616700000381
Figure IDA0001603616700000391
Figure IDA0001603616700000401
Figure IDA0001603616700000411
Figure IDA0001603616700000421
Figure IDA0001603616700000431
Figure IDA0001603616700000441
Figure IDA0001603616700000451
Figure IDA0001603616700000461
Figure IDA0001603616700000471
Figure IDA0001603616700000481
Figure IDA0001603616700000491
Figure IDA0001603616700000501
Figure IDA0001603616700000511

Claims (7)

1.一种分离的SEQ ID NO:2的亲本大肠杆菌OmpG的OmpG变体,其中引入亲本序列中的变化由氨基酸216-227的缺失、氨基酸置换E229A和突变Y50K组成,且其中所述变体保留形成纳米孔的能力。
2.权利要求1的分离的OmpG变体,所述OmpG变体还包含聚合酶,其中所述聚合酶可操作地连接至所述变体OmpG。
3.权利要求1-2中的任一项的分离的OmpG变体,其中所述OmpG变体保留在脂质层中形成纳米孔的能力。
4.权利要求1-3中的任一项的分离的OmpG变体,其中所述变体包含SEQ ID NO:16的接头-His-SpyTag构建体。
5.一种分离的核酸,其包含编码SEQ ID NO:2的亲本OmpG的变体的多核苷酸序列,其中所述变体OmpG中引入亲本序列中的变化由氨基酸216-227的缺失、氨基酸置换E229A,和氨基酸置换Y50K组成。
6.一种借助于邻近感知电极的膜中的变体OmpG纳米孔对核酸样品测序的方法,所述方法包括:
(a) 将带标签的核苷酸提供至包含所述纳米孔的反应室,其中所述带标签的核苷酸的单个带标签的核苷酸包含与核苷酸偶联的标签,所述标签借助于所述纳米孔是可检测的;
(b) 借助于与所述变体OmpG纳米孔偶联的单个聚合酶进行聚合反应,由此将所述带标签的核苷酸的单个带标签的核苷酸掺入与来自所述核酸样品的单链核酸分子互补的生长链中;和
(c) 借助于权利要求1-4中的任一项的变体OmpG纳米孔,检测在所述单个带标签的核苷酸的掺入过程中与所述单个带标签的核苷酸结合的标签,其中当所述核苷酸与所述聚合酶结合时借助于所述纳米孔检测所述标签。
7.一种用于对核酸样品测序的芯片,所述芯片包含:多个根据权利要求1-4中的任一项的变体OmpG纳米孔,所述多个OmpG纳米孔设置在电极邻近或附近,其中所述纳米孔是可单独寻址的且具有附接到所述纳米孔的单个聚合酶;且其中单个纳米孔检测通过所述聚合酶向生长的核酸链中掺入核苷酸的过程中与带标签的核苷酸结合的标签。
CN201680054910.5A 2015-09-22 2016-09-20 OmpG变体 Active CN108449941B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562222197P 2015-09-22 2015-09-22
US62/222197 2015-09-22
US201662333672P 2016-05-09 2016-05-09
US62/333672 2016-05-09
PCT/EP2016/072224 WO2017050722A1 (en) 2015-09-22 2016-09-20 Ompg variants

Publications (2)

Publication Number Publication Date
CN108449941A CN108449941A (zh) 2018-08-24
CN108449941B true CN108449941B (zh) 2022-03-11

Family

ID=57068053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680054910.5A Active CN108449941B (zh) 2015-09-22 2016-09-20 OmpG变体

Country Status (7)

Country Link
US (3) US10752658B2 (zh)
EP (1) EP3353194B1 (zh)
JP (1) JP6956709B2 (zh)
CN (1) CN108449941B (zh)
AU (1) AU2016326867B2 (zh)
CA (1) CA2998970C (zh)
WO (1) WO2017050722A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3353194B1 (en) * 2015-09-22 2023-08-30 F. Hoffmann-La Roche AG Ompg variants
KR101838687B1 (ko) * 2016-01-26 2018-03-15 한국생명공학연구원 나노포어를 이용한 단백질-단백질 상호작용 저해제 스크리닝 방법
CN112480204A (zh) * 2020-04-13 2021-03-12 南京大学 一种采用Aerolysin纳米孔道的蛋白质/多肽测序方法
EP4196608A1 (en) 2020-08-11 2023-06-21 F. Hoffmann-La Roche AG Nucleoside-5'-oligophosphates tagged with positively-charged polymers, nanopores incorporating negative charges, and methods and systems using the same
EP4355912A1 (en) 2021-06-17 2024-04-24 F. Hoffmann-La Roche AG Engineered nanopore with a negatively charged polymer threaded through the channel
WO2022263489A1 (en) 2021-06-17 2022-12-22 F. Hoffmann-La Roche Ag Nucleoside-5 -oligophosphates having a cationically-modified nucleobase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854917A (zh) * 2007-07-20 2010-10-06 巴斯夫欧洲公司 包含跨膜转运触发体系的小泡
WO2015055981A2 (en) * 2013-10-18 2015-04-23 Oxford Nanopore Technologies Limited Modified enzymes
WO2015126494A1 (en) * 2014-02-19 2015-08-27 University Of Washington Nanopore-based analysis of protein characteristics

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
DE4422198C2 (de) 1994-06-24 1997-08-28 Audi Ag Verfahren zum Steuern der elektrischen Beheizung eines Katalysators
WO2006028508A2 (en) 2004-03-23 2006-03-16 President And Fellows Of Harvard College Methods and apparatus for characterizing polynucleotides
CN105273991B (zh) 2010-02-08 2019-05-10 吉尼亚科技公司 用于在纳米孔中操作分子的系统和方法
WO2012083249A2 (en) 2010-12-17 2012-06-21 The Trustees Of Columbia University In The City Of New York Dna sequencing by synthesis using modified nucleotides and nanopore detection
KR101980900B1 (ko) 2012-07-13 2019-05-22 삼성전자주식회사 수위감지장치 및 이를 가지는 의류건조기
US9605309B2 (en) 2012-11-09 2017-03-28 Genia Technologies, Inc. Nucleic acid sequencing using tags
US9896485B2 (en) 2013-07-22 2018-02-20 University Of Massachusetts Nanopore sensors and uses thereof
CA2926138A1 (en) 2013-10-23 2015-04-30 Genia Technologies, Inc. High speed molecular sensing with nanopores
US9567630B2 (en) 2013-10-23 2017-02-14 Genia Technologies, Inc. Methods for forming lipid bilayers on biochips
EP3353194B1 (en) * 2015-09-22 2023-08-30 F. Hoffmann-La Roche AG Ompg variants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854917A (zh) * 2007-07-20 2010-10-06 巴斯夫欧洲公司 包含跨膜转运触发体系的小泡
WO2015055981A2 (en) * 2013-10-18 2015-04-23 Oxford Nanopore Technologies Limited Modified enzymes
WO2015126494A1 (en) * 2014-02-19 2015-08-27 University Of Washington Nanopore-based analysis of protein characteristics

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Novel Mutation, cog, Which Results in Production of a New Porin Protein (OmpG) of Escherichia coli K-12;RAJEEV MISRA等;《JOURNAL OF BACTERIOLOGY》;19890831;第171卷(第8期);全文 *
Filiz Korkmaz-Özkan等.Correlation between the OmpG Secondary Structure and Its pH-Dependent Alterations Monitored by FTIR.《J. Mol. Biol.》.2010,第401卷 *
Outer membrane protein G: Engineering a quiet pore for biosensing;Min Chen等;《PNAS》;20080429;第105卷(第17期);全文 *
Threading DNA through nanopores for biosensing applications;Maria Fyta;《Journal of Physics: Condensed Matter》;20150610;全文 *

Also Published As

Publication number Publication date
EP3353194A1 (en) 2018-08-01
US11767348B2 (en) 2023-09-26
CA2998970A1 (en) 2017-03-30
JP6956709B2 (ja) 2021-11-02
JP2018531002A (ja) 2018-10-25
AU2016326867B2 (en) 2018-09-13
EP3353194B1 (en) 2023-08-30
CA2998970C (en) 2021-07-13
US20180362594A1 (en) 2018-12-20
AU2016326867A1 (en) 2018-03-08
US20240010688A1 (en) 2024-01-11
US10752658B2 (en) 2020-08-25
WO2017050722A1 (en) 2017-03-30
US20200392191A1 (en) 2020-12-17
CN108449941A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
US11767348B2 (en) OmpG variants
JP6799072B2 (ja) 変異体ポア
US20200190572A1 (en) Polymerase variants
JP6169976B2 (ja) 変異体細孔
JP6608944B2 (ja) 特徴が改変されたα溶血素変異体
CN107002151B (zh) 向跨膜孔输送分析物的方法
JP2022046503A (ja) 修飾ナノポア、それを含む組成物およびその使用
JP2018531002A6 (ja) Ompgバリアント
CN114605507A (zh) 突变csgg孔
US20200216887A1 (en) Nanopore sequencing complexes
EP3423576B1 (en) Polymerase variants
KR20140108706A (ko) 효소 방법
JP2024012307A (ja) 修飾ナノポア、それを含む組成物、およびそれらの使用
CN112119033A (zh) 源自噬菌体的纳米孔传感器
US11845779B2 (en) Mutant aerolysin and uses thereof
US20210381041A1 (en) Enzymatic Enrichment of DNA-Pore-Polymerase Complexes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant