JP2018531002A - Ompgバリアント - Google Patents

Ompgバリアント Download PDF

Info

Publication number
JP2018531002A
JP2018531002A JP2018514905A JP2018514905A JP2018531002A JP 2018531002 A JP2018531002 A JP 2018531002A JP 2018514905 A JP2018514905 A JP 2018514905A JP 2018514905 A JP2018514905 A JP 2018514905A JP 2018531002 A JP2018531002 A JP 2018531002A
Authority
JP
Japan
Prior art keywords
ompg
variant
nanopore
seq
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018514905A
Other languages
English (en)
Other versions
JP6956709B2 (ja
JP2018531002A6 (ja
Inventor
チェック,シンシア
クレイグ,ティモシー
ツィツィロニス,クリストス
ヤン,アレクサンダー
ジェンセン,リヴ
ヤン,シャーロット
ハリス,コリッサ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2018531002A publication Critical patent/JP2018531002A/ja
Publication of JP2018531002A6 publication Critical patent/JP2018531002A6/ja
Application granted granted Critical
Publication of JP6956709B2 publication Critical patent/JP6956709B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07007DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本開示は、バリアントOmpGポリペプチド、OmpGバリアントポリペプチドを含む組成物、および一本鎖核酸の配列を決定するために、バリアントOmpGポリペプチドを、ナノポアとして使用するための方法を提供する。バリアントOmpGナノポアは、それらが由来する親OmpGポリペプチドに対してイオン電流ノイズを低減し、それによって、単一ヌクレオチドの分解能を用いるポリヌクレオチドのシーケンシングを可能にする。低減されたイオン電流ノイズはまた、他の単一分子検出適用、例えば、タンパク質シーケンシングにおけるこれらのOmpGナノポアバリアントの使用を提供する。
【選択図】なし

Description

[001]核酸およびタンパク質の配列の決定において使用するための単量体ナノポアの操作されたバリアントを提供する。
[002]タンパク質ナノポアは、化学および生物学における基礎的な問題の研究を可能にする強力な単一分子解析ツールとなった。特に、ナノポアは、DNA、RNAおよびタンパク質などの単一生体分子の検出および解析におけるその適用の可能性のために相当な注目を集めてきた。
[003]単一ナノポアを使用する分子検出は、加電圧の際に細孔を流れるイオン電流または細孔にわたる電圧の調節を観察することによって達成される。典型的には、不透過性膜にまたがるナノポアを、電解質を含有する2つのチャンバーの間に配置し、電極を使用して膜をわたって電圧が加えられる。これらの状態は、細孔を通るイオン流動につながる。核酸またはタンパク質分子は、細孔を通って駆動され得、生体分子の構造的特徴を、膜を越える電流または電圧の測定可能な変化として観察する。
[004]ナノポアシーケンシングの課題は、単一塩基レベルでヌクレオチド配列を分解することである。個々のヌクレオチド塩基の識別を邪魔する因子の1つは、ナノポアの構造に固有であるナノポアを流れるイオン電流の揺らぎである。
[005]本開示は、バリアント外膜タンパク質G(OmpG)ポリペプチド、OmpGバリアントポリペプチドを含む組成物ならびにバリアントOmpGポリペプチドを、核酸(例えば、DNA、RNA)および/またはポリマー(例えば、タンパク質)シーケンシングおよびカウンティングのためのナノポアとして使用する方法を提供する。バリアントOmpGナノポアは、それらが由来する親OmpGポリペプチドのイオン電流ノイズを低減する。
[006]一態様においては、本開示は、バリアントOmpGポリペプチドを提供する。一実施形態においては、配列番号2の親OmpGの単離されたバリアントまたはその相同体を提供し、バリアントは、アミノ酸216〜227のうち1つまたは複数の欠失、アミノ酸置換E229Aならびにアミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66およびE31のうち1つまたは複数の変異を含み、前記バリアントは、ナノポアを形成する能力を保持する。いくつかの実施形態においては、OmpGバリアントは、配列番号2のOmpGに対して少なくとも70%の同一性を有する。他の実施形態においては、バリアントOmpGは、配列番号16のリンカー−His−Spyタグ構築物を含む。
[007]別の実施形態においては、配列番号2の親OmpGの単離されたバリアントまたはその相同体を提供し、バリアントは、アミノ酸216〜227のうち1つまたは複数の欠失、アミノ酸置換E229Aおよびアミノ酸D215の欠失を含み、細孔を形成する能力を保持する。単離されたバリアントは、配列番号2のアミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66およびE31のうち1つまたは複数の変異をさらに含み得る。いくつかの実施形態においては、OmpGバリアントは、配列番号2のOmpGに対して少なくとも70%の同一性を有する。他の実施形態においては、バリアントOmpGは、配列番号16のリンカー−His−Spyタグ構築物を含む。
[008]いくつかの実施形態においては、単離されたOmpGバリアントは、アミノ酸216〜227のうち1つまたは複数の欠失および置換Y50Kを含む。他の実施形態においては、OmpGバリアントは、D215の欠失をさらに含む。
[009]別の実施形態においては、単離されたOmpGバリアントは、親OmpGの1つまたは複数のC末端β鎖が、タンパク質配列のN末端に移動されている「円順列」を含む。一実施形態においては、C末端β鎖がN末端に移動され、タンパク質の新規C末端として親OmpGの最後から2番目のβ鎖を保持する。他の実施形態においては、2つ以上のβ鎖が、N末端に移動される。任意選択で、バリアントは、タグ配列(例えば、「Spyタグ」または「His−Spyタグ:配列を含み、任意選択で、親OmpGの最後から2番目のβ鎖から下流のC末端に1つまたは複数のリンカー配列(例えば、配列番号16)をさらに含む)を含む。任意選択で、バリアントは、親OmpGのC末端から移動された新規N末端β鎖と、これまで親OmpGのN末端にあったβ鎖の間にリンカー配列、例えば、GSGを含む。一実施形態においては、バリアントは、配列番号2に示される大腸菌(E.coli)OmpGのバリアントまたはその相同体である。一実施形態においては、バリアントは、配列番号2のC末端からN末端への配列番号2のアミノ酸残基267〜280の移動を含み、任意選択で、これまでの残基280と、配列番号2のN末端の間にリンカー、例えば、GSGを有し、任意選択で、これまでの残基267の前にバリアントのN末端にメチオニン(M)残基を有し、任意選択で、バリアントのC末端に配列番号16に示されるアミノ酸配列を有する。一実施形態においては、バリアントは、配列番号17に示されるアミノ酸配列を有する。
[0010]いくつかの実施形態においては、バリアントOmpGは、脂質またはポリマー層中にナノポアを形成する能力を保持する。他の実施形態においては、OmpGバリアントは、脂質二重層にわたって印加電圧がかけられる場合にイオン電流ノイズの低減を示す。他の実施形態においては、バリアントOmpGは、配列番号2アミノ酸配列を有する親大腸菌(E.Coli)OmpGと比較して、イオン電流ノイズを低減した。さらに、バリアントOmpGは、遺伝子的ポリメラーゼ融合物をさらに含み得る、例えば、単離されたOmpGバリアントは、前記バリアントOmpGと作動可能に連結されている(連結後に依然として機能的である)ポリメラーゼを含む。
[0011]さらに他の実施形態においては、バリアントOmpGは、単一ヌクレオチドの分解能を用いる成長している核酸鎖への前記ポリメラーゼによるヌクレオチドの組込みの検出を可能にする。
[0012]別の態様においては、本開示は、バリアントOmpGポリペプチドをコードする単離された核酸を提供する。一実施形態においては、配列番号2の親OmpGのバリアントをコードするポリヌクレオチド配列を含む単離された核酸を提供し、前記バリアントOmpGは、アミノ酸216〜227のうち1つまたは複数の欠失、アミノ酸置換E229Aならびに(i)アミノ酸D215の欠失および/または(ii)アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66およびE31のうち1つもしくは複数の変異を含む。他の実施形態においては、ポリヌクレオチド配列は、配列番号2のOmpGに対して少なくとも70%の同一性を有するバリアントをコードする。他の実施形態においては、ポリヌクレオチド配列は、OmpG円順列バリアント、例えば、上記のような配列番号2の円順列バリアントまたはその相同体、例えば、配列番号17をコードする。
[0013]別の態様においては、本明細書において開示されるようなバリアントOmpGポリペプチドをコードする単離された核酸を含む発現ベクターを提供する。一実施形態においては、発現ベクターは、配列番号2の親OmpGのバリアントをコードするポリヌクレオチド配列を含む核酸を含み、前記バリアントOmpGは、アミノ酸216〜227のうち1つまたは複数の欠失、アミノ酸置換E229Aならびに(i)アミノ酸D215の欠失、すなわちdel215および/または(ii)アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66およびE31のうち1つもしくは複数の変異を含む。別の実施形態においては、発現ベクターは、OmpG円順列バリアント、例えば、上記のような配列番号2の円順列バリアントまたはその相同体、例えば、配列番号17をコードするポリヌクレオチド配列をコードする核酸を含む。
[0014]別の態様においては、本明細書において記載されるOmpGバリアントを発現する発現ベクターを含む宿主微生物を提供する。一実施形態においては、宿主微生物は、配列番号2の親OmpGのバリアントをコードするポリヌクレオチド配列を含む発現ベクターを含み、前記バリアントOmpGは、アミノ酸216〜227のうち1つまたは複数の欠失、アミノ酸置換E229Aならびに(i)アミノ酸D215の欠失および/または(ii)アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66およびE31のうち1つもしくは複数の変異を含む。別の実施形態においては、宿主微生物は、OmpG円順列バリアント、例えば、上記のような配列番号2の円順列バリアントまたはその相同体、例えば、配列番号17をコードするポリヌクレオチド配列を含む発現ベクターを含む。
[0015]別の態様においては、宿主細胞においてバリアントOmpGを産生するための方法を提供する。一実施形態においては、方法は、a)宿主細胞を、配列番号2の親OmpGのバリアントをコードする核酸を含む発現ベクターを用いて形質転換するステップであって、前記バリアントOmpGは、アミノ酸216〜227のうち1つまたは複数の欠失、アミノ酸置換E229Aならびに(i)アミノ酸D215の欠失および/または(ii)アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66およびE31のうち1つもしくは複数の変異を含む、ステップと、b)バリアントOmpGの産生に適した条件下で宿主細胞を培養するステップとを含む。別の実施形態においては、方法は、a)宿主細胞を、OmpG円順列バリアント、例えば、上記のような配列番号2の円順列バリアントまたはその相同体、例えば、配列番号17をコードするポリヌクレオチド配列を含む発現ベクターを用いて形質転換するステップと、b)バリアントOmpGの産生に適した条件下で宿主細胞を培養するステップとを含む。他の実施形態においては、方法は、産生されたバリアントを回収するステップをさらに含む。
[0016]別の態様においては、バリアントOmpGナノポアを利用して核酸試料をシーケンシングするための方法を提供する。一実施形態においては、方法は、(a)タグ付きヌクレオチドを、バリアントOmpGナノポアを含む反応チャンバー中に提供するステップであって、タグ付きヌクレオチドの個々のタグ付きヌクレオチドは、ヌクレオチドに連結されたタグを含有し、このタグは、前記ナノポアを利用して検出可能である、ステップと、(b)前記バリアントOmpGナノポアに連結された単一ポリメラーゼを利用して重合反応を実施し、それによって、タグ付きヌクレオチドの個々のタグ付きヌクレオチドを、核酸試料に由来する一本鎖核酸分子と相補的である成長している鎖中に組み込むステップと、(c)バリアントOmpGナノポアを利用して、個々のタグ付きヌクレオチドの組込みの際に、個々のタグ付きヌクレオチドと会合されたタグを検出するステップであって、ヌクレオチドがポリメラーゼと会合される間に、タグがバリアントOmpGナノポアを利用して検出される、ステップとを含む。
[0017]別の態様においては、核酸試料をシーケンシングするためのチップを提供する。一実施形態においては、チップは、本明細書において開示される複数のバリアントOmpGナノポアを含み、複数のOmpGナノポアは、電極に隣接して、または近接して配置され、前記ナノポアは、個々にアドレス可能であり、ナノポアに付けられた単一ポリメラーゼを有し、個々のナノポアは、ポリメラーゼによる成長している核酸鎖中へのヌクレオチドの組込みの際に、タグ付きヌクレオチドと会合されたタグを検出する。
[0018]別の態様においては、組成物を提供する。一実施形態においては、組成物は、複数のポリメラーゼ酵素を含み、各々は、鋳型核酸と複合体を形成しており、各ポリメラーゼ酵素は、本明細書において開示されるようなバリアントOmpGナノポアに付けられているか、またはバリアントOmpGナノポアに近接して付けられており、核酸シーケンシング試薬は、少なくとも1つのタグ付きヌクレオチドまたはヌクレオチド類似体を含む。
[0019]図1Aは、リボン構造としての大腸菌(E.coli)に由来する野生型OmpG細孔の構造を示す図である。 図1Bは、表面描写としての大腸菌(E.coli)に由来する野生型OmpG細孔の構造を示す図である。OmpGナノポアの収縮帯域が示されている。 [0020]電気刺激を制御するための、および解析分子の電気性状を検出するためのナノポアデバイスにおいて使用される回路の実施形態の模式図である。 [0021]ナノポアデバイスアレイを含むチップの実施形態の模式図である。図3Aには斜視図が示されている。 ナノポアデバイスアレイを含むチップの実施形態の模式図である。図3Bには、チップの断面図が示されている。 [0022]アミノ酸216〜227の欠失およびアミノ酸置換E229A(ΔL6/E229Α)((配列番号5)において示されるように)およびアミノ酸置換Y50K(配列番号6)を含むOmpGバリアントの、印加された定電圧で得られた単一チャネル電流トレースを示す図である。 アミノ酸216〜227の欠失およびアミノ酸置換E229A(ΔL6/E229Α)((配列番号5)において示されるように)およびアミノ酸置換R68N(配列番号7)を含むOmpGバリアントの、印加された定電圧で得られた単一チャネル電流トレースを示す図である。 アミノ酸216〜227の欠失およびアミノ酸置換E229A(ΔL6/E229Α)((配列番号5)において示されるように)およびアミノ酸置換R211N(配列番号8)を含むOmpGバリアントの、印加された定電圧で得られた単一チャネル電流トレースを示す図である。 アミノ酸216〜227の欠失およびアミノ酸置換E229A(ΔL6/E229Α)((配列番号5)において示されるように)およびアミノ酸置換E17K(配列番号9)を含むOmpGバリアントの、印加された定電圧で得られた単一チャネル電流トレースを示す図である。 アミノ酸216〜227の欠失およびアミノ酸置換E229A(ΔL6/E229Α)((配列番号5)において示されるように)およびアミノ酸欠失del215(配列番号10)を含むOmpGバリアントの、印加された定電圧で得られた単一チャネル電流トレースを示す図である。 [0023]ΔL6/E229Α(配列番号5)およびアミノ酸置換ΔL6/E229Α−Y50K(配列番号6)、ΔL6/E229A−R68N(配列番号7)、ΔL6/E229A−R211N(配列番号8)、ΔL6/E229A−E17K(配列番号9)およびアミノ酸欠失ΔL6/E229A−del215(配列番号10);(del215));ΔL6/E229A−del215−Y50K(配列番号11)のOmpGバリアントの各々について決定された、平均開口チャネル(OC)電流(黒色バー)ならびに高い方向および低い方向の両方における平均開口チャネルの1標準偏差より大きい事象のパーセンテージを示す図である。 ΔL6/E229Α(配列番号5)およびアミノ酸置換ΔL6/E229Α−Y50K(配列番号6)、ΔL6/E229A−R68N(配列番号7)、ΔL6/E229A−R211N(配列番号8)、ΔL6/E229A−E17K(配列番号9)およびアミノ酸欠失ΔL6/E229A−del215(配列番号10);(del215));ΔL6/E229A−del215−Y50K(配列番号11)のOmpGバリアントの各々について決定された、黒(黒色バー)の平均開口チャネル電流および低い方向のみ(下降電流のみ)における平均開口チャネルの1標準偏差より大きい事象のパーセンテージを示す図である。 [0024]タグ付きヌクレオチドの各々が、バリアントOmpGナノポアΔL6/E229A−del215(配列番号10)によって検出されるときの、ベースライン開口チャネル直流の変化として示される4種の異なるタグ付きヌクレオチドの混合物の単一ヌクレオチド分解能を示す図である。測定は、直流(DC)を適用して行った。 [0025]4種のタグ付きヌクレオチドの各々のベースライン開口チャネル電流の別個の変化として、バリアントOmpGナノポアΔL6/E229A−del215(配列番号10)によって図6において検出されたタグ付きヌクレオチドの各々の同定を示す図である。測定は、直流(DC)を適用して行った。 4種のタグ付きヌクレオチドの各々のベースライン開口チャネル電流の別個の変化として、バリアントOmpGナノポアΔL6/E229A−del215(配列番号10)によって図6において検出されたタグ付きヌクレオチドの各々の同定を示す図である。測定は、直流(DC)を適用して行った。 4種のタグ付きヌクレオチドの各々のベースライン開口チャネル電流の別個の変化として、バリアントOmpGナノポアΔL6/E229A−del215(配列番号10)によって図6において検出されたタグ付きヌクレオチドの各々の同定を示す図である。測定は、直流(DC)を適用して行った。 4種のタグ付きヌクレオチドの各々のベースライン開口チャネル電流の別個の変化として、バリアントOmpGナノポアΔL6/E229A−del215(配列番号10)によって図6において検出されたタグ付きヌクレオチドの各々の同定を示す図である。測定は、直流(DC)を適用して行った。 [0026]バリアントOmpGナノポアΔL6/E229A−del215(配列番号10)によって検出されるように図6において示される4種の異なるタグ付きヌクレオチドの混合物の単一ヌクレオチド分解能の拡大図である。測定は、直流(DC)を適用して行った。 [0027]大腸菌(E.coli)に由来するOmpGの細菌膜タンパク質相同体のタンパク質アラインメントを示す図である(出現の順に、それぞれ、配列番号1および12〜15)。 大腸菌(E.coli)に由来するOmpGの細菌膜タンパク質相同体のタンパク質アラインメントを示す図である(出現の順に、それぞれ、配列番号1および12〜15)。 大腸菌(E.coli)に由来するOmpGの細菌膜タンパク質相同体のタンパク質アラインメントを示す図である(出現の順に、それぞれ、配列番号1および12〜15)。 大腸菌(E.coli)に由来するOmpGの細菌膜タンパク質相同体のタンパク質アラインメントを示す図である(出現の順に、それぞれ、配列番号1および12〜15)。 大腸菌(E.coli)に由来するOmpGの細菌膜タンパク質相同体のタンパク質アラインメントを示す図である(出現の順に、それぞれ、配列番号1および12〜15)。 [0028]図10Aは、OmpG逆平行β鎖を模式的に示す図である。 図10Bは、OmpG逆平行β鎖の円順列バリアントの実施形態を模式的に示す図である。 [0029]ナノポアタンパク質の収縮部位に対して、野生型親OmpG対本明細書において記載されるような円順列バリアントにおけるOmpGのC末端の配置を示す図である。
[0030]本発明の1つまたは複数の実施形態の詳細な説明を、本発明の原理を例示する添付の図面とともに以下に提供する。本発明は、このような実施形態に関連して記載されるが、本発明は、任意の実施形態に制限されない。本発明の範囲は、特許請求の範囲によってのみ制限され、本発明は、多数の代替物、改変および等価物を包含する。多数の特定の詳細が、本発明の徹底的な理解を提供するために以下の説明に記載される。これらの詳細は、例を目的として提供され、本発明は、これらの特定の詳細の一部または全てを含まず、特許請求の範囲に従って実行され得る。明確にする目的のために、本発明が不必要に不明瞭にされないように、本発明と関連する技術的分野において公知である技術的材料は、詳述されていない。
[0031]グラム陰性菌の外膜(OM)は、細胞の成長および機能にとって必要なイオンおよび栄養物の取込みを媒介する多数のチャネルタンパク質を含有する。α−溶血素およびClyAなどの他の多量体タンパク質性ナノポアと対照的に、大腸菌(E.coli)由来の外膜タンパク質G(OmpG)は、モノマーとして機能する。大腸菌(E.coli)K12 OmpGの結晶構造は、決定されている(Subbaraoおよびvan den Berg、J Mol Biol、360:750〜759[2006])。構造は、OmpGバレルは、細胞外の側の7つの可動性ループによって接続された14のβ鎖およびペリプラズム側の7つの短いターンからなることを示す(図1A)。OmpGチャネルは、ペリプラズム出口でその最大直径を有し(20〜22Å)、細胞外側の近くに位置する収縮に向けて次第に小さくなる(図1B)。収縮は、バレル壁の内向きの残基の側鎖によって形成され、内向きにフォールディングする表面ループによってではない。この構造は、丸い形状の約13Åの直径を有する比較的大きな中心細孔を生じさせる。
[0032]電流が、野生型OmpGナノポアを越えて測定される場合には、ナノポアは、加電圧の際に開口および閉鎖状態の間を自発的に移行し、これが、ちらつく単一チャネル電流を生じさせる。OmpGの最長の細胞外ループ、ループ6は、低pHで細孔を閉じ、高pHで細孔を開放する主なゲート開閉ループとして認識された。
[0033]本開示は、バリアントOmpGポリペプチド、バリアントOmpGポリペプチドを含む組成物およびバリアントOmpGポリペプチドを一本鎖核酸の配列を決定するためのナノポアとして使用するための方法を提供する。バリアントOmpGナノポアは、それらが由来する親OmpGポリペプチドのイオン電流ノイズを低減し、それによって、単一ヌクレオチド分解能を用いるポリヌクレオチドのシーケンシングが可能になる。低減したイオン電流ノイズはまた、他の単一分子検出適用、例えば、タンパク質シーケンシングにおけるこれらのOmpGナノポアバリアントの使用も提供する。
[0034]定義
[0035]本明細書においては、「バリアント」という用語は、別の(すなわち、親の)OmpGに由来し、親OmpGと比較して1つまたは複数のアミノ酸変異(例えば、アミノ酸欠失、挿入または置換)を含有するOmpGを指す。
[0036]本明細書においては、「単離された」という用語は、通常、例えば分子の自然環境で会合している少なくとも1種の他の分子から分離されている分子、例えば、核酸分子を指す。単離された核酸分子としては、その核酸分子を通常発現する細胞に含有された核酸分子が挙げられるが、その核酸分子は、染色体外、またはその自然の染色体位置とは異なる染色体位置に存在する。
[0037]本明細書においては、「変異」という用語は、親配列に導入された変更を指し、その変更としては、置換、挿入、欠失(切り詰めを含める)が挙げられるが、これらに限定されない。変異の結果としては、親配列によってコードされるタンパク質では見出されない新しい特性、特質、機能、表現型、または形質の創造が挙げられるが、これらに限定されない。
[0038]本明細書においては、「野生型」という用語は、天然由来の供給源から単離された際に、その遺伝子または遺伝子産物の特性を有する遺伝子または遺伝子産物を指す。
[0039]本明細書においては、「ヌクレオチド」という用語は、糖部分(ペントース)、リン酸、および窒素含有複素環塩基からなるDNAまたはRNAの単量体ユニットを指す。塩基はグリコシドの炭素(ペントースの1’炭素)を介して糖部分に連結され、その塩基と糖の組合せがヌクレオシドである。ヌクレオシドが、ペントースの3’位または5’位に結合したリン酸基を含有する場合、それはヌクレオチドと呼ばれる。作用的に連結されたヌクレオチドの配列は、本明細書においては典型的に「塩基配列」または「ヌクレオチド配列」と呼び、本明細書においては、左から右への方向が、5’末端から3’末端への従来の方向になっている式によって表す。
[0040]本明細書においては、「ポリヌクレオチド」および「核酸」という用語は、互換的に使用され、鎖内で共有結合したヌクレオチド単量体で構成されたポリマー分子を指す。DNA(デオキシリボ核酸)およびRNA(リボ核酸)は、ポリヌクレオチドの例である。
[0041]本明細書においては、「ポリメラーゼ」という用語は、ヌクレオチドの重合を触媒する(すなわち、ポリメラーゼ活性)酵素を指す。ポリメラーゼという用語は、DNAポリメラーゼ、RNAポリメラーゼおよび逆転写酵素を包含する。「DNAポリメラーゼ」は、デオキシリボヌクレオチドの重合を触媒する。「RNAポリメラーゼ」は、リボヌクレオチドの重合を触媒する。「逆転写酵素」は、RNA鋳型と相補的であるデオキシリボヌクレオチドの重合を触媒する。
[0042]本明細書においては、「鋳型DNA分子」という用語は、例えばプライマー延長反応において、DNAポリメラーゼによって相補的な核酸鎖が合成される核酸鎖を指す。
[0043]「鋳型依存的な方式」という用語は、鋳型依存的なプライマー分子の延長(例えば、DNAポリメラーゼによるDNA合成)を含むプロセスを指す。「鋳型依存的な方式」という用語は、典型的には、新たに合成されるポリヌクレオチド鎖の配列が、相補的な塩基対形成の周知の規則によって規定される、RNAまたはDNAのポリヌクレオチドの合成を指す(例えば、Watson,J.D.ら、Molecular Biology of the Gene、第4版、W.A.Benjamin,Inc.、Menlo Park、Calif.(1987)を参照のこと)。
[0044]「タグ」という用語は、原子もしくは分子、または、原子もしくは分子の集団としてもよい検出可能な部分を指す。タグは、光学的、電気化学的、磁気的、または静電的(例えば、誘導的、容量的)性状を示すことができる。タグは、ナノポアを通る電流の流れを遮断し得る。
[0045]本明細書においては、「ナノポア」という用語は、膜に形成された、または他の方法で膜に与えられた細孔、チャネル、または通路を指す。膜は、脂質二重層などの有機膜であっても、ポリマー材料で形成された膜などの合成膜であってもよい。ナノポアは、例えば相補型金属酸化膜半導体(CMOS)回路または電界効果トランジスター(FET)回路などの検出回路、または検出回路に連結された電極に隣接して、またはその近傍に配置してもよい。一部の例においては、ナノポアは、0.1nm〜約1000nmの桁の特徴的な幅または直径を有する。一部のナノポアはタンパク質である。OmpGは、タンパク質ナノポアの例である。
[0046]「自発性ゲート開閉」という用語は、チャネルの固有の構造変化と関連するイオン電流の変化を指す。例えば、平面状脂質二重層中のOmpGは、細孔の開口および閉鎖状態の間でpH依存性の急速な揺らぎを受け、これは、電流記録の激しい「ちらつき」となっており、チャネルの全体的ノイズに寄与する。
[0047]本明細書においては、「ノイズ」および「イオン電流ノイズ」という用語は、互換的に使用され、自発性ゲート開閉によって寄与される電流揺らぎおよびナノポアバレルの固有の構造によって寄与される電流揺らぎを含む、電気シグナルのランダムな揺らぎを指す。例えば、ナノポアバレルの三次構成は、ナノポアによって感知されている解析物の2以上の認識部位を含み得、それによって、チャネルの全体的なノイズに寄与するさらなるシグナルを誘導する。
[0048]本明細書においては、「上昇ノイズ」という用語は、平均開口チャネル電流より大きいレベルへのイオン電流の揺らぎを指す。
[0049]本明細書においては、「下降ノイズ」という用語は、平均開口チャネル電流より低いレベルへのイオン電流の揺らぎを指す。
[0050]本明細書においては、「正電流」という用語は、正電荷、例えば、Kが細孔を通ってトランスからシス側に移動する、または負電荷、例えば、Clがシスからトランス側に移動する電流を指す。例えば、図2を参照して、シスは、106に対応し、トランスは、116に対応する。
[0051]本明細書においては、「収縮アミノ酸」という用語は、収縮帯域でのOmpG細孔の大きさを決定するアミノ酸を指す。収縮帯域は、野生型OmpGの収縮帯域と同一であり得るか、または収縮帯域は、タンパク質工学を介して、もしくは分子アダプターの導入によって導入される収縮帯域であり得る。
[0052]本明細書においては、「親の」または「親」という用語は、本明細書において開示されるOmpGバリアントを産生するために修飾、例えば、置換(複数可)、挿入(複数可)、欠失(複数可)、および/または切り詰め(複数可)が行われるOmpGを指す。この用語はまた、バリアントが比較され、整列されるポリペプチドを指す。親は、天然に存在する(野生型)ポリペプチドであり得る、または親は、任意の適した手段によって調製されるそのバリアントであり得る。好ましい実施形態においては、「親の」タンパク質は、互いの相同体である。
[0053]本明細書においては、「精製された」という用語は、分子が、含有されている試料の少なくとも95重量%、または少なくとも98重量%の濃度で試料中に存在するポリペプチド、例えば、バリアントOmpGポリペプチドを指す。
[0054]本明細書においては、「ヌクレオチド類似体」という用語は、一般的な核酸塩基:アデニン、シトシン、グアニン、ウラシルおよびチミジンのヌクレオシド三リン酸の類似体、例えば、(S)−グリセロールヌクレオシド三リン酸(gNTP)を指す(Horhotaら、Organic Letters、8:5345〜5347[2006])。また、ヌクレオシド四リン酸、ヌクレオシド五リン酸およびヌクレオシド六リン酸も包含される。
[0055]本明細書においては、「タグ付きヌクレオチド」という用語は、限定されるものではないが、ヌクレオチドのリン酸(例えば、末端リン酸)、糖または窒素含有塩基部分を含む、ヌクレオチドの任意の位置に連結したタグ(またはタグ種)を含むヌクレオチドを指す。タグは、1つもしくは複数の原子もしくは分子、または、原子もしくは分子の集団としてもよい。タグは、光学的、電気化学的、磁気的、または静電的(例えば、誘導的、容量的)性状を示すことができ、その性状は、ナノポアを利用して検出することができる(US2014/013616)。タグはまた、US2014/013616の図13に示されるようにポリリン酸に付けられ得る。
バリアントOmpGポリペプチド
[0056]一態様においては、本開示は、バリアントOmpGポリペプチドを提供する。バリアントOmpGポリペプチドは、大腸菌(E.coli)の親OmpG、例えば、配列番号2に示される親OmpGから誘導され得る。親OmpGは、大腸菌(E.coli)由来の親OmpGの相同体であり得る。
[0057]大腸菌(E.coli)種K12株OmpG(配列番号2)が、本明細書においてバリアントOmpGを論じるための出発点として使用されるが、大腸菌(E.coli)種K12株OmpGに対して高度の相同性を有する他のグラム陰性菌OmpGは、本明細書において開示される組成物および方法の範囲内の親OmpGとして役立ち得るということは認められよう。これは、本開示の対象である、大腸菌(E.coli)種K12株OmpGと比較してわずかな配列相違しか含まず、置換、欠失、および/または挿入を含まない他の天然由来の細菌OmpGに特に当てはまる。例えば、サルモネラ属(Salmonella)の種、赤痢菌属(Shigella)の種およびシュードモナス属(Pseudomonas)の種において発現されるOmpG相同体が、バリアント形態が誘導され得る親OmpGポリペプチドとして使用され得る。いくつかの実施形態においては、ナノポアは、ミトコンドリア膜に由来する細孔である。
[0058]大腸菌(E.coli)由来の親OmpGの相同体は、大腸菌(E.coli)由来のOmpGと配列同一性を共有し得る(少なくとも70%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも98%または少なくとも99%の配列番号1)。例えば、バリアントOmpGは、大腸菌(E.coli)由来の親OmpGに対して少なくとも70%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも98%または少なくとも99%同一である大腸菌(E.coli)OmpGの相同体に由来し得る。いくつかの実施形態においては、親OmpGは、大腸菌(E.coli)種K12株由来のOmpGである。全長大腸菌(E.coli)OmpGのポリペプチド配列(配列番号1)ならびにシゲラ・フレックスネリ(Shigella flexneri)(配列番号12)、サルモネラ・エンテリカ(Salmonella enterica)(配列番号13および14)およびシトロバクター・ファルメリ(Citrobacter farmeri)(配列番号15)由来の相同体の例を、図9に提供する。配列番号2は、配列番号1に示される全長大腸菌(E.coli)OmpGポリペプチドの成熟形態である。
[0059]いくつかの実施形態においては、親ポリペプチドは、野生型OmpGポリペプチドである。他の実施形態においては、親ポリペプチドは、イオン電流ノイズを低減するOmpGポリペプチドの能力を改善するためにさらなる変異が導入され得るOmpGバリアントである。バリアントOmpGは、ナノポアを形成する能力を保持する。一実施形態においては、親OmpGポリペプチドは、配列番号1の野生型大腸菌(E.coli)OmpGポリペプチドまたはその成熟形態(配列番号2)である。N末端Metを有するバリアントOmpGポリペプチドが発現され得るということは理解される。
[0060]別の実施形態においては、親OmpGポリペプチドは、ループ6を含むアミノ酸が欠失されるバリアントOmpGポリペプチドである。例えば、親OmpGは、ループ6を含むアミノ酸が欠失されている配列番号2のOmpGである。配列番号3のOmpGは、アミノ酸216〜227が欠失されており、アミノ酸229がAlaによって置換される、すなわち、Δ216〜227/E229Aを含む野生型OmpG(配列番号2)の成熟形態である。配列番号3は、本明細書において別の場所で記載されるようなリンカー−His6−リンカー−Spyタグ配列(配列番号18として開示される「His6」)を示すアミノ酸の配列をC末端に含む。ループ6の欠失およびアミノ酸229でのAlaの置換、すなわち、Δ216〜227/E229Αを含むバリアントOmpGは、ΔL6/E229Αによって互換的に示される。いくつかの実施形態においては、ループ6の切り詰めは、配列番号2のアミノ酸216〜227のうち1つまたは複数を欠失することによって行われ得る。他の実施形態においては、アミノ酸216〜227(両端を含む)が欠失される。アミノ酸の番号付けは、配列番号2のアミノ酸位置を指す。
[0061]一実施形態においては、バリアントOmpGは、アミノ酸216〜227の欠失、すなわち、Δ216〜227を含む配列番号2の親OmpGのバリアントである。さらなる実施形態においては、バリアントOmpGは、E229Aを含む、すなわち、Δ216〜227/E229Aを含む。なおさらなる実施形態においては、バリアントOmpGは、D215の欠失を含む、すなわち、Δ215〜227/E229Αを含む。
[0062]細胞外表面のOmpG細孔の収縮帯域のアミノ酸(ナノポアの最小の「難点」)は、OmpGの収縮の裏層の対称性および/または長さに寄与するとして同定される。いくつかの実施形態においては、収縮帯域アミノ酸は、収縮の長さおよび/または収縮の内径の幅でさえも短くするように変異され得る。収縮アミノ酸の突然変異誘発は、独特の収縮帯域を創造するように設計され得る。収縮帯域の変異は、バリアントが由来する親OmpGと比較した場合に、バリアントOmpGのイオン電流ノイズを低減する。したがって、いくつかの実施形態においては、提供されるバリアントOmpGポリペプチドは、OmpGナノポアの細胞外側の収縮帯域に位置するアミノ酸の1つまたは複数の変異を含む。他の実施形態においては、バリアントOmpGポリペプチドは、細孔中にありながら、細孔を通る解析物、例えば、ヌクレオチド塩基の移動を減速し、結果的に、解析物の同定の正確性を改善する分子アダプターと結合するようにさらに変異され得る(2005年12月30日にオンラインで公開されたAstierら、J Am Chem Soc 10.1021/ja057123+)。
[0063]いくつかの実施形態においては、収縮帯域における変異、例えば、配列番号2に示されるOmpGの変異は、アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66、および/またはE31から選択される。収縮帯域のアミノ酸の変異は、置換、欠失または挿入のうち1つまたは複数、例えば、アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66、および/またはE31のうち1つまたは複数の置換であり得る。いくつかの実施形態においては、少なくとも1つのアミノ酸変異は、OmpGの収縮帯域中に位置する。他の実施形態においては、収縮帯域の少なくとも2つ、少なくとも3つ、少なくとも4つ、少なくとも5つまたは少なくとも6つのアミノ酸が変異される。いくつかの実施形態においては、収縮帯域の少なくとも1つのアミノ酸変異は、置換Y50Kである。いくつかの他の実施形態においては、収縮帯域の少なくとも1つのアミノ酸変異は、置換Y50Nである。収縮帯域の少なくとも1つのアミノ酸変異は、ループ6のアミノ酸のうち1つまたは複数の欠失と組み合わされ得る。したがって、いくつかの実施形態においては、バリアントOmpGは、親OmpG、例えば、配列番号2に示されるOmpGに由来し、アミノ酸216〜227の欠失およびアミノ酸229でのAlaの置換、すなわち、Δ216〜227/E229Αならびに野生型OmpGの収縮帯域の少なくとも1つのアミノ酸の変異、例えば、アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66、および/またはE31のうち1つまたは複数の変異を含む。他の実施形態においては、バリアントOmpGは、ループ6の欠失、収縮帯域の1つまたは複数のアミノ酸の変異および欠失D215を含む。例えば、バリアントOmpGは、配列番号2の親OmpGのバリアントであり、アミノ酸216〜227の欠失およびアミノ酸229のAlaの置換、すなわちΔ216〜227/E229A、収縮帯域のアミノ酸のうち少なくとも1つの変異、例えば、アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66、および/またはE31のうち1つまたは複数の変異ならびにdel215を含む。一実施形態においては、バリアントOmpGは、配列番号2の親OmpGのバリアントであり、アミノ酸216〜227の欠失、すなわちΔ216〜227、置換E229A、D215の欠失およびアミノ酸置換Y50Kを含む。
[0064]いくつかの実施形態においては、親OmpGのC末端β鎖が、タンパク質配列のN末端に移動され、親OmpGの最後から2番目のβ鎖を、タンパク質の新規C末端として保持するOmpGの「円順列バリアント」を提供する。これは、図10および11において模式的に表されている。この方法におけるC末端β鎖の移動の結果は、バリアントの新規C末端が、バリアントが由来した親OmpGにおけるものよりもナノポアの収縮部位に近いということである(図11を参照のこと)。収縮点に近いことは、ナノポアによる解析分子の捕獲の改善を可能にするので有利である。この改善された捕獲は、ナノタグ(NanoTag)を通り抜けるエネルギー障壁の低下によるものであり得る。脂質またはポリマー層の反対側にN末端およびC末端を配置することはまた、2種の核酸修飾酵素の結合、ナノポアを用いた機器のスループットを倍加することを可能にする。
[0065]任意選択で、本明細書において記載されるような円順列バリアントは、タグ配列(例えば、「Spyタグ」または「His−Spyタグ」配列を含み、任意選択で、1種または複数のリンカー配列(例えば、配列番号16)をC末端、親OmpGの最後から2番目のβ鎖の下流にさらに含む)を含む。任意選択で、バリアントは、親OmpGのC末端から移動された新規N末端β鎖と、これまで親OmpGのN末端にあったβ鎖の間にリンカー配列、例えば、GSGを含む。一実施形態においては、バリアントは、配列番号2に示される大腸菌(E.coli)OmpGのバリアントまたはその相同体である。一実施形態においては、バリアントは、配列番号2のアミノ酸残基267〜280の、配列番号2のN末端への移動を含み、任意選択で、これまでの残基280と配列番号2のN末端の間にリンカー、例えば、GSGを有し、任意選択で、これまでの残基267の前にバリアントのN末端にメチオニン(M)残基を有し、任意選択で、バリアントのC末端に配列番号16に示されるアミノ酸配列を有する。一実施形態においては、バリアントは、配列番号17に示されるアミノ酸配列を有する。
OmpGバリアントをコードするDNA配列
[0066]親OmpGをコードするDNA配列は、当技術分野で周知の種々の方法を使用して、問題のOmpGを産生する任意の細胞または微生物から単離され得る。第1に、ゲノムDNAおよび/またはcDNAライブラリーは、研究されるべきOmpGを産生する生物に由来する染色体DNAまたはメッセンジャーRNAを使用して構築され得る。次いで、OmpGのアミノ酸配列が公知である場合には、問題の生物から調製されたゲノムライブラリーからOmpGをコードするクローンを同定するために、相同の標識されたオリゴヌクレオチドプローブが合成され、使用され得る。あるいは、既知OmpG遺伝子と相同の配列を含有する標識されたオリゴヌクレオチドプローブが、より低いストリンジェンシーのハイブリダイゼーションおよび洗浄条件を使用してOmpGをコードするクローンを同定するためのプローブとして使用され得る。
[0067]あるいは、OmpGをコードするDNA配列は、確立された標準的な方法、例えば、S.L.BeaucageおよびM.H.Caruthers(1981)Tetrahedron Letters 22:1859〜1862によって記載されるホスホロアミダイト(phosphoroamidite)法またはMatthesら(1984) EMBO J.3(4):801〜5によって記載される方法によって合成によって調製することができる。ホスホロアミダイト(phosphoroamidite)法では、例えば、自動DNAシンセサイザーにおいてオリゴヌクレオチドを合成し、精製し、アニーリングし、適当なベクター中にライゲートし、クローニングする。
[0068]最後に、DNA配列は、混合されたゲノムおよび合成起源、混合された合成およびcDNA起源または混合されたゲノムおよびcDNA起源のものであり得、標準技術に従って、合成、ゲノムまたはcDNA起源の断片(必要に応じて、全DNA配列の種々の部分に対応する断片)をライゲーションすることによって調製する。DNA配列はまた、例えば、米国特許第4,683,202号またはR.K.Saikiら(1988)Science 239(4839):489〜91に記載されるような特異的プライマーを使用するポリメラーゼ連鎖反応(PCR)によって調製することができる。
部位特異的突然変異誘発
[0069]ひとたび、OmpGをコードするDNA配列を単離し、変異のための所望の部位を同定すると、合成オリゴヌクレオチドを使用して変異を導入することができる。これらのオリゴヌクレオチドは、所望の変異部位のそれぞれの両端に位置するヌクレオチド配列を含有し、オリゴヌクレオチド合成の間に変異体ヌクレオチドが挿入される。特定の方法においては、OmpG遺伝子を保持するベクター中に、OmpGをコードする配列またはその一部を架橋するDNAの一本鎖ギャップを創造する。次いで、所望の変異を有する合成ヌクレオチドを、一本鎖DNAの相同部分にアニーリングする。次いで、DNAポリメラーゼI(クレノウ断片)を用いて残存するギャップを埋め、T4リガーゼを使用して構築物をライゲートする。この方法の具体例が、Morinagaら(1984) Nature Biotechnology 2:636〜639に記載されている。米国特許第4,760,025号には、カセットのわずかな変更を実施することによる複数の変異をコードするオリゴヌクレオチドの導入が開示されている。しかし、種々の長さの多数のオリゴヌクレオチドを導入できるので、Morinaga法によってさらにより多くの種々の変異をどの時点においても導入することができる。部位特異的突然変異誘発を達成する他の方法として、Kunkel法、カセット突然変異誘発およびPCR部位特異的突然変異誘発が挙げられる。バリアントを提供するための代替法として、例えば、WO95/22625(Affymax Technologies N.V.からの)に、もしくはWO96/00343(Novo Nordisk A/Sからの)に記載されるような遺伝子シャッフリングまたは問題の変異(複数可)、例えば、置換(複数可)および/もしくは欠失(複数可)を含むハイブリッド酵素をもたらす他の対応する技術が挙げられる。
OmpGバリアントの発現
[0070]OmpGバリアントをコードするDNA配列は、典型的には、プロモーター、オペレーター、リボソーム結合部位、翻訳開始シグナルおよび任意選択で、レプレッサー遺伝子または種々のアクチベーター遺伝子をコードする制御配列を含む発現ベクターを使用して、バリアントOmpGを発現するために使用することができる。バリアントOmpGを発現するために使用できるベクターの例として、pET発現系(Novagen)のベクターが挙げられる。
[0071]OmpGバリアントをコードするDNA配列を保持する組換え発現ベクターは、好都合なことに、組換えDNA手順に付され得る任意のベクターであり得、ベクターの選択は、ベクターが導入される予定の宿主細胞に応じて変わることが多い。したがって、ベクターは、自己複製ベクター、すなわち、その複製が染色体複製と独立している染色体外実体として存在するベクター、例えば、プラスミド、バクテリオファージまたは染色体外要素、ミニ染色体または人工染色体であり得る。あるいは、ベクターは、宿主細胞中に導入された場合に、宿主細胞ゲノム中に組み込まれ、それが組み込まれた染色体(複数可)と一緒に複製するものであり得る。
[0072]OmpGバリアントをコードするDNA構築物をライゲーションするために、およびそれを複製に必要な情報を含有する適したベクター中に挿入するために使用される手順は、当業者に周知である(例えば、Sambrookら、Molecular Cloning: A Laboratory Manual、第4版、Cold Spring Harbor、2012を参照のこと)。
[0073]OmpGバリアントは、哺乳類または昆虫などの高等生物のものであり得るが、好ましくは微生物細胞、例えば、細菌または真菌(酵母を含む)細胞である細胞において産生することができる。適した細菌の例として、大腸菌(E.coli)などのグラム陰性菌またはバチルス属(Bacillus)の種、例えば、枯草菌(Bacillus subtilis)、バチルス・リケニフォルミス(Bacillus licheniformis)、バチルス・レンタス(Bacillus lentus)、バチルス・ブレビス(Bacillus brevis)、ゲオバチルス・ステアロサーモフィルス(Geobacillus stearothermophilus)、バチルス・アルカロフィルス(Bacillus alkalophilus)、バチルス・アミロリケファシエンス(Bacillus amyloliquefaciens)、バチルス・コアグランス(Bacillus coagulans)、バチルス・サーキュラーズ(Bacillus circulars)、バチルス・ロータス(Bacillus lautus)、バチルス・メガテリウム(Bacillus megaterium)もしくはバチルス・チューリンゲンシス(Bacillus thuringiensis)またはストレプトマイセス属(Streptomyces)の種、例えば、ストレプトマイセス・リビダンス(Streptomyces lividans)もしくはストレプトマイセス・ムリナス(Streptomyces murinus)などのグラム陽性菌が挙げられる。酵母生物は、サッカロミセス属(Saccharomyces)もしくはシゾサッカロミセス属(Schizosaccharomyces)の種、例えば、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)から、またはアスペルギルス属(Aspergillus)の種、例えば、コウジカビ(Aspergillus oyzae)もしくはクロコウジカビ(Aspergillus niger)などの糸状菌から選択され得る。宿主細胞は、典型的には、細菌であり、好ましくは、大腸菌(E.coli)である。
[0074]さらなる態様において、OmpGバリアントを産生する方法が提供され、この方法は、上記のような宿主細胞をバリアントの産生に寄与する条件下で培養するステップならびに細胞および/または培養培地からバリアントを回収するステップを含む。細胞を培養するために使用される培地は、問題の宿主細胞を成長させ、OmpGバリアントの発現を得るのに適した任意の従来培地であり得る。適した培地は、商業的供給業者から入手可能であり、または公開されたレシピ(例えば、American Type Culture Collectionのカタログに記載されるような)に従って調製できる。
[0075]宿主細胞から分泌されるOmpGバリアントは、遠心分離またはろ過によって細胞を培地から分離するステップおよび硫酸アンモニウムなどの塩によって培地のタンパク質性成分を沈殿させるステップと、それに続く、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどといったクロマトグラフィー的手順の使用を含む周知の手順によって培養培地から回収できるので好都合である。いくつかの実施形態においては、バリアントOmpGの精製は、親和性タグに連結されたOmpGポリペプチドのアフィニティークロマトグラフィーによって得ることができる。OmpGバリアントの精製において使用できるいくつかの親和性またはエピトープタグとして、ヘキサヒスチジンタグ(配列番号18)、FLAGタグ、Strep IIタグ、ストレプトアビジン結合性ペプチド(SBP)タグ、カルモジュリン結合性ペプチド(CBP)、グルタチオンS−トランスフェラーゼ(GST)、マルトース結合性タンパク質(MBP)、S−タグ、HAタグおよびc−Mycタグが挙げられる。いくつかの実施形態においては、OmpGの精製においてヘキサヒスチジンタグ(配列番号18)が使用される。親和性タグは、タンパク質リンカーによってバリアントOmpGポリペプチドに共有結合によって取付けられ得る。ナノポアのポリメラーゼとの連結において有用であると考慮される具体的なリンカーとして、(GGGGS)1〜3(配列番号19)、EKEKEKGS(配列番号20)、His6−GSGGK(配列番号21)およびAHIVMVDAYKPTK(配列番号22)(Spyタグ)が挙げられる。タンパク質リンカーは、バリアントOmpGをコードする配列を含む核酸によってコードされ得、融合タンパク質として発現され得る。例えば、バリアントOmpGは、例えば、配列番号3のアミノ酸269〜299として発現される、OmpG−(EK)−HiS−GSGG−Spyタグ(EK EKEKGSHHHH HHGSGGAHIVMVDAYKPTK(配列番号16))として発現され得る。一部の例では、Hisタグ(配列番号18)は、バリアントOmpGポリペプチドのN末端に発現される。
ナノポア構築
[0076]バリアントOmpGの特性決定は、測定可能な電気性状の変動を引き起こす分子の任意の特質を決定するステップを含み得る。例えば、ゲート開閉頻度の低減は、バリアントOmpGナノポアにわたって定電圧が印加される時の、ナノポアを通る上昇および/または下降ゲート開閉の低減の測定に由来し得る。さらに、バリアントOmpGの特性決定は、OmpGナノポアの通過に近接して、またはOmpGナノポアの通過において、個々のヌクレオチドのタグが検出される時の、ナノポアを通るイオン電流フローの変動を測定するステップによって、DNAまたはRNA鎖と相補的である個々のタグ付きヌクレオチドのタグを同定するステップを含み得る。DNAまたはRNA分子のセグメントの塩基配列は、成長している核酸鎖が合成される時の、タグ付きヌクレオチドのタグの測定された電気性状(複数可)を比較し、関連付けるステップによって決定され得る。
[0077]典型的には、OmpGナノポアを通るイオン電流フローの測定は、脂質膜中に再構成されているナノポアにわたって行われる。一部の例では、OmpGナノポアは、膜に挿入される(例えば、エレクトロポレーションによって)。ナノポアは、電気刺激、圧力刺激、液体の流れ刺激、気泡刺激、音波処理、音、振動またはそれらの任意の組合せなどの刺激シグナルによって挿入され得る。一部の場合には、膜は、泡を利用して形成され、ナノポアは、電気刺激を利用して膜に挿入される。
[0078]脂質二重層を構築し、脂質二重層中にナノポアを形成し、核酸分子をシーケンシングする方法は、その全文が参照により本明細書に組み込まれる、PCT特許公開番号WO2011/097028およびWO2015/061510に見出すことができる。
[0079]図2は、ポリヌクレオチドまたはポリペプチドを特性決定するために使用できるナノポアデバイス100の模式図である。ナノポアデバイス100は、伝導性固体基板106の脂質二重層適合性面104上で形成される脂質二重層102を含み、これでは、脂質二重層適合性面104は、脂質二重層不適合性面105によって単離され得、伝導性固体基板106は、絶縁材料107によって電気的に単離され得、脂質二重層102は、脂質二重層不適合性面105上に形成される非晶質脂質103によって囲まれ得る。ナノポアを含む脂質二重層は、ウェル上に配置され得、これでは、センサーはウェルの表面の一部を形成する。ウェル上の脂質二重層中のナノポアの位置の説明は、例えば、WO2015/061509に見出すことができる。脂質二重層102に、脂質二重層102の2つの側の間を特性決定されている分子112の少なくとも一部および/または小イオン(例えば、Na、K、Ca2+、Cl)が通過するために十分に大きいナノポア110を有する単一ナノポア構造108が埋め込まれている。水分子114の層は、脂質二重層適合性面104上に吸着され、脂質二重層102と脂質二重層適合性面104の間に挟まれ得る。親水性の脂質二重層適合性面104上に吸着された水性フィルム114は、脂質分子の秩序化を促進し、脂質二重層適合性面104上での脂質二重層の形成を容易にし得る。分子112の溶液を含有する試料チャンバー116は、特性決定のために分子112を導入するために脂質二重層102上に提供され得る。溶液は、電解質を含有する水溶液であり、最適イオン濃度に緩衝され、ナノポア110を開口で維持するように最適pHで維持され得る。デバイスは、脂質二重層にわたって電気刺激(例えば、電圧バイアス)を提供するために、および脂質二重層の電気的特性(例えば、抵抗、容量およびイオン電流フロー)を検出するために可変性電源120と連結した電極118の対(負のノード118aおよび正のノード118bを含む)を含む。正電極118bの表面は、脂質二重層適合性面104の一部である、またはそれを形成する。伝導性固体基板106は、電極118のうち1つの一部と連結され得る、またはそれを形成し得る。デバイス100はまた、電気刺激を制御するために、および検出されたシグナルを処理するために電気回路122を含み得る。いくつかの実施形態においては、可変性電源120は、電気回路122の一部として含まれる。電気回路(circutiry)122は、増幅器、インテグレーター、ノイズフィルター、フィードバック制御論理、および/または種々の他の構成要素を含み得る。電気回路(circuitry)122は、シリコン基板128内に統合された、統合された電気回路(circuitry)であり得、メモリ126に連結されたコンピュータプロセッサ124にさらに連結され得る。
[0080]一例において、図2のナノポアデバイス100は、銅材料106上にコーティングされた脂質二重層適合性銀−金合金表面104上に形成された脂質二重層102中に埋め込まれた、単一OmpGタンパク質108、例えば、本明細書において記載されるようなバリアントOmpGを有するOmpGナノポアデバイスである。脂質二重層適合性銀−金合金表面104は、脂質二重層不適合性窒化ケイ素表面105によって単離され、銅材料106は、窒化ケイ素材料107によって電気的に絶縁される。銅106は、シリコン基板128中に統合されている電気回路(circuitry)122と連結される。チップ上に置かれた、またはカバー板128から下へ伸びている銀−塩化銀電極は、dsDNA分子を含有する水溶液と接触する。
[0081]脂質二重層は、例えば、ジフィタノイル−ホスファチジルコリン(DPhPC)、1,2−ジフィタノイル−sn−グリセロ−3ホスホコリン、1,2−ジ−O−フィタニル−sn−グリセロ−3−ホスホコリン(DoPhPC)、パルミトイル−オレオイル−ホスファチジルコリン(POPC)、ジオレオイル−ホスファチジル−メチルエステル(DOPME)、ジパルミトイルホスファチジルコリン(DPPC)、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジン酸、ホスファチジルイノシトール、ホスファチジルグリセロール、スフィンゴミエリン、1,2−ジ−O−フィタニル−sn−グリセロール、1,2−ジパルミトイル−sn−グリセロ−3−ホスホエタノールアミン−N−[メトキシ(ポリエチレングリコール)−350]、1,2−ジパルミトイル−sn−グリセロ−3−ホスホエタノールアミン−N−[メトキシ(ポリエチレングリコール)−550]、1,2−ジパルミトイル−sn−グリセロ−3−ホスホエタノールアミン−N−[メトキシ(ポリエチレングリコール)−750]、1,2−ジパルミトイル−sn−グリセロ−3−ホスホエタノールアミン−N−[メトキシ(ポリエチレングリコール)−1000]、1,2−ジパルミトイル−sn−グリセロ−3−ホスホエタノールアミン−N−[メトキシ(ポリエチレングリコール)−2000]、1,2−ジオレオイル−sn−グリセロ−3−ホスホエタノールアミン−N−ラクトシル、GM1ガングリオシド、リゾホスファチジルコリン(LPC)またはそれらの任意の組合せから選択されるリン脂質を含み得る、またはこれらからなり得る。
[0082]ナノポアは、アレイを形成し得る。本開示は、ナノポア検出器(またはセンサー)のアレイを提供する。図3Aは、脂質二重層不適合性面105によって脂質二重層適合性面104が単離された、個々にアドレス可能なナノポアデバイス100のアレイ302を有する、ナノポアチップ300の実施形態の模式図の上面図である。各ナノポアデバイス100は、シリコン基板128上に統合された制御回路122を備えている。いくつかの実施形態においては、各群が特性決定のために異なる試料を受け取ることができるように、ナノポアデバイス100の群を分離する側壁136が含まれ得る。いくつかの実施形態においては、ナノポアチップ300は、カバー板128を含み得る。ナノポアチップ300はまた、コンピュータプロセッサとインターフェースで接続するための複数のピン304を含み得る。いくつかの実施形態においては、ナノポアチップ300は、例えば、脂質懸濁液、解析物溶液、および/または他の液体、懸濁液もしくは固体を送達するためのピペット、ロボットアーム、コンピュータプロセッサ、ならびに/あるいはメモリなどの解析物送達機構を含む、本発明のプロセスの種々の実施形態を実施する(例えば、自動的に実施する)ための種々の構成要素を含み得るナノポアワークステーション306に連結され得る(例えば、ドッキングされる)。図3Bは、ナノポアチップ300の断面図である。図3Aおよび3Bを参照して、複数のポリヌクレオチドは、ナノポア検出器のアレイで検出され得る。ここで、各ナノポア位置は、一部の場合には、本明細書において別の場所に記載されるようなポリメラーゼ酵素に付けられた、ナノポアを含む。各ナノポアは、個々にアドレス可能であり得る。
[0083]本発明の方法は、ヌクレオチドとの相互作用の間に細孔を通過する電流を測定するステップを含む。いくつかの実施形態においては、核酸分子のシーケンシングは、直流を適用することを必要とし得る(例えば、分子がナノポアを通って移動する方向が逆転されないように)。しかし、直流を使用してナノポアセンサーを長期間操作するステップは、電極の組成を変化させ、ナノポアにわたるイオン濃度の平衡を失わせ、他の望ましくない効果を有し得る。交流電流(AC)波形を適用することで、これらの望ましくない効果を避けることができ、以下に記載されるような特定の利点を有し得る。タグ付きヌクレオチドを利用する本明細書において記載される核酸シーケンシング法は、AC印加電圧と十分に適合しており、したがって、前記利点を達成するためにACが使用され得る。
[0084]膜貫通タンパク質細孔を通るイオン電流を測定するための適した条件は、当技術分野で公知であり、例は、本明細書において実験の節に提供されている。方法は、膜および細孔にわたって印加される電圧を用いて実施される。使用される電圧は、典型的には、−400mV〜+400mVである。使用される電圧は、好ましくは、−400mV、−300mV、−200mV、−150mV、−100mV、−50mV、−20mVおよび0mVから選択される下限ならびに+10mV、+20mV、+50mV、+100mV、+150mV、+200mV、+300mVおよび+400mVから独立に選択される上限を有する範囲にある。使用される電圧は、より好ましくは、100mV〜240mVの範囲、最も好ましくは、160mV〜240mVの範囲にある。増大された加電圧を使用することによって本発明の細孔によって、異なるヌクレオチド間の識別を増大することが可能である。AC波形およびタグ付きヌクレオチドを使用して核酸をシーケンシングするステップは、その全文が参照により本明細書において組み込まれる2013年11月6日に出願された、「Nucleic Acid Sequencing Using Tags」と題された米国特許公開US2014/0134616に記載されている。US2014/0134616に記載されたタグ付きヌクレオチドに加えて、シーケンシングは、5種の一般的な核酸塩基:アデニン、シトシン、グアニン、ウラシルおよびチミジンの、糖または非環式部分、例えば、(S)−グリセロールヌクレオシド三リン酸(gNTP)を欠くヌクレオチド類似体を使用して実施され得る(Horhotaら Organic Letters、8:5345〜5347[2006])。
ナノポア−ポリメラーゼ複合体
[0085]一部の場合においては、ポリメラーゼ(例えば、DNAポリメラーゼ)を、ナノポアに付ける、および/またはナノポアに近接して位置付ける。ポリメラーゼは、ナノポアが膜中に組み込まれる前または後にナノポアに付けてもよい。一部の場合においては、ポリメラーゼを、OmpGタンパク質モノマーに付け、次いで、ナノポアポリメラーゼ複合体を、膜中に挿入することができる。
[0086]ポリメラーゼをナノポアに付けるための例示的方法は、リンカー分子をOmpGモノマーに付けるステップまたは取付け部位もしくは取付けリンカーを有するようにOmpGを変異するステップ、次いで、ポリメラーゼを取付け部位もしくは取付けリンカーに付けるステップ(例えば、大量に、膜への挿入の前に)を含む。ポリメラーゼはまた、ナノポアを膜中に形成させた後に取付け部位または取付けリンカーに付けることもできる。一部の場合においては、複数のナノポア−ポリメラーゼ対を、バイオチップの複数の膜(例えば、ウェルおよび/または電極上に配置される)中に挿入し、それによって、本明細書において記載されるようなナノポアチップを形成する。一部の例においては、ナノポア−ポリメラーゼ複合体を形成するポリメラーゼのナノポアへの取付けは、各電極の上のバイオチップ上で行う。
[0087]ポリメラーゼは、任意の適した化学(例えば、共有結合および/またはリンカー)を用いてナノポアに付けることができる。一部の例においては、ポリメラーゼは、SpyCatcherポリペプチドを含む融合タンパク質として発現され、これは、Spyタグペプチドを含むOmpGナノポアに共有結合され得る。一部の例においては、ポリメラーゼは、分子ステープル(molecular staple)を用いてナノポアに付けられる。一部の例においては、分子ステープルは、3種のアミノ酸配列(リンカーA、B、およびCで示す)を含む。リンカーAは、OmpGポリペプチドから伸びることができ、リンカーBは、ポリメラーゼから伸びることができ、その場合にリンカーCは、リンカーAとリンカーBを(例えば、リンカーAとリンカーBの両方に巻き付くことによって)つなぐことができ、したがってポリメラーゼをナノポアとつなぐことができる。リンカーCは、リンカーAまたはリンカーBの一部分となるよう構築することもでき、したがってリンカー分子の数は減る。
[0088]一部の例においては、ポリメラーゼは、Solulink(商標)化学を用いてナノポアに連結する。Solulink(商標)は、HyNic(6−ヒドラジノ−ニコチン酸、芳香族ヒドラジン)と4FB(4−ホルミル安息香酸エステル、芳香族アルデヒド)の間の反応とすることができる。一部の例においては、ポリメラーゼは、Click化学(例えば、LifeTechnologiesから入手可能)を用いてナノポアに連結する。一部の場合においては、OmpG分子にジンクフィンガー変異を導入し、次に分子(例えば、DNA中間体分子)を使用してポリメラーゼをOmpGのジンクフィンガー部位に連結する。
[0089]ポリメラーゼをナノポアに付けることにおいて使用することができる他のリンカーは、直接の遺伝子連結(例えば、(GGGGS)1−3アミノ酸リンカー(配列番号19))、トランスグルタミナーゼ媒介連結(例えば、RSKLG(配列番号23))、ソルターゼ媒介連結、およびシステイン修飾による化学連結である。本明細書において有用であると考えられる具体的なリンカーは、(GGGGS)1−3(配列番号19)、N末端のKタグ(RSKLG(配列番号23))、ΔTEV部位(12〜25)、ΔTEV部位+SpyCatcherのN末端(12〜49)である。
[0090]ポリメラーゼは、任意の好適な手段によってナノポアに連結してもよい。例えば、PCT/US2013/068967(WO2014/074727として公開;Genia Technologies,Inc.)、PCT/US2005/009702(WO2006/028508として公開;President and Fellows of Harvard College)、およびPCT/US2011/065640(WO2012/083249として公開;Columbia University)を参照のこと。
[0091]一部の例においては、ナノポアおよびポリメラーゼは融合タンパク質(すなわち、単一のポリペプチド鎖)として産生され、そのようなものとして膜中に組み込まれる。
[0092]ポリメラーゼを、ポリメラーゼがヌクレオチドを核酸鎖(例えば、成長している核酸鎖)中に組み込む速度を低減するように変異することができる。一部の場合においては、ヌクレオチドを核酸鎖中に組み込む速度は、ヌクレオチドおよび/または鋳型鎖に官能基付与して、例えば、鋳型核酸鎖のメチル化によって立体障害を提供することによって低減することができる。一部の例においては、速度を、メチル化ヌクレオチドを組み込むことによって低減する。
ポリヌクレオチドをシーケンシングするための方法
[0093]本明細書において記載されるバリアントOmpGポリペプチドを使用して特性決定されている分子は、帯電した分子または極性分子、例えば、帯電したポリマー分子または極性ポリマー分子を含む種々の種類のものであり得る。具体例として、リボ核酸(RNA)およびデオキシリボ核酸(DNA)分子が挙げられる。DNAは、一本鎖DNA(ssDNA)であっても二本鎖DNA(dsDNA)分子であってもよい。
[0094]一態様においては、即時OmpGバリアントナノポアを使用する核酸をシーケンシングするための方法が提供される。本開示において提供されるOmpGバリアントを、当技術分野で公知のその他のナノポアシーケンシングプラットフォームに従って核酸の配列を決定するために使用することができる。例えば、本開示において提供されるOmpGバリアントは、Oxfordナノポア(Oxford、UK)のエキソヌクレアーゼを用いた方法、NABsys(Providence、Rl)のハイブリダイゼーションによるナノポアを用いたシーケンシング、NobleGen Biosciences(Concord、MA)の蛍光を用いた光学的ナノポアシーケンシング、イルミナ(lllumina)(San Diego、CA)およびStratos Genomics(Seattle、WA)の拡大によるナノポアシーケンシングに従って核酸をシーケンシングするのに適したものであり得る。いくつかの実施形態においては、OmpGバリアントを使用する核酸のシーケンシングを、PCT/US2013/068967(その全文が参照により本明細書に組み込まれる2013年11月7日に出願された「Nucleic Acid Sequencing Using Tags」と題された)に記載されるように、タグ付きヌクレオチドを使用して実施することができる。例えば、1つもしくは複数の検出電極に隣接して、または検出において1つもしくは複数の検出電極に近接して膜(例えば、脂質二重層)中に置かれたバリアントOmpGナノポアは、ヌクレオチド塩基が、ポリヌクレオチド鎖中に組み込まれ、ヌクレオチドのタグがナノポアによって検出されるように、ポリメラーゼによるタグ付きヌクレオチドの組込みを検出することができる。ポリメラーゼを、上記のようなナノポアと関連付けることができる。
[0095]タグ付きヌクレオチドのタグは、ナノポアによって検出され得る化学基または分子を含み得る。タグ付きヌクレオチドを提供するために使用されるタグの例は、少なくともPCT/US2013/068967の段落[0414]〜[0452]に記載されている。種々のヌクレオチドの混合物、例えば、Nが、アデノシン(A)、シチジン(C)、チミジン(T)、グアノシン(G)またはウラシル(U)であるタグ付きdNTPの混合物からヌクレオチドを組み込むことができる。あるいは、個々のタグ付きdNTPの交互溶液、すなわち、タグ付きdATPとそれに続くタグ付きdCTPとそれに続くタグ付きdGTPなどからヌクレオチドを組み込むことができる。ポリヌクレオチド配列の決定は、タグがナノポアを通って流れるもしくはナノポアに隣接するときに、タグがナノポア中にあるときに、および/またはタグがナノポアに提示されるときに、ナノポアがタグを検出するように行うことができる。各タグ付きヌクレオチドのタグを、限定されるものではないが、ヌクレオチドのリン酸(例えば、γリン酸)、糖または窒素含有塩基部分を含む、任意の位置でヌクレオチド塩基に連結することができる。一部の場合においては、タグが、ヌクレオチドタグの組込みの際にポリメラーゼと会合される間に、タグが検出される。タグは、ヌクレオチド組込みならびにその後のタグの切断および/または放出後に、タグがナノポアを通って転位置するまで検出され続け得る。一部の場合においては、ヌクレオチド組込み事象は、タグ付きヌクレオチドからタグを放出し、タグは、ナノポアを通過し、検出される。タグは、ポリメラーゼによって放出され得、または限定されるものではないが、ポリメラーゼの近傍に位置する酵素による切断を含む任意の適した方法で切断/放出される。この方法では、独特のタグが、ヌクレオチドの各種(すなわち、アデニン、シトシン、グアニン、チミンまたはウラシル)から放出されるので、組み込まれた塩基を同定することができる(すなわち、A、C、G、TまたはU)。一部の状況では、ヌクレオチド組込み事象は、タグを放出しない。このような場合においては、組み込まれたヌクレオチドに連結されたタグは、ナノポアを利用して検出される。一部の例においては、タグは、ナノポアを通って、またはナノポアに近接して移動することができ、ナノポアを利用して検出され得る。
[0096]一部の場合においては、組み込まれていないタグ付きヌクレオチドが、ナノポアを通過する。方法は、ナノポアによってタグ付きヌクレオチドが検出される時間の長さに基づいて、組み込まれていないヌクレオチドと会合されたタグと、組み込まれたヌクレオチドと会合されたタグの間を区別できる。一実施形態においては、組み込まれていないヌクレオチドは、約1ミリ秒未満の間ナノポアによって検出され、組み込まれたヌクレオチドは、少なくとも約1ミリ秒の間ナノポアによって検出される。
[0097]したがって、一態様においては、本開示は、バリアントOmpGナノポアを利用して核酸をシーケンシングするための方法を提供する。一実施形態においては、(a)タグ付きヌクレオチドを、ナノポアを含む反応チャンバー中に提供するステップであって、タグ付きヌクレオチドの個々のタグ付きヌクレオチドが、ヌクレオチドに連結されたタグを含有し、タグがナノポアを利用して検出可能である、ステップと、(b)ポリメラーゼを利用して重合反応を実施し、それによって、タグ付きヌクレオチドの個々のタグ付きヌクレオチドを、核酸試料に由来する一本鎖核酸分子と相補的である成長している鎖中に組み込むステップと、(c)ナノポアを利用して、個々のタグ付きヌクレオチドの組込みの間に、および/または組込みの際に個々のタグ付きヌクレオチドと会合されたタグを検出するステップであって、ヌクレオチドがポリメラーゼと会合される間に、タグがナノポアを利用して検出される、ステップとによって、検出電極に隣接するバリアントOmpGナノポアを利用して核酸をシーケンシングするための方法が提供される。ポリヌクレオチドをシーケンシングするための本バリアントOmpGナノポアとともに、タグ付きヌクレオチドの使用を含むシーケンシング方法の他の実施形態は、その全文が本明細書に組み込まれるWO2014/074727に提供される。
実施例
OmpG−EXTの発現および精製
[0098]Grosseら(Biochemistry 53:4826〜4838[2014])によって記載されるΔL6ΙΙ構築物に基づいて、ループ6を欠き、置換E229Aを有する成熟OmpGタンパク質の形態をコードするDNA(残基22〜301;UniprotエントリーP76045)(OmpG−EXT)を合成した(Genscript、NJ)。合成DNA(OmpG−ΔL6/E229Α)は、ループ6の欠失およびC末端配列:リンカー1−Hisタグ−リンカー2−Spyタグ(配列番号3)を有するOmpG構築物をコードする。野生型配列(配列番号4)に由来し、ループ6の切り詰め(ΔL6)および置換E229Aをコードする合成DNA配列を、pET−26b ベクターにクローニングし、封入体としてOmpG欠損BI21DE3大腸菌(E.coli)において産生した(www.neb.com/products/c2527−bl21 de3−competent−e−coli)。
[0099]OmpG−ΔL6/E229Aの発現を、約24時間のMagicMedia(商標)(Invitrogen、Carlsbad、CA)において増殖するBI21DE3大腸菌(E.coli)細胞におけるOmpG−ΔL6/E229A DNAのIPTG誘導性転写によって得た。細胞を遠心分離し、次いでTris50mM、PH8.0(細胞ペレット1gに対してバッファー5ml)に再懸濁した。次いで、細胞を超音波処理し、溶解物を遠心分離した(10,000xg/20分/4℃)。ペレットを遠心分離および再懸濁によって2回洗浄し、最終ペレットをTris50mM、pH8.0に、200mg/mlの濃度で再懸濁した。封入体をアリコートし、−80℃で保存した。
[00100]封入体を、Tris50mM、pH8.0、尿素6MおよびTCEP2.4mM中に60℃で10分間可溶化した。可溶化されていない封入体を遠心分離によって除去し、上清中に存在する可溶化されたタンパク質を、再フォールディングバッファー(Tris25mM、pH8.0、尿素1.8M、TCEP1mMおよびβ−OG3%)で1mg/mlに希釈した。OmpG−ΔL6/E229Aタンパク質を、37℃で16時間再フォールディングし、次いで、Tris50mM、pH8.0、NaCl200mM、イミダゾール5mM、β−OG1%を使用して希釈して、β−OG1%および尿素0.8Mの最終濃度を得た。再フォールディングされたタンパク質を、TALON(登録商標)(Clontech、Mountain View、CA)を使用するアフィニティークロマトグラフィーによって精製し、Tris50mM、pH8.0、NaCl200mM、イミダゾール200mMおよびTween−20 0.1%に溶出した。TALONは、コバルトを加えた固定化金属アフィニティークロマトグラフィー(IMAC)樹脂であり、ニッケルが加えられた樹脂よりも高い特異性でhisタグ付きタンパク質と結合する。
[00101]pET−26bベクター中のOmpG−ΔL6/E229A構築物をコードするDNAに基づいて、部位特異的突然変異誘発によってOmpG−ΔL6/E229Aタンパク質のバリアントを得た。上記のようにOmpG−ΔL6について記載したように、全てのOmpG−ΔL6/E229Aバリアントを発現させ、精製した。
OmpGバリアントの特性決定
[00102]バリアントOmpGポリペプチドの、自発性ゲート開閉を低減する能力を実証するために、個々のバリアントを、半導体センサーチップ(a)上のウェルの上の脂質二重層中の細孔として再構成し、OmpGバリアント細孔(b)の各々について単一チャネル記録を得た。
[00103](a)OmpGバリアントの脂質二重層中への再構成
[00104]ループ6の欠失(ΔL6)およびアミノ酸置換E229A、すなわち、ΔL6/E229Αを、Y50K、Y50N、R68N、R211NもしくはE17Kから選択されるアミノ酸置換のうち1種と組み合わせて、および/またはD215の欠失と組み合わせて含むバリアントOmpGタンパク質を、実施例1に記載されるように発現させ、精製した。PCT/US2014/061853(「Methods for Forming Lipid Bilayers on Biochips」と題され、2014年10月22日に出願された)に記載されるように、脂質二重層が形成され、ナノポアが挿入された。
[00105](b)脂質二重層における単一チャネル記録
[00106]電流フローに対する変異の効果を決定するために、OmpG−EXTナノポアのバリアントを通過する電流について単一チャネル記録を作製した。OmpGナノポアを通るイオン電流フローの測定は、DCを使用して行った。
[00107]別に記載されない限り、チャンバーを、HEPES20mM、pH8.0、NaCl300mM、CaCl3mMで満たした。社内で組み立てられたGeniaChip(商標)DNAシーケンサーを使用して電流を測定した。
[00108]OmpG−ΔL6/E229A−Y50K(配列番号6)、OmpG−ΔL6/E229A−R68N(配列番号7)、OmpG−ΔL6/E229A−R211N(配列番号8)、OmpG−ΔL6/E229A−E17K(配列番号9)およびOmpG−ΔL6/E229A−del215(配列番号10)のチャネル電流トレースを、図4A〜4Eに示す。トレースは、OmpG−ΔL6/E229A−R68N(B)、OmpG−ΔL6/E229A−R211N(C)、OmpG−ΔL6/E229A−E17K(D)が、相当なちらつき、すなわち、上昇および下降電流を呈することを示す。OmpG−ΔL6/E229A−Y50K(A)は、より少ないちらつきおよび約30pAのより低い開口チャネル電流レベルを呈す。OmpG−ΔL6/E229A−del215(E)は、自発性ゲート開閉の最小レベルを示し、約35pAの開口チャネルレベルを維持する。
[00109]OmpG−ΔL6/E229Aバリアントについて、およびバリアントOmpG−ΔL6/E229A−del215−Y50Kについて測定された抵抗事象の数(図4A〜4E)を解析して、ゲート開閉頻度に対する変異の効果を算出した。図5Aは、開口チャネル(OC)電流ノイズ(上昇および下降電流)の平均およびS.D.を、平均測定値から1S.D.外側に生じた同一測定値のパーセントと関連付けるヒストグラムを示す。ヒストグラムは、OmpG−ΔL6/E229A−del215(del215)(図5Aおよび5B中、「ΔL6−del215」)は、親OmpG−ΔL6/E229A(図5Aおよび5B中、「ΔL6」)に対して、ならびにその他のバリアント:OmpG−ΔL6/E229A−Y50K(図5Aおよび5B中、「ΔL6−Y50K」)、OmpG−ΔL6/E229A−R68N(図5Aおよび5B中、「ΔL6−R68N」)、OmpG−ΔL6/E229A−R211N(図5Aおよび5B中、「ΔL6−R211N」)、OmpG−ΔL6/E229A−E17K(図5Aおよび5B中、「ΔL6−E17K」)、およびOmpG−ΔL6/E229A−del215−Y50K(図5Aおよび5B中、「ΔL6−Y50K」)と比較した場合に、最低量のノイズを有し、約35pAの開口チャネル電流を維持することを示す。
[00110]下降電流のみの平均およびS.D.を、図5Bに提供する。OmpG−ΔL6/E229A−Y50K、OmpG−ΔL6/E229A−del215、およびOmpG−ΔL6/E229A−del215−Y50Kは、例えば、親OmpG−ΔL6/E229Aと比較した場合に最小量の下降電流を示した。
OmpGナノポアへのポリメラーゼの取付け
[00111]Hisタグ付きポリメラーゼをコードするDNA配列、pol6は、商業的供給源(DNA 2.0、Menlo Park、California)から購入し、次いで、そのC末端にSpyCatcherドメインを含むように操作した(Liら、J Mol Biol 23:426(2):309−317[2014])。Pol6を、pD441ベクター(発現プラスミド)中にライゲーションし、続いて、これをコンピテント大腸菌(E.coli)に形質転換した。グルコース0.2%およびカナマイシン100μg/mlを含むLB中で、スターター培養物1mlを、約8時間。対数期のスターター培養物25μlを、96ディープウェルプレートの発現培地1ml(グルコース0.2%、リン酸カリウム50mM、MgCl2 5mM、およびカナマイシン100μg/mlを追加したTerrific Broth(TB)自己誘導培地)に移した。プレートを、250〜300rpmで振盪しながら28℃で36〜40時間インキュベートした。
[00112]次に細胞を、4℃で30分間、3200×gにて遠心分離して収集した。デカントして培地を除き、細胞ペレットをあらかじめ冷却した溶解バッファー200μl(リン酸カリウム20mM pH7.5、NaCl100mM、Tween20 0.5%、TCEP5mM、イミダゾール10mM、PMSF1mM、1×Bug Buster(登録商標)タンパク質抽出試薬、リゾチーム100μg/ml、およびプロテアーゼ阻害剤)中で再懸濁させ、穏やかに撹拌しながら室温で20分間インキュベートした。次いで10倍ストックからの試薬20μlを、最終濃度100μg/mlのDNase、5mMのMgCl2、100μg/mlのRNase Iに加え、氷上で5〜10分間インキュベートして溶解液を生成させた。溶解液に、1Mリン酸カリウム200μl、pH7.5(最終濃度は、溶解液400μl中の約0.5Mリン酸カリウムとなった)を追加し、4℃で10分間、約1500rpmにて遠心分離することによりPallフィルタープレート(部品番号5053、3ミクロンフィルター)でろ過した。次いで、澄んだ溶解液を、平衡化した96ウェルHis−Purコバルトプレート(Pierce部品番号90095)に入れ、15〜30分間結合させた。
[00113]流出液(FT)を、500×gにて3分間遠心分離することによって収集した。次いでFTを400μlの洗浄バッファー1(リン酸カリウム0.5M pH7.5、NaCl1M、TCEP5mM、イミダゾール20mM、およびTween20 0.5%)で3回洗浄した。次いでFTを400μlの洗浄バッファー2(Tris50mM pH7.4、KCl200mM、TCEP5mM、Tween20 0.5%、イミダゾール20mM)で2回洗浄した。Pol6を、溶出バッファー200μl(Tris50mM pH7.4、KCl200mM、TCEP5mM、Tween20 0.5%、イミダゾール300mM、グリセロール25%)を使用して溶出させ、1〜2分のインキュベーション後に収集した。溶離液を2〜3回、同じHis−Purプレートに再び入れて、濃縮したPol6を得た。精製したポリメラーゼは、SDS−PAGEで評価した場合に95%超の純度であった。タンパク質濃度は、NanoDrop(登録商標)によって評価した場合に約3uM(0.35mg/ml)であり、260/280比は0.6であった。ポリメラーゼ活性は、蛍光置換アッセイによって確認した。
[00114]Pol6−His−SpyCatcherタンパク質を、OmpG−EXT−His−Spyタグ(配列番号3)を含むSrCl3mM中4℃で一晩インキュベートして、SpyCatcherをSpyタグと共有結合させ、それによって、OmpG−ポリメラーゼ複合体を形成した。実施例4に記載されるように、OmpG−ポリメラーゼ複合体を、アフィニティークロマトグラフィーを使用して精製し、タグ付きヌクレオチドを捕獲し、同定する能力について試験した。
ポリメラーゼ−バリアントOmpG複合体によるヌクレオチド塩基の検出
[00115]OmpG−EXT−del215(配列番号10)、すなわち、OmpG−ΔL6/E229A−del215の、ポリメラーゼによって捕獲されたヌクレオチドを同定する能力を、NaCl300mM、CaCl2 3mM、HEPES20mM、pH7.5中、DNA鋳型JAM1Aの存在下で、ポリメラーゼPol6と複合体形成しているOmpG−EXT−del215を使用して評価した。鋳型JAM1Aは、アッセイに使用されるタグ付きチミジンヌクレオチド(Roche Penzberg、Germanyにより合成)と相補的であり、ポリメラーゼによって捕獲されるであろうアデニンヌクレオチド塩基を提供するDNA鋳型である。
[00116]印加された100mVの定電圧で10分間、DC電流測定を行った。種々のセットのタグ付きヌクレオチドを使用した。図6は、OmpG−EXT−del215−ポリメラーゼ複合体が、ポリメラーゼによって捕獲された4種の異なるタグ付きヌクレオチド:T−T30、T−dSp30、T−Tmp6およびT−dSp5を同定することを実証するトレースの例を示す。4種のヌクレオチドの各々の捕獲は、対応するヌクレオチドタグがナノポアによって検出されるときにOmpG−EXT−del215ナノポアを通って流れる電流の4種の異なる変化によって反映される(図6)。矢印は、タグ付きヌクレオチドの4種のタグが、チャネル電流を4種の異なるレベルに減少することを示す。4種のヌクレオチドの各々を、ヌクレオチドを個々にナノポアに付加したときに電流を測定した同様の測定で同定した。図7は、対応するタグがナノポアによって検出された時の、開口チャネル電流の低減に対する対応するタグの個々の効果によるヌクレオチドの同定を示す。図8は、DC条件下で検出され、図6において矢印によって示された4種のヌクレオチドの捕獲の拡大図を示す。
配列表フリーテキスト
先行技術文献
特許文献
[1] PCT/US2005/009702 (published as WO2006/028508 on 16 March 2006; President and Fellows of Harvard College; entitled METHODS AND APPARATUS FOR CHARACTERIZING POLYNUCLEOTIDES.
[2] PCT/US2011/065640 (published as WO2012/083249 on 21 June 2012; Columbia University; entitled DNA SEQUENCING BY SYNTHESIS USING MODIFIED NUCLEOTIDES AND NANOPORE DETECTION).
[3] PCT/US2013/068967 (published as WO2014/074727 on 15 May 2014; Genia Technologies; entitled NUCLEIC ACID SEQUENCING USING TAGS).
[4] US20140134616 (published on May 15 2014; Genia Technologies; entitled NUCLEIC ACID SEQUENCING USING TAGS).
[5] PCT/US2014/061853 (published AS WO2015/061510 on April 30, 2015; Genia Technologies; entitled METHODS FOR FORMING LIPID BILAYERS ON BIOCHIPS).
[6] PCT/US2011/000205 (Genia Technologies, Inc. entitled SYSTEMS FOR MANIPULATING A MOLECULE IN A NANOPORE, published August 11, 2011 as WO2011/097028)
非特許文献
[1] Conlan and Bayley, Folding of a Monomeric Porin, OmpG, in Detergent Solution; Biochemistry 42;9453-9465 (2003).
[2] Subbarao and van den Berg, Crystal Structure of the monomeric Porin OmpG; J Mol Biol 360:750-759 (2006).
[3] Grosse et al., Structural and functional characterization of a synthetically modified OmpG; Bioorganic and Medicinal Chem18:7716-7723 (2010).
[4] Anbazhagan et al., Incorporation of Outer Membrane Protein OmpG in Lipid Membranes: Protein-lipid Interactions and β-Barrel Orientation; Biochemistry47:6189-698 (2008).
[5] Fahie et al., Resolved Single-Molecule Detection of Individual Species within a Mixture of anti-Biotin Antibodies using an Engineered Monomeric Nanopore; ACS Nano 9:1089-1098 (2015).
[6] Chen et al., Outer membrane protein G: Engineering a quiet pore for biosensing, Proc Natl Acad Sci 105:6272-6277 (2008).
[7] Grosse et al., Structure-based Engineering of a Minimal Porin Reveals Loop-Independent Channel closure; Biochemistry 53:4826-4838 (2014).
[8] Astier et al., J Am Chem Soc 10.1021/ja057123+, published online on December 30, 2005.

Claims (15)

  1. 配列番号2の親大腸菌(E.coli)OmpGの単離されたOmpGバリアントまたはその相同体であって、前記バリアントがアミノ酸216〜227のうち1つまたは複数の欠失、アミノ酸置換E229A、ならびにアミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66およびE31のうち1つまたは複数の変異を含み、前記バリアントがナノポアを形成する能力を保持する、前記単離されたOmpGバリアントまたはその相同体。
  2. 配列番号2の親OmpGの単離されたOmpGバリアントまたはその相同体であって、前記バリアントがアミノ酸216〜227のうち1つまたは複数の欠失、アミノ酸置換E229A、およびアミノ酸D215の欠失を含み、前記バリアントがナノポアを形成する能力を保持する、前記単離されたOmpGバリアントまたはその相同体。
  3. 配列番号2のアミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66、およびE31のうち1つまたは複数の変異をさらに含む、請求項2に記載の単離されたOmpGバリアント。
  4. 配列番号2中の前記1つまたは複数のアミノ酸の前記変異が、R211N、R68N、Y50K、Y50N、およびE17Kから選択される、請求項1または3に記載の単離されたOmpGバリアント。
  5. 前記1つまたは複数のアミノ酸の前記変異が、アミノ酸置換Y50Kである、請求項1または3に記載の単離されたOmpGバリアント。
  6. 前記バリアントOmpGと作動可能に連結されるポリメラーゼをさらに含む、請求項1または3に記載の単離されたOmpGバリアント。
  7. 脂質層中にナノポアを形成する能力を保持する、請求項1から6のいずれか一項に記載の単離されたOmpGバリアント。
  8. 配列番号2の親OmpGのバリアントをコードするポリヌクレオチド配列を含む単離された核酸であって、前記バリアントOmpGが、アミノ酸216〜227のうち1つまたは複数の欠失、アミノ酸置換E229A、ならびに
    (i)アミノ酸D215の欠失および/または
    (ii)アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66およびE31のうち1つまたは複数の変異
    を含む、前記単離された核酸。
  9. 検出電極に隣接する膜中のバリアントOmpGナノポアを利用して核酸試料をシーケンシングするための方法であって、
    (a)タグ付きヌクレオチドを、前記ナノポアを含む反応チャンバー中に提供するステップであって、前記タグ付きヌクレオチドの個々のタグ付きヌクレオチドが、ヌクレオチドに連結されたタグを含み、タグが前記ナノポアを利用して検出可能である;
    (b)前記バリアントOmpGナノポアに連結された単一ポリメラーゼを利用して重合反応を実施し、それによって、前記タグ付きヌクレオチドの個々のタグ付きヌクレオチドを、前記核酸試料に由来する一本鎖核酸分子と相補的である伸長している鎖中に組み込むステップ;および
    (c)請求項1から11のいずれか一項に記載のバリアントOmpGナノポアを利用して、前記個々のタグ付きヌクレオチドの組込みの際に、前記個々のタグ付きヌクレオチドと会合されたタグを検出するステップであって、前記ヌクレオチドが前記ポリメラーゼと会合される間に、前記タグが前記ナノポアを利用して検出される;
    を含む、前記方法。
  10. 核酸試料をシーケンシングするためのチップであって、請求項1から11のいずれか一項に記載の複数のバリアントOmpGナノポアを含み、前記複数のOmpGナノポアが、電極に隣接して、または近接して配置され、前記ナノポアが、個々にアドレス可能であり、前記ナノポアに付けられた単一ポリメラーゼを有し、個々のナノポアが、前記ポリメラーゼにより伸長している核酸鎖中へのヌクレオチドの組込みの際にタグ付きヌクレオチドと会合されたタグを検出する、前記チップ。
  11. 配列番号16のリンカー−His−Spyタグ構築物を含む、請求項1から11のいずれか一項に記載の単離されたOmpGバリアント。
  12. 配列番号2の親OmpGの単離されたOmpGバリアントまたはその相同体であって、前記バリアントが(i)アミノ酸216〜227のうち1つもしくは複数の欠失、または(ii)アミノ酸置換E229Aまたは(iii)アミノ酸R211、E15、R68、Y50、E152、E174、E17、D215、Y259、K114、E174、F66、E31のうち1つもしくは複数の変異を含み、前記バリアントがナノポアを形成する能力を保持する、前記単離されたOmpGバリアントまたはその相同体。
  13. 配列番号2の親大腸菌(E.coli)OmpGの単離されたOmpGバリアントまたはその相同体であって、前記バリアントがタンパク質配列のN末端に移動された、親OmpGの1つまたは複数のC末端β鎖を含み、前記バリアントがナノポアを形成する能力を保持する、前記単離されたOmpGバリアントまたはその相同体。
  14. 検出電極に隣接する膜中のバリアントOmpGナノポアを利用して核酸試料をシーケンシングするための方法であって、
    (a)タグ付きヌクレオチドを、前記ナノポアを含む反応チャンバー中に提供するステップであって、前記タグ付きヌクレオチドの個々のタグ付きヌクレオチドが、ヌクレオチドに連結されたタグを含み、タグが前記ナノポアを利用して検出可能である;
    (b)前記バリアントOmpGナノポアに連結された単一ポリメラーゼを利用して重合反応を実施し、それによって、前記タグ付きヌクレオチドの個々のタグ付きヌクレオチドを、前記核酸試料に由来する一本鎖核酸分子と相補的である伸長している鎖中に組み込むステップ;および
    (c)請求項27から32のいずれか一項に記載のバリアントOmpGナノポアを利用して、前記個々のタグ付きヌクレオチドの組込みの際に前記個々のタグ付きヌクレオチドと会合されたタグを検出するステップであって、前記ヌクレオチドが前記ポリメラーゼと会合される間に、前記タグが前記ナノポアを利用して検出される;
    を含む、前記方法。
  15. 核酸試料をシーケンシングするためのチップであって、請求項27から32のいずれか一項に記載の複数のバリアントOmpGナノポアを含み、前記複数のOmpGナノポアが、電極に隣接して、または近接して配置され、前記ナノポアが、個々にアドレス可能であり、前記ナノポアに付けられた単一ポリメラーゼを有し、個々のナノポアが、前記ポリメラーゼによる成長している核酸鎖中へのヌクレオチドの組込みの際にタグ付きヌクレオチドと会合されたタグを検出する、前記チップ。
JP2018514905A 2015-09-22 2016-09-20 Ompgバリアント Active JP6956709B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562222197P 2015-09-22 2015-09-22
US62/222,197 2015-09-22
US201662333672P 2016-05-09 2016-05-09
US62/333,672 2016-05-09
PCT/EP2016/072224 WO2017050722A1 (en) 2015-09-22 2016-09-20 Ompg variants

Publications (3)

Publication Number Publication Date
JP2018531002A true JP2018531002A (ja) 2018-10-25
JP2018531002A6 JP2018531002A6 (ja) 2018-12-13
JP6956709B2 JP6956709B2 (ja) 2021-11-02

Family

ID=57068053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018514905A Active JP6956709B2 (ja) 2015-09-22 2016-09-20 Ompgバリアント

Country Status (7)

Country Link
US (3) US10752658B2 (ja)
EP (1) EP3353194B1 (ja)
JP (1) JP6956709B2 (ja)
CN (1) CN108449941B (ja)
AU (1) AU2016326867B2 (ja)
CA (1) CA2998970C (ja)
WO (1) WO2017050722A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050722A1 (en) * 2015-09-22 2017-03-30 Genia Technologies, Inc. Ompg variants
KR101838687B1 (ko) * 2016-01-26 2018-03-15 한국생명공학연구원 나노포어를 이용한 단백질-단백질 상호작용 저해제 스크리닝 방법
CN112480204A (zh) * 2020-04-13 2021-03-12 南京大学 一种采用Aerolysin纳米孔道的蛋白质/多肽测序方法
EP4196608A1 (en) 2020-08-11 2023-06-21 F. Hoffmann-La Roche AG Nucleoside-5'-oligophosphates tagged with positively-charged polymers, nanopores incorporating negative charges, and methods and systems using the same
EP4355912A1 (en) 2021-06-17 2024-04-24 F. Hoffmann-La Roche AG Engineered nanopore with a negatively charged polymer threaded through the channel
EP4355757A1 (en) 2021-06-17 2024-04-24 F. Hoffmann-La Roche AG Nucleoside-5 -oligophosphates having a cationically-modified nucleobase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014074727A1 (en) * 2012-11-09 2014-05-15 Genia Technologies, Inc. Nucleic acid sequencing using tags

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
DE4422198C2 (de) 1994-06-24 1997-08-28 Audi Ag Verfahren zum Steuern der elektrischen Beheizung eines Katalysators
WO2006028508A2 (en) 2004-03-23 2006-03-16 President And Fellows Of Harvard College Methods and apparatus for characterizing polynucleotides
JP2010533669A (ja) * 2007-07-20 2010-10-28 ビーエーエスエフ ソシエタス・ヨーロピア 輸送系を含む官能化ナノコンパートメント
EP2534284B1 (en) 2010-02-08 2021-03-17 Genia Technologies, Inc. Systems and methods for manipulating a molecule in a nanopore
EP2652153B1 (en) 2010-12-17 2017-07-05 The Trustees of Columbia University in the City of New York Dna sequencing by synthesis using modified nucleotides and nanopore detection
KR101980900B1 (ko) 2012-07-13 2019-05-22 삼성전자주식회사 수위감지장치 및 이를 가지는 의류건조기
US9896485B2 (en) 2013-07-22 2018-02-20 University Of Massachusetts Nanopore sensors and uses thereof
EP3575410A3 (en) * 2013-10-18 2020-03-04 Oxford Nanopore Technologies Limited Modified enzymes
EP3640349A3 (en) 2013-10-23 2020-07-29 Roche Sequencing Solutions, Inc. High speed molecular sensing with nanopores
US9322062B2 (en) 2013-10-23 2016-04-26 Genia Technologies, Inc. Process for biosensor well formation
SG11201607796TA (en) * 2014-02-19 2016-11-29 Univ Washington Nanopore-based analysis of protein characteristics
WO2017050722A1 (en) * 2015-09-22 2017-03-30 Genia Technologies, Inc. Ompg variants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014074727A1 (en) * 2012-11-09 2014-05-15 Genia Technologies, Inc. Nucleic acid sequencing using tags

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIOCHEMISTRY, vol. 53, JPN6019004823, 2 July 2014 (2014-07-02), pages 4826 - 4838, ISSN: 0004284660 *
GROSSE, WOLFGANG, ION-CHANNEL ENGINEERING: DAS MONOMERE PORIN OMPG ALS MODELL[ONLINE], JPN6019004834, 5 October 2012 (2012-10-05), ISSN: 0004284661 *

Also Published As

Publication number Publication date
US10752658B2 (en) 2020-08-25
US20240010688A1 (en) 2024-01-11
CN108449941B (zh) 2022-03-11
US20180362594A1 (en) 2018-12-20
CN108449941A (zh) 2018-08-24
EP3353194B1 (en) 2023-08-30
JP6956709B2 (ja) 2021-11-02
CA2998970A1 (en) 2017-03-30
EP3353194A1 (en) 2018-08-01
CA2998970C (en) 2021-07-13
WO2017050722A1 (en) 2017-03-30
AU2016326867A1 (en) 2018-03-08
US20200392191A1 (en) 2020-12-17
AU2016326867B2 (en) 2018-09-13
US11767348B2 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
US11767348B2 (en) OmpG variants
JP2018531002A6 (ja) Ompgバリアント
JP6608944B2 (ja) 特徴が改変されたα溶血素変異体
CN109072295B (zh) 修饰的纳米孔,包含其的组合物及其应用
JP6169976B2 (ja) 変異体細孔
US10590480B2 (en) Polymerase variants
US20200216887A1 (en) Nanopore sequencing complexes
CN114605507A (zh) 突变csgg孔
CN110621692A (zh) 由两个CsgG孔组成的跨膜孔
US11746337B2 (en) Purification of polymerase complexes
EP3423576B1 (en) Polymerase variants
CN112119033A (zh) 源自噬菌体的纳米孔传感器
Pavlenok et al. Control of subunit stoichiometry in single-chain MspA nanopores
US20210381041A1 (en) Enzymatic Enrichment of DNA-Pore-Polymerase Complexes
WO2024033422A1 (en) Novel pore monomers and pores

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200520

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200528

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200529

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200612

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200616

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210212

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210319

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210326

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210630

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210830

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210930

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6956709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150